# Quantum state preparation without coherent arithmetic

arXiv:2210.14892

Sam McArdle (AWS), András Gilyén (Rényi Budapest), Mario Berta



#### Quantum state preparation problem

• Given the function  $f:[a,b] \to \mathbb{R}$ , prepare the n-qubit quantum state

$$|\Psi_f\rangle \coloneqq \frac{1}{\mathcal{N}_f} \cdot \sum_{x=0}^{2^{n}-1} f(\bar{x})|x\rangle$$

with uniform grid  $\bar{x}\coloneqq a+\frac{x(b-a)}{2^n}$  , normalization  $\mathcal{N}_f\coloneqq\sqrt{\sum_{\bar{x}}|f|^2(\bar{x})}$ 

- Important sub-routine in a variety of quantum algorithms, for different functions of interest
- Minimize number of non-Clifford gates and ancilla qubits

#### Standard approach(es)

- Amplitude oracle  $U_f:|x\rangle|j\rangle\mapsto|x\rangle|f(\bar{x})\oplus j\rangle$  that prepares g-bit approximation of the values  $f(\bar{x})$
- Implemented via reversible computation, using piecewise polynomial approximation of the function  $f\left(x\right)$
- Alternatively, reading values stored in a quantum memory
- Downsides:
  - Handcrafted for every function + discretization of values of function
  - Large ancilla cost not suited for early fault-tolerant regime
- Other approaches with similar bottlenecks: Grover-Rudolph, adiabatic, repeat until success, matrix product states, etc.

## Quantum eigenvalue transformation (QET)

- A framework to coherently apply functions to the eigenvalues of a Hermitian matrix
- An  $(\alpha, m, \varepsilon)$ -block encoding of an n-qubit Hermitian A is an (n+m)-qubit unitary U with

$$||\alpha(\langle 0|^{\otimes m} \otimes 1_n)U(|0\rangle^{\otimes m} \otimes 1_n) - A|| \le \varepsilon$$

- Base functions are even degree d polynomials
- $\rightarrow$  QET circuit output is block encoding  $U_{A^d}$  of the matrix  $A^d$  (normalized)
- Implementation cost:
  - $\frac{d}{2}$  applications of U and  $U^*$
  - 2d many m-controlled Toffoli gates (CNOT for m=1)
  - d single-qubit Z-rotations  $R_Z(\theta_k) \coloneqq \exp(-i\theta_k Z)$  on additional ancilla qubit

#### QET continued

• Example circuit for even degree d polynomial and m=1:



- Efficient classical pre-computation of angle set  $\{\theta_1, \theta_2, \cdots, \theta_d\}$
- Odd polynomials, general functions via polynomial approximation, complexity given by degree of polynomial – technical conditions omitted

(Extension: Quantum singular value transformation (QSVT) for general matrices A)

## Main idea: State preparation via QET

• Create low-cost block encoding of  $A := \sum_{x=0}^{2^n-1} \sin(\frac{x}{2^n}) |x\rangle\langle x|$  via

(exact (1,1,0) block encoding)



- Idea: Applying QET, convert this into block encoding of  $\sum_{x=0}^{2^n-1} f(\bar{x})|x\rangle\langle x|$  using polynomial approximation of  $f(b-a)\arcsin(\cdot)+a$
- Run relevant circuits on input  $|x_1 \cdots x_n\rangle \otimes |000\rangle_a = |+\rangle^{\otimes n}|000\rangle_a$  and use amplitude amplification to maximize probability of outputting  $|\Psi_f\rangle \otimes |000\rangle_a$

#### Quantum circuits



1.  $U_{\sin}$  block encoding circuit



2.  $U_{\tilde{f}}$  block encoding circuit



3. Amplitude amplification (exact) circuit

## Main result complexities

• Discretized  $L_2$ -norm filling-fraction ( $N \coloneqq 2^n$ ) as

$$\mathcal{F}_{f}^{[N]} := \frac{\sqrt{\frac{(b-a)}{N} \sum_{x=0}^{N-1} |f(\bar{x})|^{2}}}{\sqrt{(b-a)|f|_{\max}^{2}}} \approx \frac{\sqrt{\int_{a}^{b} |f(\bar{x})|^{2} d\bar{x}}}{\sqrt{(b-a)|f|_{\max}^{2}}} =: \mathcal{F}_{f}^{[\infty]}$$

• **Theorem I**: Given a degree  $d_{\delta}$  polynomial approximation  $\tilde{f}$  of f, we can prepare a quantum state  $|\Psi_{\tilde{f}}\rangle$  that is  $\varepsilon$ -close in trace distance to  $|\Psi_{f}\rangle$  using  $O\left(\frac{nd_{\delta}}{\mathcal{F}_{\tilde{f}}^{[N]}}\right)$  gates + 4 ancilla qubits, for  $\delta = \varepsilon \min\{\mathcal{F}_{f}^{[N]}, \mathcal{F}_{\tilde{f}}^{[N]}\}$ .

