Hamiltonian learning: recent progress and open problems

Yu Tong
Institute for Quantum Information and Matter, Caltech

October, 2023

This talk is based on

- Hsin-Yuan Huang, Yu Tong, Di Fang, Yuan Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
- Haoya Li, Yu Tong, Hongkang Ni, Tuvia Gefen, Lexing Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

Scope of the talk

- Learning the Hamiltonian from time-evolution, and with focus on the Heisenberg limit and the role of quantum control.

[^0]
Scope of the talk

- Learning the Hamiltonian from time-evolution, and with focus on the Heisenberg limit and the role of quantum control.
- Not covered: learning the Hamiltonian from the Gibbs state or the ground state. ${ }^{1,2,3,4}$

[^1]
The problem

We have an N-qubit quantum system evolving under a Hamiltonian H. We are allowed to interact with the system. The goal is to have a complete characterization of H classically. We may have some prior knowledge of H.

The problem

We have an N-qubit quantum system evolving under a Hamiltonian H. We are allowed to interact with the system. The goal is to have a complete characterization of H classically. We may have some prior knowledge of H.

- Interaction: we can prepare a (simple) initial state, apply (simple) unitaries during time evolution, and measure in some (simple) basis.

$$
\text { Measure } \leftarrow U_{r} e^{-i H t_{r}} \cdots U_{2} e^{-i H t_{2}} U_{1} e^{-i H t_{1}}|\Phi\rangle
$$

The problem

We have an N-qubit quantum system evolving under a Hamiltonian H. We are allowed to interact with the system. The goal is to have a complete characterization of H classically. We may have some prior knowledge of H.

- Interaction: we can prepare a (simple) initial state, apply (simple) unitaries during time evolution, and measure in some (simple) basis.

$$
\text { Measure } \leftarrow U_{r} e^{-i H t_{r}} \cdots U_{2} e^{-i H t_{2}} U_{1} e^{-i H t_{1}}|\Phi\rangle
$$

- Characterization: $H=\sum_{P \in\{I, X, Y, Z\}^{\otimes_{N}}} \lambda_{P} P$. Want to learn all λ_{P}.

The problem

We have an N-qubit quantum system evolving under a Hamiltonian H. We are allowed to interact with the system. The goal is to have a complete characterization of H classically. We may have some prior knowledge of H.

- Interaction: we can prepare a (simple) initial state, apply (simple) unitaries during time evolution, and measure in some (simple) basis.

$$
\text { Measure } \leftarrow U_{r} e^{-i H t_{r}} \cdots U_{2} e^{-i H t_{2}} U_{1} e^{-i H t_{1}}|\Phi\rangle
$$

- Characterization: $H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P$. Want to learn all λ_{P}.
- Prior knowledge: only a known (poly (N)-sized) subset of λ_{P} 's are non-zero, $\left|\lambda_{P}\right| \leq 1$. E.g., geometrically local.

The problem

We have an N-qubit quantum system evolving under a Hamiltonian H. We are allowed to interact with the system. The goal is to have a complete characterization of H classically. We may have some prior knowledge of H.

- Interaction: we can prepare a (simple) initial state, apply (simple) unitaries during time evolution, and measure in some (simple) basis.

$$
\text { Measure } \leftarrow U_{r} e^{-i H t_{r}} \cdots U_{2} e^{-i H t_{2}} U_{1} e^{-i H t_{1}}|\Phi\rangle
$$

- Characterization: $H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P$. Want to learn all λ_{P}.
- Prior knowledge: only a known (poly (N)-sized) subset of λ_{P} 's are non-zero, $\left|\lambda_{P}\right| \leq 1$. E.g., geometrically local.
- Restriction: we cannot apply control- $e^{-i H t}$ or $e^{i H t}$.

Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .5$

[^2]
Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .5$
- But we want the "cost" to be at most poly (N).

[^3]
Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .5$
- But we want the "cost" to be at most poly (N).
- Need to define the cost.

[^4]
Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .5$
- But we want the "cost" to be at most poly (N).
- Need to define the cost.
- Query complexity? $e^{-0.01 i H}$ vs $e^{-1000 i H}$.

[^5]
Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .5$
- But we want the "cost" to be at most poly (N).
- Need to define the cost.
- Query complexity? $e^{-0.01 i H}$ vs $e^{-1000 i H}$.
- We use total evolution time: if we use $e^{-i H t_{1}}, e^{-i H t_{2}}, \ldots, e^{-i H t_{N_{\exp }}}$, then the total evolution time is $t_{1}+t_{2}+\cdots t_{N_{\text {exp }}}$.

[^6]
Measuring the cost

- We can get the Hamiltonian by learning the unitary $e^{-i H \tau}$ for a small τ. Requires $e^{\mathcal{O}(N)} \epsilon^{-1}$ queries to $e^{-i H \tau} .{ }^{5}$
- But we want the "cost" to be at most poly (N).
- Need to define the cost.
- Query complexity? $e^{-0.01 i H}$ vs $e^{-1000 i H}$.
- We use total evolution time: if we use $e^{-i H t_{1}}, e^{-i H t_{2}}, \ldots, e^{-i H t_{N_{\text {exp }}}}$, then the total evolution time is $t_{1}+t_{2}+\cdots t_{N_{\text {exp }}}$.
- We also need to make sure that the number of experiments $N_{\exp }$ and the number of unitaries are not too large.

