
Hamiltonian learning: recent progress and open problems

Yu Tong

Institute for Quantum Information and Matter, Caltech

October, 2023

1 / 30



This talk is based on

▶ Hsin-Yuan Huang, Yu Tong, Di Fang, Yuan Su, 2022, Learning many-body
Hamiltonians with Heisenberg-limited scaling.

▶ Haoya Li, Yu Tong, Hongkang Ni, Tuvia Gefen, Lexing Ying, 2023,
Heisenberg-limited Hamiltonian learning for interacting bosons.
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Scope of the talk

▶ Learning the Hamiltonian from time-evolution, and with focus on the Heisenberg
limit and the role of quantum control.

▶ Not covered: learning the Hamiltonian from the Gibbs state or the ground
state.1,2,3,4

1Anshu, Arunachalam, Kuwahara, Soleimanifar, 2020, Sample-efficient learning of interacting quantum systems.
2Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
3Qi, Ranard, 2017, Determining a local Hamiltonian from a single eigenstate.
4Anshu, Arunachalam, 2023, A survey on the complexity of learning quantum states.
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The problem

We have an N -qubit quantum system evolving under a Hamiltonian H. We are
allowed to interact with the system. The goal is to have a complete characterization of
H classically. We may have some prior knowledge of H.

▶ Interaction: we can prepare a (simple) initial state, apply (simple) unitaries during
time evolution, and measure in some (simple) basis.

Measure← Ure
−iHtr · · ·U2e

−iHt2U1e
−iHt1 |Φ⟩ .

▶ Characterization: H =
∑

P∈{I,X,Y,Z}⊗N λPP . Want to learn all λP .

▶ Prior knowledge: only a known (poly(N)-sized) subset of λP ’s are non-zero,
|λP | ≤ 1. E.g., geometrically local.

▶ Restriction: we cannot apply control-e−iHt or eiHt.
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Measuring the cost

▶ We can get the Hamiltonian by learning the unitary e−iHτ for a small τ . Requires
eO(N)ϵ−1 queries to e−iHτ .5

▶ But we want the “cost” to be at most poly(N).

▶ Need to define the cost.

– Query complexity? e−0.01iH vs e−1000iH .

– We use total evolution time: if we use e−iHt1 , e−iHt2 , ..., e−iHtNexp , then the total
evolution time is t1 + t2 + · · · tNexp

.

– We also need to make sure that the number of experiments Nexp and the number of
unitaries are not too large.

5Haah, Kothari, O’Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.
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Connection with quantum metrology

▶ Quantum metrology: high-precision
estimation of a few physical parameters.
Asymptotic convergence governed by the
quantum Fisher information.
...................................................

Hamiltonian learning: Estimation of
many parameters. Non-asymptotic
(without good prior information).

Figure: Image credit: LIGO/T. Pyle
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A brief history

▶ Heuristic algorithms based on optimization and Bayesian inference.6,7

▶ Experimental implementation: single spin (NV center),8 non-interacting boson
(superconducting qubits).9

6Granade, Ferrie, Wiebe, Cory, 2012, Robust online Hamiltonian learning.
7Wiebe, Granade, Ferrie, Cory, 2014, Hamiltonian Learning and Certification Using Quantum Resources.
8Wang, Paesani, Santagati, et al., 2017, Experimental quantum Hamiltonian learning.
9Hangleiter, Roth, Eisert, Roushan, 2021, Precise Hamiltonian identification of a superconducting quantum processor.
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Learning all (O(N)) parameters to precision ϵ with probability at least 1− δ.