(\*) when  $\tilde{f}(\cdot)$  applied to  $\sin\left(\frac{x}{N}\right)$  approximates  $\frac{f(\bar{x})}{|f|_{\max}}$  to  $L_{\infty}$ -error on [a,b]

## Main result complexities simplified

• **Theorem II**: For sufficiently smooth functions f, $^{(*)}$ we can prepare a quantum state  $|\Psi_{\tilde{f}}\rangle$  that is  $\varepsilon$ -close in trace distance to  $|\Psi_f\rangle$  using

$$\widetilde{\boldsymbol{O}}\left(\frac{n\log(\varepsilon^{-1})}{\mathcal{F}_{\widetilde{f}}^{[N]}}\right)$$
 gates + 4 ancilla qubits.

- (\*) need  $L_{\infty}$ -approximation  $\delta \propto \exp(-d_{\delta})$  for degree  $d_{\delta}$  polynomial
- Analytical minimax polynomial
- In practice use (works very well):
  - Remez approximation or just Local Taylor series
  - $L_2$ -approximation on grid

# Complexity comparison literature

|                                    | # Non-Clifford gates                                                                                                                | # Ancilla qubits                               | Rigorous<br>error bounds | Function                                        |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-------------------------------------------------|
| QET (this work)                    | $\mathcal{O}\!\left(rac{nd_{m{\epsilon}}}{\mathcal{F}_{	ilde{f}}^{[N]}} ight)$                                                     | 4                                              | ✓                        | Polynomial/Fourier approximation                |
| Black-box amplitude oracle         | $\mathcal{O}\left(rac{g_{\epsilon}^2	ilde{d}_{\epsilon}}{\mathcal{F}_f^{[N]}} ight)$                                               | $\mathcal{O}(g_{\epsilon}	ilde{d}_{\epsilon})$ | ✓                        | General                                         |
| Grover-Rudolph<br>amplitude oracle | $\mathcal{O}\!\left(ng_{\epsilon}^2	ilde{d}_{\epsilon} ight)$                                                                       | $\mathcal{O}(g_{\epsilon}	ilde{d}_{\epsilon})$ | ✓                        | Efficiently integrable probability distribution |
| Adiabatic amplitude oracle         | $\left \mathcal{O}\!\left(rac{g_{\epsilon}^{2}	ilde{d}_{\epsilon}}{\left(\mathcal{F}_{f}^{[N]} ight)^{4}\epsilon^{2}} ight) ight $ | $\mathcal{O}(g_\epsilon 	ilde{d}_\epsilon)$    | ✓                        | General                                         |
| Matrix product state               | $\mathcal{O}(n)$                                                                                                                    | 0                                              | ×                        | Matrix product state $d = 2$ approximation      |

Note:  $g_{\varepsilon}$ -bit amplitude oracles with degree  $\tilde{d}_{\varepsilon}$  piecewise polynomial approximation ( $\tilde{d}_{\varepsilon} \neq d_{\varepsilon}$  in general)

#### Analytical performance: Gaussians

- Example function  $f_{\beta}(x) \coloneqq \exp(-\frac{\beta}{2}x^2)$
- **Theorem III**: For  $\varepsilon \in \left(0, \frac{1}{2}\right)$  and  $0 \le \beta \le 2^n$  we can prepare the [-1,1] uniform grid Gaussian state on n qubits up to  $\varepsilon$ -precision with gate complexity

$$O\left(n \cdot \log^{\frac{5}{4}}\left(\frac{1}{\varepsilon}\right)\right)$$
 + 3 ancilla qubits

- Note: All other approaches use hundreds of ancilla qubits
- Kaiser window state variant  $|W_{\beta}^N(\bar{x})\rangle \propto \sum_{x=-N}^N \frac{1}{2N} \cdot \frac{I_0\left(\beta\sqrt{1-\bar{x}^2}\right)}{I_0(\beta)}$  on [-1,1]

## Numerical benchmarking: tanh(x)

• Example function tanh(x) in the range  $x \in [0,1]$  on n=32 gives

| Method                           | # Ancilla qubits | # Toffoli gates     |
|----------------------------------|------------------|---------------------|
| QET (this work)                  | 3                | $9.7 \times 10^4$   |
| Black-box state amplitude oracle | 216              | $6.9 \times 10^{4}$ |
| Grover-Rudolph amplitude oracle  | > 959            | $> 2.0 \times 10^5$ |

- Cost are lower bounds minimizing gate count, based on state-of-theart amplitude oracles (which could potentially be improved)
- Other methods give even higher costs

## Run Algorithm: Setup

- Treat special case: a = -1, b = 1, with function f(x) = f(-x)
- Goal: Prepare the *n*-qubit quantum state

$$|\Psi_f\rangle = \frac{1}{\mathcal{N}_f} \cdot \sum_{x=-N/2}^{N/2-1} f(\bar{x})|x\rangle$$
 with  $\bar{x} = \frac{2x}{N}$ , and  $\mathcal{N}_f = \sqrt{\sum_{\bar{x}} f(\bar{x})}$ 