[^7]
Connection with quantum metrology

- Quantum metrology: high-precision estimation of a few physical parameters. Asymptotic convergence governed by the quantum Fisher information.

Connection with quantum metrology

- Quantum metrology: high-precision estimation of a few physical parameters. Asymptotic convergence governed by the quantum Fisher information.

Figure: Image credit: LIGO/T. Pyle

Connection with quantum metrology

- Quantum metrology: high-precision estimation of a few physical parameters. Asymptotic convergence governed by the quantum Fisher information.
- Hamiltonian learning: Estimation of many parameters. Non-asymptotic (without good prior information).

Figure: Image credit: LIGO/T. Pyle

A brief history

- Heuristic algorithms based on optimization and Bayesian inference. ${ }^{6,7}$

[^8]
A brief history

- Heuristic algorithms based on optimization and Bayesian inference. ${ }^{6,7}$
- Experimental implementation: single spin (NV center), ${ }^{8}$ non-interacting boson (superconducting qubits). ${ }^{9}$

[^9]
Learning all $(\mathcal{O}(N))$ parameters to precision ϵ with probability at least $1-\delta$.

- Provably efficient algorithms (perturbative):

[^10]Learning all $(\mathcal{O}(N))$ parameters to precision ϵ with probability at least $1-\delta$.

- Provably efficient algorithms (perturbative):
- cluster expansion $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{10}$

[^11]Learning all $(\mathcal{O}(N))$ parameters to precision ϵ with probability at least $1-\delta$.

- Provably efficient algorithms (perturbative):
- cluster expansion $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{10}$
- derivative estimation $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right.$, Lindbladian $),{ }^{11}$

[^12]Learning all $(\mathcal{O}(N))$ parameters to precision ϵ with probability at least $1-\delta$.

- Provably efficient algorithms (perturbative):
- cluster expansion $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{10}$
- derivative estimation $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right.$, Lindbladian $),{ }^{11}$
- better scaling with degree $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{12}$

[^13]Learning all $(\mathcal{O}(N))$ parameters to precision ϵ with probability at least $1-\delta$.

- Provably efficient algorithms (perturbative):
- cluster expansion $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{10}$
- derivative estimation $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right.$, Lindbladian $),{ }^{11}$
- better scaling with degree $\left(\mathcal{O}\left(\epsilon^{-2} \log (N / \delta)\right)\right),{ }^{12}$
- Pauli channel estimation $\left(\mathcal{O}\left(\epsilon^{-4} \log (N / \delta)\right)\right.$, SPAM-robust $) .{ }^{13}$

[^14]
- Provably efficient algorithms (Heisenberg limit):

- Hamiltonian reshaping with random Pauli operators $\left(\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)\right.$, SPAM-robust $),{ }^{14}$

[^15]
- Provably efficient algorithms (Heisenberg limit):

- Hamiltonian reshaping with random Pauli operators ($\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)$, SPAM-robust $),{ }^{14}$
- Connection between quantum control and the Heisenberg limit, ${ }^{15}$

[^16]
- Provably efficient algorithms (Heisenberg limit):

- Hamiltonian reshaping with random Pauli operators $\left(\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)\right.$, SPAM-robust $),{ }^{14}$
- Connection between quantum control and the Heisenberg limit, ${ }^{15}$
- Random gaussian unitaries $\left(\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)\right.$, boson $) .{ }^{16}$

[^17]
The perturbative approach

- The Hamiltonian

$$
H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P .
$$

The perturbative approach

- The Hamiltonian

$$
H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P .
$$

- Key observation: $e^{-i H t}$ is almost linear in H when t is small.

The perturbative approach

- The Hamiltonian

$$
H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P .
$$

- Key observation: $e^{-i H t}$ is almost linear in H when t is small.
- Start from state ρ, evolve for time t, and measure observable O. The time derivative is

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]\right|_{t=0}=i \operatorname{Tr}[\rho[H, O]]=i \operatorname{Tr}[H[O, \rho]] .
$$

The perturbative approach

- The Hamiltonian

$$
H=\sum_{P \in\{I, X, Y, Z\}^{\otimes N}} \lambda_{P} P .
$$

- Key observation: $e^{-i H t}$ is almost linear in H when t is small.
- Start from state ρ, evolve for time t, and measure observable O. The time derivative is

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]\right|_{t=0}=i \operatorname{Tr}[\rho[H, O]]=i \operatorname{Tr}[H[O, \rho]]
$$

- Choose ρ (Pauli eigenstate) and O (Pauli) so that $[O, \rho]=\frac{i}{2^{N-1}} P$.

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]\right|_{t=0}=-2 \lambda_{P}
$$

- Derivatives can be estimated accurately using polynomial interpolation. Many derivatives can be estimated simultaneously using classical shadows. ${ }^{17,18,19}$

[^18]- Derivatives can be estimated accurately using polynomial interpolation. Many derivatives can be estimated simultaneously using classical shadows. ${ }^{17,18,19}$
- Estimating $\operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]$ through sampling and taking average. Error $\sim 1 / \sqrt{N_{s}}$, where N_{s} is the number of samples.

[^19]- Derivatives can be estimated accurately using polynomial interpolation. Many derivatives can be estimated simultaneously using classical shadows. ${ }^{17,18,19}$
- Estimating $\operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]$ through sampling and taking average. Error $\sim 1 / \sqrt{N_{s}}$, where N_{s} is the number of samples.
- Total evolution time $T \sim N_{s} . T=\mathcal{O}\left(\epsilon^{-2}\right)$. The standard quantum limit (SQL).

