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Quantum state preparation problem

* Given the function f: [a, b] = R, prepare the n-qubit quantum state
21
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* Important sub-routine in a variety of quantum algorithms, for different
functions of interest

with uniform grid x := a +

* Minimize number of non-Clifford gates and ancilla qubits



Standard approach(es)

e Amplitude oracle Ut : |x)|j) = |x)|f (k) @D j) that prepares g-bit
approximation of the values f(x)

* Implemented via reversible computation, using piecewise polynomial
approximation of the function f(x)

* Alternatively, reading values stored in a quantum memory

* Downsides:
* Handcrafted for every function + discretization of values of function
e Large ancilla cost — not suited for early fault-tolerant regime

e Other approaches with similar bottlenecks: Grover-Rudolph,
adiabatic, repeat until success, matrix product states, etc.



Quantum eigenvalue transformation (QET)

* A framework to coherently apply functions to the eigenvalues of a
Hermitian matrix

* An (a, m, £)-block encoding of an n-qubit Hermitian A is an (n + m)-
qubit unitary U with

1a({01®™ @ 1,)U(10)®™ @ 1,,) —Al| < ¢
e Base functions are even degree d polynomials

= QET circuit output is block encoding U ,a of the matrix A% (normalized)

* Implementation cost:
» £ applications of U and U”

e 2d many m-controlled Toffoli gates (CNOT for m = 1)
* d single-qubit Z-rotations R, (6} ) := exp(—ifyZ) on additional ancilla qubit



QET continued

* Example circuit for even degree d polynomial and m = 1:
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* Efficient classical pre-computation of angle set {0, 0,,--,0;}

* Odd polynomials, general functions via polynomial approximation,
complexity given by degree of polynomial - technical conditions omitted

(Extension: Quantum singular value transformation (QSVT) for general matrices A)



Main idea: State preparation via QET

: a1) 1Ry (2 ™ HRy (2™ F - ARy (-2°)H X}
* Create low-cost block encoding : i e RET) 2) X
2"—1 : 21
of A=) 5_ sm(zin) |x){x| via " ‘
(exact (1,1,0) block encoding)
|Tn) .

Ry(a) = exp(—iaY)

» Idea: Applying QET, convert this into block encoding of Y.2.51 £ (%) ]x)x|
using polynomial approximation off((b — a)arcsin(-) + a)

* Run relevant circuits on input |x; - x,,) ® [000), = |+)®"|000), and use
amplitude amplification to maximize probability of outputting

|Lpf> ® |000>a



Quantum circults

o B G A @ L . Tr s, L Usin block encoding
Iw1>: ] | circuit
|x2): ® :
I |
2 |
| |
T s ——— o——————
laz), —{ H _SE R.(61) ZE_ _ _E R.(62) i_ —— -} 2. Uz block encoding
o) - o [ circuit
)l A sin sin ||
' - - _ _ - —-——_ _ _ _ _ _ == _ _l
04 / Ry(¢)ﬁy(_¢) T By(9)} - 3, Amplitude amplification
|00>“i;2 ;H‘X’” | U U rsmdrman U7 L ~ (exact) circuit




Main result complexities

* Discretized L,-norm filling-fraction (N := 2") as
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* Theorem I: Given a degree ds polynomial approximation f of f, *) we
can prepare a quantum state [¥¢) that is e-close in trace dlstance to

|Wr) using O (;d‘s) gates + 4 ancilla qubits, for § = ¢ mln{T N] Tf[N]}.
7
f(x)

|f lmax

() when f(+) applied to sin (%) approximates to Ly-erroron |a, b]



Main result complexities simplified

* Theorem ll: For sufficiently smooth functions f,(*)we can prepare a
quantum state [¥¢) that is e-close in trace distance to |¥f) using

7N
7

~ -1
0 ("log(e )) gates + 4 ancilla qubits.
(*) need Ly-approximation 6 « exp(—dgs) for degree ds polynomial
* Analytical minimax polynomial

* In practice use (works very well):
 Remez approximation or just Local Taylor series
* L,-approximation on grid



Complexity comparison literature

# Non-Clifford | # An.cﬂla Rigorous Function
gates qubits |error bounds
QET (this work) (’)( ”Sﬁ) 4 / Polynoml.al/ F(?urler
Tz approximation
Black-box g2d. -
amplitude oracle O ( FIN] ) O(gede) 4 General
Grover-Rudolph 2 3 = Efficiently integrable
amplitude oracle O (nge de) O(gede) / probability distribution
Adiabatic g2d. -
amplitude oracle O < ( ]_-J[CN ])462 ) O(ged.) 4 General
Matrix product state O(n) 0 X Matrix product state

d = 2 approximation

Note: g.-bit amplitude oracles with degree cig piecewise polynomial approximation (&g #* d. in general)



