Linear combination of Hamiltonian simulation for non-unitary dynamics with optimal state preparation cost

Dong An

Joint Center for Quantum Information and Computer Science,
University of Maryland
dongan@umd.edu
(joint work with Jin-Peng Liu, Lin Lin) (arXiv:2303.01029)

Oct 5, 2023

Hamiltonian simulation

$$
i \frac{d}{d t} u(t)=H(t) u(t), \quad 0 \leq t \leq T, \quad H \text { is Hermitian }
$$

- Hamiltonian simulation algorithms: Trotter methods, Quantum walk, Truncated Taylor/Dyson series, Quantum single processing (QSP), Qubitization, Quantum singular value transformation (QSVT), Randomization methods, etc

Beyond Hamiltonian simulation

- In this talk, we focus on non-unitary dynamics beyond Hamiltonian simulation problem.
- Why do we care about non-unitary dynamics?

Differential equations

Differential equations are ubiquitous in various fields of science and engineering

- Physics: the motion of particles, the flow of fluids, and the propagation of waves
- Chemistry: chemical reactions, chemical thermodynamics
- Biology: the spread of diseases, the growth of populations
- Economics: stocks, bonds, options, economic growth
-

High-dimensional in practice, significant challenges in classical scientific computing

Open quantum dynamics

- Many problems in quantum dynamics are defined in an infinite space: computationally intractable
- molecular scattering, photodissociation, nanotransport...
- Complex absorbing potential method ${ }^{1}$: using effective Hamiltonian with correction terms on a finite-sized box

$$
\Longrightarrow \text { "non-Hermitian Hamiltonian" }
$$

$$
i \partial_{t} u(\mathbf{r}, t)=\left(\frac{-\frac{1}{2} \Delta_{\mathbf{r}}+V_{R}(\mathbf{r}, t)}{\left(V_{I}(\mathbf{r})\right) u(\mathbf{r}, t) .}\right.
$$

[^0]
Convection-diffusion equation

Dynamics of physical systems with the presence of both convection and diffusion processes

Optimization

- Suppose that we would like to minimize an objective function $f(x)$
- Gradient descent:

$$
x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right)
$$

- Gradient flow:

$$
\frac{d x}{d t}=-\nabla f(x)
$$

Setup

$$
\frac{d u(t)}{d t}=-A(t) u(t), \quad u(0)=u_{0}
$$

- $A(t)$ is a general time-dependent matrix and can be decomposed into its Hermitian and anti-Hermitian parts as

$$
A(t)=L(t)+i H(t), \quad L(t)=\frac{A(t)+A(t)^{\dagger}}{2}, \quad H(t)=\frac{A(t)-A(t)^{\dagger}}{2 i}
$$

- Quantum algorithm for this ODE aims at preparing a quantum state encoding the solution in its amplitude:

$$
|u(T)\rangle=\frac{1}{\|u(T)\|} \sum_{j=0}^{N-1} u_{j}(T)|j\rangle
$$

Main result

Any non-unitary dynamics is related to Hamiltonian simulation problems, in the sense that any non-unitary evolution operator can be written as a linear combination of Hamiltonian simulation problems (LCHS).
Theorem
Suppose $A(t)=L(t)+i H(t)$ and $L(t) \succeq 0$, then

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k
$$

Here $U_{k}(t)$ are unitaries that solve the Schrödinger equation

$$
\frac{d U_{k}(t)}{d t}=-i(k L(t)+H(t)) U_{k}(t), \quad U(0)=I d
$$

Special cases

$$
e^{-A t}=e^{-(L+i H) t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i(k L+H) t} d k
$$

Only H (the anti-Hermitian part)
$e^{-i H t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i H t} d k$
Proof: $\frac{1}{\pi\left(1+k^{2}\right)}$ is the Cauchy probability distribution function

Only L (the Hermitian part)

$$
e^{-L t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i k L t} d k
$$

Proof: the Fourier transform of $e^{-|x|}$ is $\frac{1}{\pi\left(1+k^{2}\right)}$

[^1]
Implementation

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k \approx \sum_{j} c_{j} U_{k_{j}}(t)
$$

Flexible implementation:

- For $U_{k_{j}}(t)$: any Hamiltonian simulation algorithm (e.g., Trotter formula)
- The linear combination step:
- Quantum: linear combination of unitaries (LCU) technique ${ }^{3}$
- Hybrid: Importance sampling ${ }^{4,5,6}$