▶ Provably efficient algorithms (perturbative):

– cluster expansion (O(ϵ−2 log(N/δ))),10

– derivative estimation (O(ϵ−2 log(N/δ)), Lindbladian),11

– better scaling with degree (O(ϵ−2 log(N/δ))),12

– Pauli channel estimation (O(ϵ−4 log(N/δ)), SPAM-robust).13

10Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
11Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
12Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
13Yu, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.
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▶ Provably efficient algorithms (Heisenberg limit):

– Hamiltonian reshaping with random Pauli operators
(O(ϵ−1 log(N/δ)), SPAM-robust),14

– Connection between quantum control and the Heisenberg limit,15

– Random gaussian unitaries (O(ϵ−1 log(N/δ)), boson).16

14Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
15Dutkiewicz, O’Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
16Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.
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The perturbative approach

▶ The Hamiltonian
H =

∑
P∈{I,X,Y,Z}⊗N

λPP.

▶ Key observation: e−iHt is almost linear in H when t is small.

▶ Start from state ρ, evolve for time t, and measure observable O. The time
derivative is

d

dt
Tr[ρeiHtOe−iHt]|t=0 = iTr[ρ[H,O]] = iTr[H[O, ρ]].

▶ Choose ρ (Pauli eigenstate) and O (Pauli) so that [O, ρ] = i
2N−1P .

d

dt
Tr[ρeiHtOe−iHt]|t=0 = −2λP .

10 / 30



The perturbative approach

▶ The Hamiltonian
H =

∑
P∈{I,X,Y,Z}⊗N

λPP.

▶ Key observation: e−iHt is almost linear in H when t is small.

▶ Start from state ρ, evolve for time t, and measure observable O. The time
derivative is

d

dt
Tr[ρeiHtOe−iHt]|t=0 = iTr[ρ[H,O]] = iTr[H[O, ρ]].

▶ Choose ρ (Pauli eigenstate) and O (Pauli) so that [O, ρ] = i
2N−1P .

d

dt
Tr[ρeiHtOe−iHt]|t=0 = −2λP .

10 / 30



The perturbative approach

▶ The Hamiltonian
H =

∑
P∈{I,X,Y,Z}⊗N

λPP.

▶ Key observation: e−iHt is almost linear in H when t is small.

▶ Start from state ρ, evolve for time t, and measure observable O. The time
derivative is

d

dt
Tr[ρeiHtOe−iHt]|t=0 = iTr[ρ[H,O]] = iTr[H[O, ρ]].

▶ Choose ρ (Pauli eigenstate) and O (Pauli) so that [O, ρ] = i
2N−1P .

d

dt
Tr[ρeiHtOe−iHt]|t=0 = −2λP .

10 / 30



The perturbative approach

▶ The Hamiltonian
H =

∑
P∈{I,X,Y,Z}⊗N

λPP.

▶ Key observation: e−iHt is almost linear in H when t is small.

▶ Start from state ρ, evolve for time t, and measure observable O. The time
derivative is

d

dt
Tr[ρeiHtOe−iHt]|t=0 = iTr[ρ[H,O]] = iTr[H[O, ρ]].

▶ Choose ρ (Pauli eigenstate) and O (Pauli) so that [O, ρ] = i
2N−1P .

d

dt
Tr[ρeiHtOe−iHt]|t=0 = −2λP .

10 / 30



▶ Derivatives can be estimated accurately using polynomial interpolation. Many
derivatives can be estimated simultaneously using classical shadows.17,18,19

▶ Estimating Tr[ρeiHtOe−iHt] through sampling and taking average.
Error∼ 1/

√
Ns, where Ns is the number of samples.

▶ Total evolution time T ∼ Ns. T = O(ϵ−2). The standard quantum limit
(SQL).

▶ The Heisenberg limit: T = ϵ−1, and Ns can be O(log(ϵ−1)).

17Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
18Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
19Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

11 / 30



▶ Derivatives can be estimated accurately using polynomial interpolation. Many
derivatives can be estimated simultaneously using classical shadows.17,18,19

▶ Estimating Tr[ρeiHtOe−iHt] through sampling and taking average.
Error∼ 1/

√
Ns, where Ns is the number of samples.

