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Hamiltonian simulation

i
d

dt
u(t) = H(t)u(t), 0 ≤ t ≤ T , H is Hermitian

▶ Hamiltonian simulation algorithms: Trotter methods, Quantum walk, Truncated
Taylor/Dyson series, Quantum single processing (QSP), Qubitization, Quantum
singular value transformation (QSVT), Randomization methods, etc

2 / 22



Beyond Hamiltonian simulation

▶ In this talk, we focus on non-unitary dynamics beyond Hamiltonian simulation
problem.

▶ Why do we care about non-unitary dynamics?
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Differential equations

Differential equations are ubiquitous in various fields of science and engineering

▶ Physics: the motion of particles, the flow of fluids, and the propagation of waves

▶ Chemistry: chemical reactions, chemical thermodynamics

▶ Biology: the spread of diseases, the growth of populations

▶ Economics: stocks, bonds, options, economic growth

▶ · · · · · ·

High-dimensional in practice, significant challenges in classical scientific computing
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Open quantum dynamics
▶ Many problems in quantum dynamics are defined in an

infinite space: computationally intractable
▶ molecular scattering, photodissociation, nanotransport...

▶ Complex absorbing potential method1: using effective
Hamiltonian with correction terms on a finite-sized box

=⇒ “non-Hermitian Hamiltonian”

1Vibok-Balint-Kurti, J. Phys. Chem. 96, 8712 (1992)
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Convection-diffusion equation

Dynamics of physical systems with the presence of both convection and diffusion
processes
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Optimization

▶ Suppose that we would like to minimize an objective function f (x)

▶ Gradient descent:
xk+1 = xk − η∇f (xk)

▶ Gradient flow:
dx

dt
= −∇f (x)
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Setup

du(t)

dt
= −A(t)u(t), u(0) = u0

▶ A(t) is a general time-dependent matrix and can be decomposed into its
Hermitian and anti-Hermitian parts as

A(t) = L(t) + iH(t), L(t) =
A(t) + A(t)†

2
, H(t) =

A(t)− A(t)†

2i

▶ Quantum algorithm for this ODE aims at preparing a quantum state encoding the
solution in its amplitude:

|u(T )⟩ = 1

∥u(T )∥

N−1∑
j=0

uj(T ) |j⟩ .
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Main result

Any non-unitary dynamics is related to Hamiltonian simulation problems, in the sense
that any non-unitary evolution operator can be written as a linear combination of
Hamiltonian simulation problems (LCHS).

Theorem
Suppose A(t) = L(t) + iH(t) and L(t) ⪰ 0, then

T e−
∫ t
0 A(s)ds =

∫
R

1

π(1 + k2)
Uk(t)dk.

Here Uk(t) are unitaries that solve the Schrödinger equation

dUk(t)

dt
= −i(kL(t) + H(t))Uk(t), U(0) = Id.
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Special cases

2Zeng-Sun-Yuan, arXiv:2109.15304 (2022) Huo-Li, Quantum 7, 916 (2023).
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Implementation

T e−
∫ t
0 A(s)ds =

∫
R

1

π(1 + k2)
Uk(t)dk ≈

∑
j

cjUkj (t).

Flexible implementation:

▶ For Ukj (t): any Hamiltonian simulation algorithm (e.g., Trotter formula)
▶ The linear combination step:

▶ Quantum: linear combination of unitaries (LCU) technique3

▶ Hybrid: Importance sampling4,5,6

3Childs-Wiebe, Quantum Inf. Comput. 12, 901-924 (2012)
4Lin-Tong, PRX Quantum 3, 010318 (2022)
5Wan-Berta-Campbell, Phys. Rev. Lett. 129, 030503 (2022)
6Wang-McArdle-Berta, arXiv:2302.01873 (2023)
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Quantum implementation: LCU
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Hybrid implementation: Importance sampling

u(t) ≈
∑
j

cjUkj (t) |u0⟩ =⇒ ⟨u(t)|O|u(t)⟩ ≈
∑
j ,j ′

cjcj ′ ⟨u0|U†
kj
(t)OUkj′ (t)|u0⟩ .
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Generalization: inhomogeneous case

du(t)

dt
= −A(t)u(t) + b(t).

u(t) = T e−
∫ t
0 A(s)dsu(0) +

∫ t

0
T e−

∫ t
s A(s′)ds′b(s).