[^2]
Quantum implementation: LCU

A toy example: computing $\frac{1}{2}\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle$

$$
\begin{gathered}
|0\rangle \mid \\
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left|u_{0}\right\rangle \\
\frac{1}{\sqrt{2}}\left(|0\rangle U_{0}\left|u_{0}\right\rangle+|1\rangle U_{1}\left|u_{0}\right\rangle\right) \\
\left.\frac{1}{2}|0\rangle\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle+\frac{1}{2}|1\rangle\left(U_{0}-U_{1}\right)\left|u_{0}\right\rangle\right)
\end{gathered}
$$

General: computing $\sum_{j} c_{j} U_{k_{j}}(t)$

Prepare Oracle $O_{p}:|0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle$
Select Oracle $O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{k_{j}}(t)$

Hybrid implementation: Importance sampling

$$
\begin{array}{cc}
u(t) \approx \sum_{j} c_{j} U_{k_{j}}(t)\left|u_{0}\right\rangle \Longrightarrow\langle u(t)| O|u(t)\rangle \approx \sum_{j, j^{\prime}} c_{j} c_{j^{\prime}}\left\langle u_{0}\right| U_{k_{j}}^{\dagger}(t) O U_{k_{j^{\prime}}}(t)\left|u_{0}\right\rangle . \\
\text { Classical } & \text { Quantum }
\end{array}
$$

$$
-\sqrt{-} \Rightarrow o_{1}=\left\langle u_{0}\right| u_{k_{j_{1}}}^{\dagger}(t) O U_{k_{j_{1}}}(t)\left|u_{0}\right\rangle
$$

Sample $\left(j, j^{\prime}\right)$ with probability $p \propto c_{j} c_{j^{\prime}}$

Generalization: inhomogeneous case

$$
\begin{gathered}
\frac{d u(t)}{d t}=-A(t) u(t)+b(t) \\
u(t)=\mathcal{T} e^{-\int_{0}^{t} A(s) d s} u(0)+\int_{0}^{t} \mathcal{T} e^{-\int_{s}^{t} A\left(s^{\prime}\right) d s^{\prime}} b(s)
\end{gathered}
$$

Duhamel's Principle:

- We can view $b(t)$ as a perturbation term of the homogeneous equations without $b(t)$
- The general solution is another linear combination of non-unitary operators $\mathcal{T} e^{-\int_{s}^{t} A\left(s^{\prime}\right) d s^{\prime}}$
- Linear combination of LCHS

Comparison

LCHS vs Quantum singular value transformation (QSVT)

Only Hermitian or anti-Hermitian

$$
A=L+i H
$$

QSVT
$A(t)=L(t)+i H(t)$

LCHS

Existing quantum algorithms for ODEs

$$
\frac{d u}{d t}=-A u+b
$$

1. Time discretization: $\frac{u(t+h)-u(t)}{h} \approx-A u(t)+b$
2. Consider the equations for $[u(0) ; u(h) ; u(2 h) ; \cdots]$, then

$$
\left(\begin{array}{ccccc}
I & & & & \\
-(I-h A) & I & & & \\
& -(I-h A) & I & & \\
& & \ddots & \ddots & \\
& & & -(I-h A) & I
\end{array}\right)\left(\begin{array}{c}
u(0) \\
u(h) \\
u(2 h) \\
\vdots \\
u(T)
\end{array}\right)=\left(\begin{array}{c}
u_{0} \\
b \\
b \\
\vdots \\
b
\end{array}\right)
$$

3. Apply quantum linear system algrithms (e.g., HHL)
4. Measurement

Existing quantum algorithms for ODEs

Different strategies:

- Hamiltonian simulation: directly apply numerical integrators to the initial state
- General ODE: transfer to a large linear system problem and apply HHL

High state preparation cost in general ODE algorithms due to the usage of linear system algorithms

- Even optimal linear system algorithm requires $\mathcal{O}(\kappa \log (1 / \epsilon))$ state preparation cost, where κ is the condition number of the linear systems and can be large in solving ODEs.
- A lower bound for solving linear systems: $\Omega(\kappa)$ state preparation cost for any matrix and worst-case vector.