▶ Total evolution time T ∼ Ns. T = O(ϵ−2). The standard quantum limit
(SQL).

▶ The Heisenberg limit: T = ϵ−1, and Ns can be O(log(ϵ−1)).

17Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
18Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
19Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

11 / 30



▶ Derivatives can be estimated accurately using polynomial interpolation. Many
derivatives can be estimated simultaneously using classical shadows.17,18,19

▶ Estimating Tr[ρeiHtOe−iHt] through sampling and taking average.
Error∼ 1/

√
Ns, where Ns is the number of samples.

▶ Total evolution time T ∼ Ns. T = O(ϵ−2). The standard quantum limit
(SQL).

▶ The Heisenberg limit: T = ϵ−1, and Ns can be O(log(ϵ−1)).

17Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
18Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
19Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

11 / 30



▶ Derivatives can be estimated accurately using polynomial interpolation. Many
derivatives can be estimated simultaneously using classical shadows.17,18,19

▶ Estimating Tr[ρeiHtOe−iHt] through sampling and taking average.
Error∼ 1/

√
Ns, where Ns is the number of samples.

▶ Total evolution time T ∼ Ns. T = O(ϵ−2). The standard quantum limit
(SQL).

▶ The Heisenberg limit: T = ϵ−1, and Ns can be O(log(ϵ−1)).

17Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
18Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
19Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

11 / 30



▶ The perturbative approach cannot achieve the Heisenberg limit.

▶ With t = O(1),

– Each experiment outcome distribution has Fisher information O(1).
– Need the Fisher information of all experiments to be ϵ−2 (By Cramer-Rao bound).

▶ We need Ω(ϵ−2) experiments to get to ϵ standard deviation (for non-adaptive and
unbiased estimation).

▶ The proof can be extended to the adaptive and biased case.

▶ Reaching the Heisenberg limit requires something qualitatively different.
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The Heisenberg limit: an example

Consider time-dependent signal S(t), t ≥ 0

S(t) = eiθt + g, g ∼ N (µ, σ2I).

We want to estimate θ ∈ (−1, 1] to precision ϵ.

▶ We can let t = π, average out the noise, and estimate θ with O(ϵ−2) samples.

▶ I will outline a method that uses (ignoring the log log factor)20

1. O(log(ϵ−1)) samples,

2. O(ϵ−1) total evolution time.
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Suppose we know a ≤ θ ≤ b. We want to determine

1. a ≤ θ ≤ a+2b
3 ,

2. or 2a+b
3 ≤ θ ≤ b.

▶ We can then update a← a, b← (1/3)a+ (2/3)b, or a← (2/3)a+ (1/3)b, b← b.

▶ We can reduce the uncertainty by 1/3 at each step. O(log(ϵ−1)) steps are
needed for ϵ precision.
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We look at the value of

fa,b(θ) = sin

(
π

b− a

(
θ − a+ b

2

))
= Im ⟨S(t∗)⟩ e−i

(a+b)π
2(b−a) ,

where t∗ = π
b−a .

▶ If fa,b(θ) ≤ 1
2 , then a ≤ θ ≤ a+2b

3 ;

▶ If fa,b(θ) ≥ −1
2 , then

2a+b
3 ≤ θ ≤ b.

▶ Evaluating fa,b(θ) to precision 1
2 is enough.

▶ Can get confidence level 1− δ′ with
O(log(δ′−1)) samples.
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▶ At the last search step b− a ≈ (3/2)ϵ, and therefore t∗ ≈ (2/3)ϵ−1.

▶ The cost of the last step is O(t∗ log(δ′−1)) = O(ϵ−1 log(δ′−1)).

▶ The total cost is

O(ϵ−1 log(δ′−1))×

(
1 +

2

3
+

(
2

3

)2

+ · · ·

)
= O(ϵ−1 log(δ′−1)).

▶ Need δ′ = O(δ/ log(ϵ−1)) to ensure that all steps are successful with probability
1− δ.