[^20]- Derivatives can be estimated accurately using polynomial interpolation. Many derivatives can be estimated simultaneously using classical shadows. ${ }^{17,18,19}$
- Estimating $\operatorname{Tr}\left[\rho e^{i H t} O e^{-i H t}\right]$ through sampling and taking average. Error $\sim 1 / \sqrt{N_{s}}$, where N_{s} is the number of samples.
- Total evolution time $T \sim N_{s} . T=\mathcal{O}\left(\epsilon^{-2}\right)$. The standard quantum limit (SQL).
- The Heisenberg limit: $T=\epsilon^{-1}$, and N_{s} can be $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$.

[^21]- The perturbative approach cannot achieve the Heisenberg limit.
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- Each experiment outcome distribution has Fisher information $\mathcal{O}(1)$.
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- Each experiment outcome distribution has Fisher information $\mathcal{O}(1)$.
- Need the Fisher information of all experiments to be ϵ^{-2} (By Cramer-Rao bound).
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- Each experiment outcome distribution has Fisher information $\mathcal{O}(1)$.
- Need the Fisher information of all experiments to be ϵ^{-2} (By Cramer-Rao bound).
- We need $\Omega\left(\epsilon^{-2}\right)$ experiments to get to ϵ standard deviation (for non-adaptive and unbiased estimation).
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- Each experiment outcome distribution has Fisher information $\mathcal{O}(1)$.
- Need the Fisher information of all experiments to be ϵ^{-2} (By Cramer-Rao bound).
- We need $\Omega\left(\epsilon^{-2}\right)$ experiments to get to ϵ standard deviation (for non-adaptive and unbiased estimation).
- The proof can be extended to the adaptive and biased case.
- The perturbative approach cannot achieve the Heisenberg limit.
- With $t=\mathcal{O}(1)$,
- Each experiment outcome distribution has Fisher information $\mathcal{O}(1)$.
- Need the Fisher information of all experiments to be ϵ^{-2} (By Cramer-Rao bound).
- We need $\Omega\left(\epsilon^{-2}\right)$ experiments to get to ϵ standard deviation (for non-adaptive and unbiased estimation).
- The proof can be extended to the adaptive and biased case.
- Reaching the Heisenberg limit requires something qualitatively different.

The Heisenberg limit: an example

Consider time-dependent signal $S(t), t \geq 0$

$$
S(t)=e^{i \theta t}+g, \quad g \sim \mathcal{N}\left(\mu, \sigma^{2} I\right)
$$

We want to estimate $\theta \in(-1,1]$ to precision ϵ.

[^22]
The Heisenberg limit: an example

Consider time-dependent signal $S(t), t \geq 0$

$$
S(t)=e^{i \theta t}+g, \quad g \sim \mathcal{N}\left(\mu, \sigma^{2} I\right)
$$

We want to estimate $\theta \in(-1,1]$ to precision ϵ.

- We can let $t=\pi$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.

[^23]
The Heisenberg limit: an example

Consider time-dependent signal $S(t), t \geq 0$

$$
S(t)=e^{i \theta t}+g, \quad g \sim \mathcal{N}\left(\mu, \sigma^{2} I\right)
$$

We want to estimate $\theta \in(-1,1]$ to precision ϵ.

- We can let $t=\pi$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.
- I will outline a method that uses (ignoring the $\log \log$ factor) ${ }^{20}$

1. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ samples,
2. $\mathcal{O}\left(\epsilon^{-1}\right)$ total evolution time.
[^24]
The Heisenberg limit: an example

Consider time-dependent signal $S(t), t \geq 0$

$$
S(t)=e^{i \theta t}+g, \quad g \sim \mathcal{N}\left(\mu, \sigma^{2} I\right)
$$

We want to estimate $\theta \in(-1,1]$ to precision ϵ.

- We can let $t=\pi$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.
- I will outline a method that uses (ignoring the $\log \log$ factor) ${ }^{20}$

1. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ samples,
2. $\mathcal{O}\left(\epsilon^{-1}\right)$ total evolution time.

- Suppose our samples are $S\left(t_{1}\right), S\left(t_{2}\right), \cdots, S\left(t_{N_{s}}\right)$, then the total evolution time is $t_{1}+t_{2}+\cdots+t_{N_{s}}$.

[^25]Suppose we know $a \leq \theta \leq b$. We want to determine

1. $a \leq \theta \leq \frac{a+2 b}{3}$,
2. or $\frac{2 a+b}{3} \leq \theta \leq b$.

Suppose we know $a \leq \theta \leq b$. We want to determine

1. $a \leq \theta \leq \frac{a+2 b}{3}$,
2. or $\frac{2 a+b}{3} \leq \theta \leq b$.

- We can then update $a \leftarrow a, b \leftarrow(1 / 3) a+(2 / 3) b$, or $a \leftarrow(2 / 3) a+(1 / 3) b, b \leftarrow b$.

Suppose we know $a \leq \theta \leq b$. We want to determine

1. $a \leq \theta \leq \frac{a+2 b}{3}$,
2. or $\frac{2 a+b}{3} \leq \theta \leq b$.

- We can then update $a \leftarrow a, b \leftarrow(1 / 3) a+(2 / 3) b$, or $a \leftarrow(2 / 3) a+(1 / 3) b, b \leftarrow b$.
- We can reduce the uncertainty by $1 / 3$ at each step. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ steps are needed for ϵ precision.