Comparison

LCHS vs other quantum ODE algorithms

Hamiltonian simulation

ODE algorithms

[^3]
Comparison

Method	Query complexity	
	A	u_{0}
Dyson ${ }^{8}$	$\widetilde{\mathcal{O}}\left(\widetilde{q} \alpha T \log ^{2}\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\widetilde{q} \alpha T \log \left(\frac{1}{\epsilon}\right)\right)$
LCHS	$\widetilde{\mathcal{O}}\left(q^{2} \alpha T / \epsilon\right)$	$\mathcal{O}(q)$

Table: Comparison between LCHS and the state-of-the-art truncated Dyson series method. Here $\alpha=\max _{t}\|A(t)\|, q=\left\|u_{0}\right\| /\|u(T)\|$ and $\widetilde{q}=\max _{t}\|u(t)\| /\|u(T)\|$ (we have $q \leq \widetilde{q}$)

- LCHS achieves optimal state preparation cost: lower bound is $\Omega(q)$.

[^4]
Drawback

$$
\begin{gathered}
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k \\
\frac{d U_{k}(t)}{d t}=-i(k L(t)+H(t)) U_{k}(t), \quad U(0)=\mathrm{Id}
\end{gathered}
$$

- Main drawback: linear convergence in queries to the matrix
- Solutions:
- Interaction picture Hamiltonian simulation
- Better kernel function (ongoing work)

LCHS formula

Slowly decaying kernel (quadratically)

Large K and Hamiltonian

 spectral normHamiltonian simulation
algorithms
High cost in matrix oracles

Improved LCHS: interaction picture

$$
\frac{d u}{d t}=-(L+i H(t)) u
$$

- LCHS suggests that the dynamics is the linear combination of $U_{k}(t)$ where

$$
i \frac{d U_{k}(t)}{d t}=(k L+H(t)) U_{k}(t)
$$

- Difficulty: k can be large, and Hamiltonian simulation algorithms typically depend linearly on the Hamiltonian spectral norm.
- Interaction picture ${ }^{9}$: suppose L is fast-forwardable,

$$
U_{k, I}(t)=e^{i k L t} U_{k}(t) \quad \Longrightarrow \quad \frac{d U_{k, l}(t)}{d t}=e^{i k L t} H(t) e^{-i k L t} U_{k, l}(t)
$$

- Overall complexity: $\mathcal{O}(q)$ queries to u_{0} and $\widetilde{\mathcal{O}}(q T\|H\|$ poly $\log (1 / \epsilon))$ queries to the Hamiltonians

[^5]
Summary

- Any linear non-unitary dynamics can be represented as a linear combination of Hamiltonian simulation problems.
- The LCHS method can be implemented coherently or in a hybrid fashion.
- The LCHS method achieves low (and optimal) state preparation cost.
- The drawback of current LCHS method is its $1 / \epsilon$ dependence in terms of matrix access, which can be overcome by interaction picture Hamiltonian simulation for fast-forwardable systems, or by a better kernel function (ongoing work).
- A related approach: Schrödingerization by Jin, Liu and Yu [arXiv:2212.13969]
D. An, J. Liu, L. Lin. Linear combination of Hamiltonian simulation for non-unitary dynamics with optimal state preparation cost. arXiv:2303.01029 (2023)
dongan@umd.edu
Thank you!

[^0]: ${ }^{1}$ Vibok-Balint-Kurti, J. Phys. Chem. 96, 8712 (1992)

[^1]: ${ }^{2}$ Zeng-Sun-Yuan, arXiv:2109.15304 (2022) Huo-Li, Quantum 7, 916 (2023).

[^2]: ${ }^{3}$ Childs-Wiebe, Quantum Inf. Comput. 12, 901-924 (2012)
 ${ }^{4}$ Lin-Tong, PRX Quantum 3, 010318 (2022)
 ${ }^{5}$ Wan-Berta-Campbell, Phys. Rev. Lett. 129, 030503 (2022)
 ${ }^{6}$ Wang-McArdle-Berta, arXiv:2302.01873 (2023)

[^3]: ${ }^{7}$ Berry, J. Phys. A 47, 105301 (2014) Somma-Subașı, PRX Quantum 2, 010315 (2021)

[^4]: ${ }^{8}$ Berry-Costa, arXiv:2212.03544 (2022)

[^5]: ${ }^{9}$ Low-Wiebe, arXiv:1805.00675 (2018)