▶ Total evolution time is O(ϵ−1 log(δ−1)) and the number of samples is
O(log(ϵ−1)).

▶ Robust to noise (|µ|+ σ = O(1)).
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A single-qubit Hamiltonian

▶ We consider Hamiltonian H = θZ, and we want to learn the parameter θ from
dynamics.

▶ We start from |+⟩, evolve for time t, and measure in the X basis:

⟨+|eiHtXe−iHt|+⟩ = cos(2θt).

▶ Similarly when measure in the Y basis

⟨+|eiHtY e−iHt|+⟩ = − sin(2θt).

▶ Combine to get a signal e2iθt+ noise.
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The difficulties of reaching the Heisenberg limit

▶ Reaching the Heisenberg limit requires long-time evolution.

▶ Many-body systems thermalize during the time evolution. For a local observable
O:

⟨O(t)⟩ ≈ 1

Zβ
Tr[Oe−βH ].

▶ Expectation values stop changing. Evolving for longer does not yield more
information.

▶ Using non-local observables does not help either (under the eigenstate
thermalization hypothesis and learning many parameters).21

21Dutkiewicz, O’Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
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Creating conservation laws

▶ An abundance of local conservation laws can prevent thermalization (e.g.,
integrable models) or make it very slow (e.g., many-body localization).

▶ If we can artificially create conservation laws we may use it to get coherent signal
at late times.
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Hamiltonian reshaping

▶ Inserting random Pauli operators.22

e−iHt = e−iHτ · · · e−iHτe−iHτ → Pre
−iHτPr · · ·P2e

−iHτP2P1e
−iHτP1,

where Pj are uniformly randomly drawn from a Pauli subgroup K ≤ GN .

▶ Because Pj
2 = I,

Pre
−iHτPr · · ·P2e

−iHτP2P1e
−iHτP1 = e−iPrHPrτ · · · e−iP2HP2τe−iP1HP1τ .

22Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
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In one time step
ρ 7→ ρ− iEP∼U(K)[PHP, ρ]τ +O(τ2)
= ρ− i[Heffective, ρ]τ +O(τ2),

where

Heffective = EP∼U(K)PHP =
1

|K|
∑
P∈K

PHP,

e−iHt 7→ e−iHeffectivet.

▶ This is the same idea underlying the qDRIFT algorithm.23

23Campbell, 2018, A random compiler for fast Hamiltonian simulation.
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▶ The Hamiltonian is transformed through

H 7→ Heffective =
1

|K|
∑
P∈K

PHP.

▶ Every element in K is a conservation law in Heffective. For Q ∈ K,

QHeffectiveQ =
1

|K|
∑
P∈K

QPHPQ = Heffective =⇒ [Q,Heffective] = 0.

▶ The coefficients we want to learn are preserved. For any Pauli operator
P ′ ∈ GN ,

1

|K|
∑
P∈K

PP ′P =

{
P ′, P ′ ∈ CGN

(K),

0, P ′ /∈ CGN
(K).

=⇒ Heffective =
∑

P∈CGN
(K)

λPP.
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Figure: Every qubit interacts with its neighbors.

▶ Choose K = ⟨Z3, Z6, Z9, · · · , X3, X6, X9, · · ·⟩.

▶ P ∈ CGN
(K) only when it acts trivially on qubits 3, 6, 9, · · · .

▶ If H has only nearest-neighbor interaction, then the system will be decoupled.
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Figure: Suppressing qubits so that the rest are isolated.

▶ Choose K = ⟨Z3, Z6, Z9, · · · , X3, X6, X9, · · ·⟩.
▶ P ∈ CGN

(K) only when it acts trivially on qubits 3, 6, 9, · · · .
▶ If H has only nearest-neighbor interaction, then the system will be decoupled.
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▶ We can also use this approach to make the effective Hamiltonian diagonal in a
certain basis (e.g., let ⟨X1, X2, X3, · · ·⟩ ⊂ K).