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}(\theta) \leq \frac{1}{2}$, then $a \leq \theta \leq \frac{a+2 b}{3}$;

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}(\theta) \leq \frac{1}{2}$, then $a \leq \theta \leq \frac{a+2 b}{3}$;
- If $f_{a, b}(\theta) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq \theta \leq b$.

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}(\theta) \leq \frac{1}{2}$, then $a \leq \theta \leq \frac{a+2 b}{3}$;
- If $f_{a, b}(\theta) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq \theta \leq b$.
- Evaluating $f_{a, b}(\theta)$ to precision $\frac{1}{2}$ is enough.

We look at the value of

$$
f_{a, b}(\theta)=\sin \left(\frac{\pi}{b-a}\left(\theta-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}(\theta) \leq \frac{1}{2}$, then $a \leq \theta \leq \frac{a+2 b}{3}$;
- If $f_{a, b}(\theta) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq \theta \leq b$.
- Evaluating $f_{a, b}(\theta)$ to precision $\frac{1}{2}$ is enough.
- Can get confidence level $1-\delta^{\prime}$ with $\mathcal{O}\left(\log \left(\delta^{\prime-1}\right)\right)$ samples.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

- Need $\delta^{\prime}=\mathcal{O}\left(\delta / \log \left(\epsilon^{-1}\right)\right)$ to ensure that all steps are successful with probability $1-\delta$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

- Need $\delta^{\prime}=\mathcal{O}\left(\delta / \log \left(\epsilon^{-1}\right)\right)$ to ensure that all steps are successful with probability $1-\delta$.
- Total evolution time is $\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{-1}\right)\right)$ and the number of samples is $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$.
- Robust to noise $(|\mu|+\sigma=\mathcal{O}(1))$.

A single-qubit Hamiltonian

- We consider Hamiltonian $H=\theta Z$, and we want to learn the parameter θ from dynamics.

A single-qubit Hamiltonian

- We consider Hamiltonian $H=\theta Z$, and we want to learn the parameter θ from dynamics.
- We start from $|+\rangle$, evolve for time t, and measure in the X basis:

$$
\langle+| e^{i H t} X e^{-i H t}|+\rangle=\cos (2 \theta t)
$$

A single-qubit Hamiltonian

- We consider Hamiltonian $H=\theta Z$, and we want to learn the parameter θ from dynamics.
- We start from $|+\rangle$, evolve for time t, and measure in the X basis:

$$
\langle+| e^{i H t} X e^{-i H t}|+\rangle=\cos (2 \theta t)
$$

- Similarly when measure in the Y basis

$$
\langle+| e^{i H t} Y e^{-i H t}|+\rangle=-\sin (2 \theta t)
$$

A single-qubit Hamiltonian

- We consider Hamiltonian $H=\theta Z$, and we want to learn the parameter θ from dynamics.
- We start from $|+\rangle$, evolve for time t, and measure in the X basis:

$$
\langle+| e^{i H t} X e^{-i H t}|+\rangle=\cos (2 \theta t)
$$

- Similarly when measure in the Y basis

$$
\langle+| e^{i H t} Y e^{-i H t}|+\rangle=-\sin (2 \theta t)
$$

- Combine to get a signal $e^{2 i \theta t}+$ noise.

The difficulties of reaching the Heisenberg limit

- Reaching the Heisenberg limit requires long-time evolution.

[^26]
The difficulties of reaching the Heisenberg limit

- Reaching the Heisenberg limit requires long-time evolution.
- Many-body systems thermalize during the time evolution. For a local observable O :

$$
\langle O(t)\rangle \approx \frac{1}{Z_{\beta}} \operatorname{Tr}\left[O e^{-\beta H}\right] .
$$

[^27]
The difficulties of reaching the Heisenberg limit

- Reaching the Heisenberg limit requires long-time evolution.
- Many-body systems thermalize during the time evolution. For a local observable O :

$$
\langle O(t)\rangle \approx \frac{1}{Z_{\beta}} \operatorname{Tr}\left[O e^{-\beta H}\right] .
$$

- Expectation values stop changing. Evolving for longer does not yield more information.

[^28]
The difficulties of reaching the Heisenberg limit

- Reaching the Heisenberg limit requires long-time evolution.
- Many-body systems thermalize during the time evolution. For a local observable O :

$$
\langle O(t)\rangle \approx \frac{1}{Z_{\beta}} \operatorname{Tr}\left[O e^{-\beta H}\right] .
$$

- Expectation values stop changing. Evolving for longer does not yield more information.
- Using non-local observables does not help either (under the eigenstate thermalization hypothesis and learning many parameters). ${ }^{21}$

[^29]
Creating conservation laws

- An abundance of local conservation laws can prevent thermalization (e.g., integrable models) or make it very slow (e.g., many-body localization).

Creating conservation laws

- An abundance of local conservation laws can prevent thermalization (e.g., integrable models) or make it very slow (e.g., many-body localization).
- If we can artificially create conservation laws we may use it to get coherent signal at late times.

Hamiltonian reshaping

- Inserting random Pauli operators. ${ }^{22}$
${ }^{22}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.

Hamiltonian reshaping

- Inserting random Pauli operators. ${ }^{22}$

$$
e^{-i H t}=e^{-i H \tau} \cdots e^{-i H \tau} e^{-i H \tau} \rightarrow P_{r} e^{-i H \tau} P_{r} \cdots P_{2} e^{-i H \tau} P_{2} P_{1} e^{-i H \tau} P_{1}
$$

where P_{j} are uniformly randomly drawn from a Pauli subgroup $K \leq G_{N}$.