Analytical performance: Gaussians

* Example function fz(x) = exp(—gxz)

* Theorem lll: For € € (O, %) and 0 < [ < 2™ we can prepare the

|—1,1] uniform grid Gaussian state on n qubits up to &-precision with
gate complexity

0 (n-logZ@) + 3 ancilla qubits

* Note: All other approaches use hundreds of ancilla qubits

1 IO(B\/ 1—9_62)

* Kaiser window state variant |W[3N (%)) X I3-_n 2N Io(B)

on|[—1,1]




Numerical benchmarking: tanh(x)

* Example function tanh(x) in the range x € [0,1] on n = 32 gives

# Ancilla :
Method qubits # 'Toftoli gates
QET (this work) 3 9.7 x 10*
Black-box state 9216 6.9 % 10%

amplitude oracle
Grover-Rudolph
amplitude oracle

> 959 > 2.0 x 10°

* Cost are lower bounds minimizing gate count, based on state-of-the-
art amplitude oracles (which could potentially be improved)

* Other methods give even higher costs



Run Algorithm: Setup

* Treat special case: a = —1,b = 1, with function f(x) = f(—x)
* Goal: Prepare the n-qubit quantum state

) = 5 ZeLE, F@0) with £ = 3 and Ny = 3 f(@)

1. Start W|th block encoding of A = ) 7 /2 N/2 sm(%x)|x)(x|
2. QET to convert into block encoding of Zx=—N1/2 [0 |[x) x|

3 0 (1/Tf[N]) rounds of exact amplitude amplification (extra ancilla)

* Need to start with (extensive) classical pre-processing



Run algorithm: Quantum circuits

|a1>,r_;%y_(2_1_1)__ ;{y_(g_l)___ 3 i};yz_;o; 1, 1.Usi, block encoding
) | circuit
|x2): ® :
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Run algorithm: Classical pre-computation

* Compute polynomial A(y) such that
yE[—l,l]

<94

RO |55 ™M < 1 and

h(sm y )— )

€

Fonel-tal

max
leading to approximation f(x) = h(sin(f))
(Remez algorithm / local Taylor series / L,-approximation on grid / ...)
* Compute discretized L,-norm filling-fraction Tf[N] ~ Tf[oo] of f(x)
(choose depending on how large N = 2™ is)
* Compute QET angle set {8, 0,, -, 0} of polynomial f(x)

(different analytically and/or numerically good methods available)



Extensions



Extensions: Non-smooth functions

* First approach: Use coherent inequality test with flag qubit for
piecewise QET polynomial implementation

—> for k discontinuities this requires (k + n) ancilla qubits and 2kn
Toffoli gates for the inequality comparison

* Second approach: Example triangle function for x € [0,1]

(

z 0<z<1/3 z 0<z<3
f(Z) = {l(l— ) 1/§<;< | insteaduse  f(Z) = { Unspecified 5 <T<2
2 - i(i-7) 2<z<]

— use coherent inequality test to flip for x > % and in the end reverse
this inequality check



Extensions: Fourier based QET

* Block-encoding of A is replaced by controlled time evolution
V(4) = |010] ® 1 + |1)(1]| & exp(iAt)
* Fourier-based QET uses calls to V(A), together with single-qubit-
rotations, to apply a function f(-) in Fourier series form to A
* We can implement V (A) for diagonal A = ), X|x){(x| usingn
controlled Z-rotations

* Example with compact Fourier series: Cycloid function
> n = 32 for x¥ € [0,27], gives 7.35%10° Toffoli gates

+ 3 ancillas qubits
From Wikipedia



Outlook

* Introduced versatile method for preparing a quantum state whose
amplitudes are given by some known function

* Based on the QET, orders of magnitude savings in ancilla qubits

* Needed: More detailed practical resource estimates, more functions,
combination with other methods, etc.

* Open questions:
» Example square root function v/x for ¥ € [0,1], non-differentiable at ¥ = 0
—> use VX + a instead?

e Multivariate functions via multivariate QET?

Thank you



Black box prep: Grover (2000), Bhaskar et al. (2016), Haener et al. (2018), Sanders
et al. (2019), Wang et al. (2021/22), Bausch (2022), Krishnakumar (2022), ...

Grover/Rudolph prep: Grover & Rudolph (2002)

Adiabatic prep: Rattew & Koczor (2022)

Some

Matrix product prep: Holmes & Matsuura (2020), Garcia-Ripoll (2021)
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