▶ We use conservation laws to decouple the system into non-interacting clusters,
each evolving under a Hamiltonian that is diagonal w.r.t a known basis.

▶ The Hamiltonian coefficients are preserved in the process.

▶ Can be generalized to all bounded-degree local Hamiltonians (each term involve
O(1) qubits, and each qubit is involved in O(1) terms).

▶ Close connection to dynamical decoupling, but more versatile.

▶ Similar subgroup-based strategy can be used to suppress coherent errors in
quantum circuits.24

24Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.
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▶ Similar subgroup-based strategy can be used to suppress coherent errors in
quantum circuits.24

24Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.
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Based on the Hamiltonian reshaping technique, we propose a Hamiltonian learning
protocol that

▶ Achieves the Heisenberg scaling with O(ϵ−1 log(N/δ)) total evolution time;

▶ Uses O(polylog(ϵ−1) log(N/δ)) experiments;

▶ Uses only single-qubit Pauli eigenstates, Pauli gates, and single-qubit
measurements;

▶ Is robust against state preparation and measurement (SPAM) error.
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Hamiltonian reshaping for bosons

▶ Let H be a bosonic Hamiltonian, e.g.

H =
∑
⟨i,j⟩

hijb
†
ibj +

∑
i

ωini +
1

2

∑
i

ξini(ni − 1),

where b†i (bi) are the bosonic creation (annihilation) operators.

▶ We can apply eiθni (phase shifter) for θ ∼ U([0, 2π]) to enforce local particle
number conservation (U(1) symmetry).25

▶ This can be used to isolate parts of the quantum system (no particle can hop to
or from site i).

25Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.
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▶ Learning off-diagonal terms: apply eiθ(b
†
i bj+b†jbi)/2 (beam splitter) for

θ ∼ U([0, 2π]) to conserve b†ibj + b†jbi (similarly for ib†ibj − ib†jbi).

▶ These b†ibj + b†jbi and ib†ibj − ib†jbi can be made diagonal if we change the
single-particle basis.

▶ Based on this, we propose a protocol for learning the Bose-Hubbard-type
Hamiltonian with

– Achieves the Heisenberg scaling with O(ϵ−1 log(N/δ)) total evolution time;

– Uses O(polylog(ϵ−1) log(N/δ)) experiments;

– Uses only coherent states, random one- or two-mode gaussian unitaries, and
homodyne measurements;

– Is robust against state preparation and measurement (SPAM) error.
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Open problems

▶ Quantum control is necessary, but ”how much” control do we need?

– e−iHτ ≈ I − iHτ 7→ I − iHeffectiveτ : error of order O(τ2).

– To reach ϵ accuracy, we need τ = Θ(ϵ). Apply Pauli unitaries very fast.

– Can use 2nd-order Trotter to get τ = Θ(ϵ1/2). Higher order requires evolving
backward in time.

– Evolving up to time T , we need at least Ω(T ) unitaries to be inserted,26

corresponding to τ = O(1).

– Can we design a protocol to achieve this scaling? Apply unitaries with only constant
frequency.

26Dutkiewicz, O’Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
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▶ Can we tolerate error during time evolution (other than SPAM)?

– Quantum noise will make signal decay, preventing us from reaching the Heisenberg
limit.

– Can quantum error correction (QEC) help?

– Only certain Hamiltonian terms can benefit from QEC
(Hamiltonian-not-in-Lindblad-span (HNLS) condition).27

– For terms not in the Lindblad span, can we design a non-asymptotic protocol to
learn all of them scalably in the presence of quantum noise?

27Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.
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Conclusion

▶ Hamiltonian learning in the Heisenberg limit requires long-time evolution.

▶ We need control to artificially create conservation laws to put off thermalization.

▶ Open questions remain as to how fast and strong the control needs to be and
tolerance of quantum noise.
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