[^30]
Hamiltonian reshaping

- Inserting random Pauli operators. ${ }^{22}$

$$
e^{-i H t}=e^{-i H \tau} \cdots e^{-i H \tau} e^{-i H \tau} \rightarrow P_{r} e^{-i H \tau} P_{r} \cdots P_{2} e^{-i H \tau} P_{2} P_{1} e^{-i H \tau} P_{1}
$$

where P_{j} are uniformly randomly drawn from a Pauli subgroup $K \leq G_{N}$.

- Because $P_{j}{ }^{2}=I$,

$$
P_{r} e^{-i H \tau} P_{r} \cdots P_{2} e^{-i H \tau} P_{2} P_{1} e^{-i H \tau} P_{1}=e^{-i P_{r} H P_{r} \tau} \cdots e^{-i P_{2} H P_{2} \tau} e^{-i P_{1} H P_{1} \tau}
$$

[^31]In one time step

$$
\begin{aligned}
\rho & \mapsto \rho-i \mathbb{E}_{P \sim \mathcal{U}(K)}[P H P, \rho] \tau+\mathcal{O}\left(\tau^{2}\right) \\
& =\rho-i\left[H_{\text {effective }}, \rho\right] \tau+\mathcal{O}\left(\tau^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{\text {effective }}=\mathbb{E}_{P \sim \mathcal{U}(K)} P H P=\frac{1}{|K|} \sum_{P \in K} P H P, \\
& e^{-i H t} \mapsto e^{-i H_{\text {effective }} t}
\end{aligned}
$$

[^32]In one time step

$$
\begin{aligned}
\rho & \mapsto \rho-i \mathbb{E}_{P \sim \mathcal{U}(K)}[P H P, \rho] \tau+\mathcal{O}\left(\tau^{2}\right) \\
& =\rho-i\left[H_{\text {effective }}, \rho\right] \tau+\mathcal{O}\left(\tau^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{\text {effective }}=\mathbb{E}_{P \sim \mathcal{U}(K)} P H P=\frac{1}{|K|} \sum_{P \in K} P H P \\
& e^{-i H t} \mapsto e^{-i H_{\text {effective }} t}
\end{aligned}
$$

- This is the same idea underlying the qDRIFT algorithm. ${ }^{23}$

[^33]- The Hamiltonian is transformed through

$$
H \mapsto H_{\text {effective }}=\frac{1}{|K|} \sum_{P \in K} P H P
$$

- The Hamiltonian is transformed through

$$
H \mapsto H_{\text {effective }}=\frac{1}{|K|} \sum_{P \in K} P H P
$$

- Every element in K is a conservation law in $H_{\text {effective. }}$. For $Q \in K$,

$$
Q H_{\text {effective }} Q=\frac{1}{|K|} \sum_{P \in K} Q P H P Q=H_{\text {effective }} \Longrightarrow\left[Q, H_{\text {effective }}\right]=0
$$

- The Hamiltonian is transformed through

$$
H \mapsto H_{\text {effective }}=\frac{1}{|K|} \sum_{P \in K} P H P
$$

- Every element in K is a conservation law in $H_{\text {effective. }}$. For $Q \in K$,

$$
Q H_{\mathrm{effective}} Q=\frac{1}{|K|} \sum_{P \in K} Q P H P Q=H_{\text {effective }} \Longrightarrow\left[Q, H_{\mathrm{effective}}\right]=0
$$

- The coefficients we want to learn are preserved. For any Pauli operator $P^{\prime} \in G_{N}$,

$$
\frac{1}{|K|} \sum_{P \in K} P P^{\prime} P=\left\{\begin{array}{l}
P^{\prime}, P^{\prime} \in C_{G_{N}}(K), \\
0, P^{\prime} \notin C_{G_{N}}(K) .
\end{array} \quad \Longrightarrow H_{\text {effective }}=\sum_{P \in C_{G_{N}}(K)} \lambda_{P} P\right.
$$

Figure: Every qubit interacts with its neighbors.

- Choose $K=\left\langle Z_{3}, Z_{6}, Z_{9}, \cdots, X_{3}, X_{6}, X_{9}, \cdots\right\rangle$.

Figure: Every qubit interacts with its neighbors.

- Choose $K=\left\langle Z_{3}, Z_{6}, Z_{9}, \cdots, X_{3}, X_{6}, X_{9}, \cdots\right\rangle$.
- $P \in C_{G_{N}}(K)$ only when it acts trivially on qubits $3,6,9, \cdots$.

Figure: Every qubit interacts with its neighbors.

- Choose $K=\left\langle Z_{3}, Z_{6}, Z_{9}, \cdots, X_{3}, X_{6}, X_{9}, \cdots\right\rangle$.
- $P \in C_{G_{N}}(K)$ only when it acts trivially on qubits $3,6,9, \cdots$.
- If H has only nearest-neighbor interaction, then the system will be decoupled.

Figure: Suppressing qubits so that the rest are isolated.

- Choose $K=\left\langle Z_{3}, Z_{6}, Z_{9}, \cdots, X_{3}, X_{6}, X_{9}, \cdots\right\rangle$.
- $P \in C_{G_{N}}(K)$ only when it acts trivially on qubits $3,6,9, \cdots$.
- If H has only nearest-neighbor interaction, then the system will be decoupled.
- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.
- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
- We use conservation laws to decouple the system into non-interacting clusters, each evolving under a Hamiltonian that is diagonal w.r.t a known basis.