- 1. Start with block encoding of  $A = \sum_{x=-N/2}^{N/2-1} \sin(\frac{2x}{N})|x\rangle\langle x|$
- 2. QET to convert into block encoding of  $\sum_{x=-N/2}^{N/2-1} f(\bar{x})|x\rangle\langle x|$
- 3.  $O\left(1/\mathcal{F}_{\tilde{f}}^{[N]}\right)$  rounds of exact amplitude amplification (extra ancilla)
- Need to start with (extensive) classical pre-processing

#### Run algorithm: Quantum circuits



1.  $U_{\sin}$  block encoding circuit



2.  $U_{\tilde{f}}$  block encoding circuit



3. Amplitude amplification (exact) circuit

#### Run algorithm: Classical pre-computation

• Compute polynomial h(y) such that

$$|h(y)|_{\max}^{y \in [-1,1]} \le 1 \text{ and } \left| h(\sin(y)) - \frac{f(y)}{|f(y)|_{\max}^{y \in [-1,1]}} \right|_{\max}^{y \in [-1,1]} \le \delta$$

leading to approximation  $\tilde{f}(x) \coloneqq h(\sin(\bar{x}))$ 

(Remez algorithm / local Taylor series /  $L_2$ -approximation on grid / ...)

- Compute discretized  $L_2$ -norm filling-fraction  $\mathcal{F}_{\tilde{f}}^{\lfloor N \rfloor} \approx \mathcal{F}_{\tilde{f}}^{\lfloor \infty \rfloor}$  of  $\tilde{f}(x)$  (choose depending on how large  $N=2^n$  is)
- Compute QET angle set  $\{\theta_1, \theta_2, \cdots, \theta_d\}$  of polynomial  $\tilde{f}(x)$  (different analytically and/or numerically good methods available)

# Extensions

#### Extensions: Non-smooth functions

- First approach: Use coherent inequality test with flag qubit for piecewise QET polynomial implementation
- $\rightarrow$  for k discontinuities this requires (k+n) ancilla qubits and 2kn Toffoli gates for the inequality comparison
- Second approach: Example triangle function for  $\bar{x} \in [0,1]$

$$f(\bar{x}) = \begin{cases} \bar{x} & 0 \le \bar{x} \le 1/3 \\ \frac{1}{2}(1-\bar{x}) & 1/3 < \bar{x} \le 1 \end{cases} \text{ instead use } \bar{f}(\bar{x}) = \begin{cases} \bar{x} & 0 \le \bar{x} \le \frac{1}{3} \\ \text{Unspecified } & \frac{1}{3} < \bar{x} < 2 \\ \frac{1}{2}(\frac{7}{3} - \bar{x}) & 2 \le \bar{x} \le \frac{7}{3} \end{cases}$$

 $\rightarrow$  use coherent inequality test to flip for  $\bar{x} > \frac{1}{3}$  and in the end reverse this inequality check

#### Extensions: Fourier based QET

ullet Block-encoding of A is replaced by controlled time evolution

$$V(A) := |0\rangle\langle 0| \otimes 1 + |1\rangle\langle 1| \otimes \exp(iAt)$$

- Fourier-based QET uses calls to V(A), together with single-qubit-rotations, to apply a function  $f(\cdot)$  in Fourier series form to A
- We can implement V(A) for diagonal  $A = \sum_x \bar{x} |x\rangle\langle x|$  using n controlled Z-rotations
- Example with compact Fourier series: Cycloid function
- $\rightarrow n = 32$  for  $\bar{x} \in [0,2\pi]$ , gives  $7.35 \times 10^5$  Toffoli gates + 3 ancillas qubits

From Wikipedia

#### Outlook

- Introduced versatile method for preparing a quantum state whose amplitudes are given by some known function
- Based on the QET, orders of magnitude savings in ancilla qubits
- Needed: More detailed practical resource estimates, more functions, combination with other methods, etc.
- Open questions:
  - Example square root function  $\sqrt{\bar{x}}$  for  $\bar{x} \in [0,1]$ , non-differentiable at  $\bar{x} = 0$   $\rightarrow$  use  $\sqrt{\bar{x} + a}$  instead?
  - Multivariate functions via multivariate QET?

#### Thank you

Some references (highly incomplete)

Black box prep: Grover (2000), Bhaskar et al. (2016), Haener *et al.* (2018), Sanders et al. (2019), Wang *et al.* (2021/22), Bausch (2022), Krishnakumar (2022), ...

Grover/Rudolph prep: Grover & Rudolph (2002)

Adiabatic prep: Rattew & Koczor (2022)

Matrix product prep: Holmes & Matsuura (2020), Garcia-Ripoll (2021)

QET: Low & Chuang (2017/19), Gilyen et al. (2019)

QET angles: Gilyen et al. (2019), Haah (2019), Dong et al. (2021)

Fourier based QET: Dong et al. (2022), Perez-Salinas et al. (2021), Silva et al. (2022)

Multivariate QET: Rossi & Chuang (2022)