Duhamel’s Principle:

▶ We can view b(t) as a perturbation
term of the homogeneous equations
without b(t)

▶ The general solution is another linear
combination of non-unitary operators

T e−
∫ t
s A(s′)ds′

▶ Linear combination of LCHS
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Comparison
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Existing quantum algorithms for ODEs

du

dt
= −Au + b

1. Time discretization: u(t+h)−u(t)
h ≈ −Au(t) + b

2. Consider the equations for [u(0); u(h); u(2h); · · · ], then
I

−(I − hA) I
−(I − hA) I

. . .
. . .

−(I − hA) I




u(0)
u(h)
u(2h)

...
u(T )

 =


u0
b
b
...
b

 .

3. Apply quantum linear system algrithms (e.g., HHL)

4. Measurement
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Existing quantum algorithms for ODEs

Different strategies:

▶ Hamiltonian simulation: directly apply numerical integrators to the initial state

▶ General ODE: transfer to a large linear system problem and apply HHL

High state preparation cost in general ODE algorithms due to the usage of linear
system algorithms

▶ Even optimal linear system algorithm requires O(κ log(1/ϵ)) state preparation
cost, where κ is the condition number of the linear systems and can be large in
solving ODEs.

▶ A lower bound for solving linear systems: Ω(κ) state preparation cost for any
matrix and worst-case vector.
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Comparison

7Berry, J. Phys. A 47, 105301 (2014) Somma-Subaşı, PRX Quantum 2, 010315 (2021)
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Comparison

Method
Query complexity

A u0

Dyson 8 Õ
(
q̃αT log2

(
1
ϵ

))
O
(
q̃αT log

(
1
ϵ

))
LCHS Õ

(
q2αT/ϵ

)
O(q)

Table: Comparison between LCHS and the state-of-the-art truncated Dyson series method.
Here α = maxt ∥A(t)∥, q = ∥u0∥/∥u(T )∥ and q̃ = maxt ∥u(t)∥/∥u(T )∥ (we have q ≤ q̃)

▶ LCHS achieves optimal state preparation cost: lower bound is Ω(q).

8Berry-Costa, arXiv:2212.03544 (2022)
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Drawback

T e−
∫ t
0 A(s)ds =

∫
R

1

π(1 + k2)
Uk(t)dk.

dUk(t)

dt
= −i(kL(t) + H(t))Uk(t), U(0) = Id.

▶ Main drawback: linear convergence in queries
to the matrix

▶ Solutions:
▶ Interaction picture Hamiltonian simulation
▶ Better kernel function (ongoing work)
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Improved LCHS: interaction picture
du

dt
= −(L+ iH(t))u,

▶ LCHS suggests that the dynamics is the linear combination of Uk(t) where

i
dUk(t)

dt
= (kL+ H(t))Uk(t)

▶ Difficulty: k can be large, and Hamiltonian simulation algorithms typically depend
linearly on the Hamiltonian spectral norm.

▶ Interaction picture9: suppose L is fast-forwardable,

Uk,I (t) = e ikLtUk(t) =⇒
dUk,I (t)

dt
= e ikLtH(t)e−ikLtUk,I (t)

▶ Overall complexity: O(q) queries to u0 and Õ(qT∥H∥ poly log(1/ϵ)) queries to
the Hamiltonians

9Low-Wiebe, arXiv:1805.00675 (2018)
21 / 22



Summary
▶ Any linear non-unitary dynamics can be represented as a linear combination of

Hamiltonian simulation problems.

▶ The LCHS method can be implemented coherently or in a hybrid fashion.

▶ The LCHS method achieves low (and optimal) state preparation cost.

▶ The drawback of current LCHS method is its 1/ϵ dependence in terms of matrix
access, which can be overcome by interaction picture Hamiltonian simulation for
fast-forwardable systems, or by a better kernel function (ongoing work).

▶ A related approach: Schrödingerization by Jin, Liu and Yu [arXiv:2212.13969]

D. An, J. Liu, L. Lin. Linear combination of Hamiltonian simulation for non-unitary dynamics
with optimal state preparation cost. arXiv:2303.01029 (2023)

dongan@umd.edu

Thank you!
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