[^34]- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
- We use conservation laws to decouple the system into non-interacting clusters, each evolving under a Hamiltonian that is diagonal w.r.t a known basis.
- The Hamiltonian coefficients are preserved in the process.

[^35]- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
- We use conservation laws to decouple the system into non-interacting clusters, each evolving under a Hamiltonian that is diagonal w.r.t a known basis.
- The Hamiltonian coefficients are preserved in the process.
- Can be generalized to all bounded-degree local Hamiltonians (each term involve $\mathcal{O}(1)$ qubits, and each qubit is involved in $\mathcal{O}(1)$ terms $)$.

[^36]- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
- We use conservation laws to decouple the system into non-interacting clusters, each evolving under a Hamiltonian that is diagonal w.r.t a known basis.
- The Hamiltonian coefficients are preserved in the process.
- Can be generalized to all bounded-degree local Hamiltonians (each term involve $\mathcal{O}(1)$ qubits, and each qubit is involved in $\mathcal{O}(1)$ terms $)$.
- Close connection to dynamical decoupling, but more versatile.

[^37]- We can also use this approach to make the effective Hamiltonian diagonal in a certain basis (e.g., let $\left\langle X_{1}, X_{2}, X_{3}, \cdots\right\rangle \subset K$).
- We use conservation laws to decouple the system into non-interacting clusters, each evolving under a Hamiltonian that is diagonal w.r.t a known basis.
- The Hamiltonian coefficients are preserved in the process.
- Can be generalized to all bounded-degree local Hamiltonians (each term involve $\mathcal{O}(1)$ qubits, and each qubit is involved in $\mathcal{O}(1)$ terms $)$.
- Close connection to dynamical decoupling, but more versatile.
- Similar subgroup-based strategy can be used to suppress coherent errors in quantum circuits. ${ }^{24}$

[^38]Based on the Hamiltonian reshaping technique, we propose a Hamiltonian learning protocol that

- Achieves the Heisenberg scaling with $\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)$ total evolution time;
- Uses $\mathcal{O}\left(\right.$ polylog $\left.\left(\epsilon^{-1}\right) \log (N / \delta)\right)$ experiments;
- Uses only single-qubit Pauli eigenstates, Pauli gates, and single-qubit measurements;
- Is robust against state preparation and measurement (SPAM) error.

Hamiltonian reshaping for bosons

- Let H be a bosonic Hamiltonian, e.g.

$$
H=\sum_{\langle i, j\rangle} h_{i j} b_{i}^{\dagger} b_{j}+\sum_{i} \omega_{i} n_{i}+\frac{1}{2} \sum_{i} \xi_{i} n_{i}\left(n_{i}-1\right),
$$

where $b_{i}^{\dagger}\left(b_{i}\right)$ are the bosonic creation (annihilation) operators.

[^39]
Hamiltonian reshaping for bosons

- Let H be a bosonic Hamiltonian, e.g.

$$
H=\sum_{\langle i, j\rangle} h_{i j} b_{i}^{\dagger} b_{j}+\sum_{i} \omega_{i} n_{i}+\frac{1}{2} \sum_{i} \xi_{i} n_{i}\left(n_{i}-1\right),
$$

where $b_{i}^{\dagger}\left(b_{i}\right)$ are the bosonic creation (annihilation) operators.

- We can apply $e^{i \theta n_{i}}$ (phase shifter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to enforce local particle number conservation $\left(U(1)\right.$ symmetry). ${ }^{25}$

[^40]
Hamiltonian reshaping for bosons

- Let H be a bosonic Hamiltonian, e.g.

$$
H=\sum_{\langle i, j\rangle} h_{i j} b_{i}^{\dagger} b_{j}+\sum_{i} \omega_{i} n_{i}+\frac{1}{2} \sum_{i} \xi_{i} n_{i}\left(n_{i}-1\right),
$$

where $b_{i}^{\dagger}\left(b_{i}\right)$ are the bosonic creation (annihilation) operators.

- We can apply $e^{i \theta n_{i}}$ (phase shifter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to enforce local particle number conservation $\left(\mathrm{U}(1)\right.$ symmetry). ${ }^{25}$
- This can be used to isolate parts of the quantum system (no particle can hop to or from site i).

[^41]- Learning off-diagonal terms: apply $e^{i \theta\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right) / 2}$ (beam splitter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to conserve $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ (similarly for $\left.i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}\right)$.
- Learning off-diagonal terms: apply $e^{i \theta\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right) / 2}$ (beam splitter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to conserve $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ (similarly for $\left.i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}\right)$.
- These $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ and $i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}$ can be made diagonal if we change the single-particle basis.
- Learning off-diagonal terms: apply $e^{i \theta\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right) / 2}$ (beam splitter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to conserve $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ (similarly for $\left.i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}\right)$.
- These $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ and $i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}$ can be made diagonal if we change the single-particle basis.
- Based on this, we propose a protocol for learning the Bose-Hubbard-type Hamiltonian with
- Learning off-diagonal terms: apply $e^{i \theta\left(b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}\right) / 2}$ (beam splitter) for $\theta \sim \mathcal{U}([0,2 \pi])$ to conserve $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ (similarly for $\left.i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}\right)$.
- These $b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}$ and $i b_{i}^{\dagger} b_{j}-i b_{j}^{\dagger} b_{i}$ can be made diagonal if we change the single-particle basis.
- Based on this, we propose a protocol for learning the Bose-Hubbard-type Hamiltonian with
- Achieves the Heisenberg scaling with $\mathcal{O}\left(\epsilon^{-1} \log (N / \delta)\right)$ total evolution time;
- Uses $\mathcal{O}\left(\right.$ polylog $\left.\left(\epsilon^{-1}\right) \log (N / \delta)\right)$ experiments;
- Uses only coherent states, random one- or two-mode gaussian unitaries, and homodyne measurements;
- Is robust against state preparation and measurement (SPAM) error.

Open problems

- Quantum control is necessary, but "how much" control do we need?

$$
-e^{-i H \tau} \approx I-i H \tau \mapsto I-i H_{\text {effective }} \tau: \text { error of order } \mathcal{O}\left(\tau^{2}\right) .
$$

[^42]
Open problems

- Quantum control is necessary, but "how much" control do we need?
- $e^{-i H \tau} \approx I-i H \tau \mapsto I-i H_{\text {effective }} \tau$: error of order $\mathcal{O}\left(\tau^{2}\right)$.
- To reach ϵ accuracy, we need $\tau=\Theta(\epsilon)$. Apply Pauli unitaries very fast.

[^43]
Open problems

- Quantum control is necessary, but "how much" control do we need?
- $e^{-i H \tau} \approx I-i H \tau \mapsto I-i H_{\text {effective }} \tau$: error of order $\mathcal{O}\left(\tau^{2}\right)$.
- To reach ϵ accuracy, we need $\tau=\Theta(\epsilon)$. Apply Pauli unitaries very fast.
- Can use 2nd-order Trotter to get $\tau=\Theta\left(\epsilon^{1 / 2}\right)$. Higher order requires evolving backward in time.

[^44]
Open problems

- Quantum control is necessary, but "how much" control do we need?
- $e^{-i H \tau} \approx I-i H \tau \mapsto I-i H_{\text {effective }} \tau$: error of order $\mathcal{O}\left(\tau^{2}\right)$.
- To reach ϵ accuracy, we need $\tau=\Theta(\epsilon)$. Apply Pauli unitaries very fast.
- Can use 2nd-order Trotter to get $\tau=\Theta\left(\epsilon^{1 / 2}\right)$. Higher order requires evolving backward in time.
- Evolving up to time T, we need at least $\Omega(T)$ unitaries to be inserted, ${ }^{26}$ corresponding to $\tau=\mathcal{O}(1)$.

[^45]
Open problems

- Quantum control is necessary, but "how much" control do we need?
- $e^{-i H \tau} \approx I-i H \tau \mapsto I-i H_{\text {effective }} \tau$: error of order $\mathcal{O}\left(\tau^{2}\right)$.
- To reach ϵ accuracy, we need $\tau=\Theta(\epsilon)$. Apply Pauli unitaries very fast.
- Can use 2nd-order Trotter to get $\tau=\Theta\left(\epsilon^{1 / 2}\right)$. Higher order requires evolving backward in time.
- Evolving up to time T, we need at least $\Omega(T)$ unitaries to be inserted, ${ }^{26}$ corresponding to $\tau=\mathcal{O}(1)$.
- Can we design a protocol to achieve this scaling? Apply unitaries with only constant frequency.

[^46]- Can we tolerate error during time evolution (other than SPAM)?

[^47]- Can we tolerate error during time evolution (other than SPAM)?
- Quantum noise will make signal decay, preventing us from reaching the Heisenberg limit.

[^48]- Can we tolerate error during time evolution (other than SPAM)?
- Quantum noise will make signal decay, preventing us from reaching the Heisenberg limit.
- Can quantum error correction (QEC) help?

[^49]- Can we tolerate error during time evolution (other than SPAM)?
- Quantum noise will make signal decay, preventing us from reaching the Heisenberg limit.
- Can quantum error correction (QEC) help?
- Only certain Hamiltonian terms can benefit from QEC (Hamiltonian-not-in-Lindblad-span (HNLS) condition). ${ }^{27}$

[^50]- Can we tolerate error during time evolution (other than SPAM)?
- Quantum noise will make signal decay, preventing us from reaching the Heisenberg limit.
- Can quantum error correction (QEC) help?
- Only certain Hamiltonian terms can benefit from QEC (Hamiltonian-not-in-Lindblad-span (HNLS) condition). ${ }^{27}$
- For terms not in the Lindblad span, can we design a non-asymptotic protocol to learn all of them scalably in the presence of quantum noise?

[^51]
Conclusion

- Hamiltonian learning in the Heisenberg limit requires long-time evolution.

Conclusion

- Hamiltonian learning in the Heisenberg limit requires long-time evolution.
- We need control to artificially create conservation laws to put off thermalization.

Conclusion

- Hamiltonian learning in the Heisenberg limit requires long-time evolution.
- We need control to artificially create conservation laws to put off thermalization.
- Open questions remain as to how fast and strong the control needs to be and tolerance of quantum noise.

[^0]: ${ }^{1}$ Anshu, Arunachalam, Kuwahara, Soleimanifar, 2020, Sample-efficient learning of interacting quantum systems.
 ${ }^{2}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{3}$ Qi, Ranard, 2017, Determining a local Hamiltonian from a single eigenstate.
 ${ }^{4}$ Anshu, Arunachalam, 2023, A survey on the complexity of learning quantum states.

[^1]: ${ }^{1}$ Anshu, Arunachalam, Kuwahara, Soleimanifar, 2020, Sample-efficient learning of interacting quantum systems.
 ${ }^{2}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{3}$ Qi, Ranard, 2017, Determining a local Hamiltonian from a single eigenstate.
 ${ }^{4}$ Anshu, Arunachalam, 2023, A survey on the complexity of learning quantum states.

[^2]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^3]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^4]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^5]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^6]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^7]: ${ }^{5}$ Haah, Kothari, O'Donnell, Tang, 2023, Query-optimal estimation of unitary channels in diamond distance.

[^8]: ${ }^{6}$ Granade, Ferrie, Wiebe, Cory, 2012, Robust online Hamiltonian learning.
 ${ }^{7}$ Wiebe, Granade, Ferrie, Cory, 2014, Hamiltonian Learning and Certification Using Quantum Resources.
 ${ }^{8}$ Wang, Paesani, Santagati, et al., 2017, Experimental quantum Hamiltonian learning.
 ${ }^{9}$ Hangleiter, Roth, Eisert, Roushan, 2021, Precise Hamiltonian identification of a superconducting quantum processor.

[^9]: ${ }^{6}$ Granade, Ferrie, Wiebe, Cory, 2012, Robust online Hamiltonian learning.
 ${ }^{7}$ Wiebe, Granade, Ferrie, Cory, 2014, Hamiltonian Learning and Certification Using Quantum Resources.
 ${ }^{8}$ Wang, Paesani, Santagati, et al., 2017, Experimental quantum Hamiltonian learning.
 ${ }^{9}$ Hangleiter, Roth, Eisert, Roushan, 2021, Precise Hamiltonian identification of a superconducting quantum processor.

[^10]: ${ }^{10}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{11}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{12}$ Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
 ${ }^{13}$ Yu, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.

[^11]: ${ }^{10}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{11}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{12}$ Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
 ${ }^{13} \mathrm{Yu}$, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.

[^12]: ${ }^{10}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{11}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{12}$ Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
 ${ }^{13} \mathrm{Yu}$, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.

[^13]: ${ }^{10}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{11}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{12}$ Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
 ${ }^{13}$ Yu, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.

[^14]: ${ }^{10}$ Haah, Kothari, Tang, 2021, Optimal learning of quantum Hamiltonians from high-temperature Gibbs states.
 ${ }^{11}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{12}$ Gu, Cincio, Coles, 2022, Practical Black Box Hamiltonian Learning.
 ${ }^{13}$ Yu, Sun, Han, Yuan, 2022, Robust and Efficient Hamiltonian Learning.

[^15]: ${ }^{14}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
 ${ }^{15}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
 ${ }^{16}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^16]: ${ }^{14}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
 ${ }^{15}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
 ${ }^{16}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^17]: ${ }^{14}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.
 ${ }^{15}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.
 ${ }^{16}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^18]: ${ }^{17}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{18}$ Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
 ${ }^{19}$ Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

[^19]: ${ }^{17}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{18}$ Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
 ${ }^{19}$ Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

[^20]: ${ }^{17}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{18}$ Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
 ${ }^{19}$ Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

[^21]: ${ }^{17}$ Stilck-França, Markovich, Dobrovitski, 2022, Efficient and robust estimation of many-qubit Hamiltonians.
 ${ }^{18}$ Levy, Luo, Clark, 2021, Classical Shadows for Quantum Process Tomography on Near-term Quantum Computers.
 ${ }^{19}$ Kunjummen, Tran, Carney, Taylor, 2021, Shadow process tomography of quantum channels.

[^22]: ${ }^{20}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^23]: ${ }^{20}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^24]: ${ }^{20}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^25]: ${ }^{20}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^26]: ${ }^{21}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^27]: ${ }^{21}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^28]: ${ }^{21}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^29]: ${ }^{21}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^30]: ${ }^{22}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.

[^31]: ${ }^{22}$ Huang, Tong, Fang, Su, 2022, Learning many-body Hamiltonians with Heisenberg-limited scaling.

[^32]: ${ }^{23}$ Campbell, 2018, A random compiler for fast Hamiltonian simulation.

[^33]: ${ }^{23}$ Campbell, 2018, A random compiler for fast Hamiltonian simulation.

[^34]: ${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.

[^35]: ${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.

[^36]: ${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.

[^37]: ${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.

[^38]: ${ }^{24}$ Greene, Kjaergaard, Schwartz, et al., 2021, Error mitigation via stabilizer measurement emulation.

[^39]: ${ }^{25}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^40]: ${ }^{25}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^41]: ${ }^{25}$ Li, Tong, Ni, Gefen, Ying, 2023, Heisenberg-limited Hamiltonian learning for interacting bosons.

[^42]: ${ }^{26}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^43]: ${ }^{26}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^44]: ${ }^{26}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^45]: ${ }^{26}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^46]: ${ }^{26}$ Dutkiewicz, O'Brien, Schuster, 2023, The advantage of quantum control in many-body Hamiltonian learning.

[^47]: ${ }^{27}$ Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.

[^48]: ${ }^{27}$ Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.

[^49]: ${ }^{27}$ Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.

[^50]: ${ }^{27}$ Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.

[^51]: ${ }^{27}$ Zhou, Zhang, Preskill, Jiang, 2018, Achieving the Heisenberg limit in quantum metrology using quantum error correction.

