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State space

 The state of a single-qubit system is described by £,-normalized
vectors |y) = By|0) + B,|1) € C?%, with {]0),|1)} orthonormal and

Bol? + |B1]% = 1.

e If two subsystems are in states [y) and |¢) respectively, then the
joint system is in the tensor product state |Y) & |p).

* More generally, an n-qubit quantum system can be in state
((CZ)(X)n = Z%O,...,Znﬂ:o ﬁzn_l,...,zolzn—1> X - & |zp)

— _ 2n_1q n
T 2;(),...,Zn_l=0 ﬁzn_l,...,Z()lZn—l’ ""Z()) — Z‘)/:O ,Byl]/> E CZ

with ¢,-normalized coefficients.



Quantum circuit model

» Single-qubit operations are unitaries UTU = [ acting on C?:

_fo 1 o —i =1 [1oo
"X"'_{1 0]' _Y_'_[i 0]' £ '_!0 —1]'
T . 1|11 ~ e 0] = 1o
Had|- = & L _1], R() ._[ : ] T} = [0 ]
» n-qubit operations are unitaries acting on C?":
10 0 0]
=veV, = 01 CNOT '
Jv} l 00 =2, b) NN 2 b @ a)
. . _O 0 1 0" ) ) .
* In the circuit model, quantum computation is realized by a

sequence of elementary quantum gates.

« Complexity is usually quantified by the number of gates that
appear in the circuit.



Quantum simulation

Definition: Hamiltonian simulation

Given a description of Hamiltonian H and evolution time t, approximate
et with spectral-norm error < e.
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“... nature isn't classical, dammit, and if you want to make
a simulation of nature, you'd better make it quantum
mechanical, and by golly it's a wonderful problem,
because it doesn't look so easy.”




Toward practical quantum advantage
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[Beverland, Murali, Troyer, Svore, Hoefler, Kliuchnikov, Low, Soeken, Sundaram, Vaschillo, arXiv:2211.07629]



Trotterization

* Also known as “product-formula method” or “splitting method”.

 Target system: H = Z)F,ley, where each H, is Hermitian and can be directly
exponentiated on a quantum computer.

e Can use the first-order Lie-Trotter formula

Sl(t) — e—itHl" ...e_itHl — e—ltH + O(tZ)
with Trotter error 0(t?).

» Formulas of higher order S,(t) = e7"*# + 0(tP*?) exist.

* Long-time evolution can be simulated by repeating short steps.
#Gate = #Step x #Gate/Step.



Trotter error with commutator scaling

* Trotter error has a commutator scaling,” which implies commutator
scaling of the number of Trotter steps:

1/p
#Step = 0 <||H||Ct &= )

1Hlle:= Sy, pp

Dl/(l"*'l)

[HYp+1’ [HYZ’ HY1]]

* One can achieve nearly linear time simulation by using a sufficiently high
order formula: 1/p = 0(1).

*[Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]



Sequential Trotter steps

* Trotter steps can be implemented in a sequential manner.
But the cost inevitably scales with the total Hamiltonian term number T.

* For n-qubit 2-local Hamiltonians,
#Gate/Step ~ T ~ (3) ~ n?, System size ~ n.
» The gap n* vs n becomes larger for k-local systems.

« Can we perform faster Trotter steps with complexity sublinear in the term
number? When and how?



Power-law Hamiltonians

Definition: 1D Power-law Hamiltonians

H = Y1<j<k<nHj, Where H; . are 2-local terms acting nontrivially only on
sites j and k with norm ||H; || < 1/1j — k|* and decay exponent a.

* Many interaction potentials can be expressed as a power-law series

Co C3
v(j, k) = + — +
U k) = IJ—kI |]—k|2 j — k|3

 This models physically relevant systems (trapped ions, Rydberg atoms,
ultracold atoms/molecules, nitrogen-vacancy centers, and superconducting
systems).

* |In particular, we improve the electronic structure Hamiltonian simulation in
real space (@« = 1) over the best previous results.
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Evaluating commutator scaling

* Terms in the power-law Hamiltonians are nonuniform and satisfy certain
commutation relations.

» Cancelling commuting terms, we have
Zjl:kl:jz:kz:jB;RS;---;jp+1;kp+1 [ij+1»kp+1’ [Hj3,k3’ [Hfz;kz’ Hj1;k1- | ] H

=2 Juk1 H [ij+1:kp+1’ [Hj3»k3’ [Hfz:kz’ Hjlrkl]] ‘

J2 or k2€{j1,k1}
Jz or k3€{jy1,k1,j2.k2}

 Furthermore, for a fixed value of j,
(

0(1), a>1,
1
Zj<kSn ”Hj,k” < Zj<k5n —K|a = < O(logn), a =1,
O(n'~%), 1>a>0.
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Exponentiating Pauli strings

* In the computational basis, ZZ has the action
Z7100) = |00), 77101) = —|01),
Z7|10) = —[10), Z7Z|11) = |11).

« Exponentiation of Pauli strings can thus be implemented by computing
parity (and changing basis):

o itZZ _ i _ Had l l Had [
; o itZ AL THad 7

U € \ Had

* Parity trick holds for a general Pauli string:
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Best previous result

* For n-qubit 1D power-law Hamiltonians,

t(nt/e)°®,  a=>1,

#Step ~
P nt~%t(nt/e)°D, 1>a>0.

- Meanwhile, #Gate/Step=0(n?) with the sequential method.

Sequential* nt n3-%t

Complexity of best previous Trotterization of n-qubit power-law Hamiltonians
with decay exponent a for time t and accuracy ¢, neglecting (nt/€)°™® factors.

*[Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]
© Microsoft 2023 On the complexity of implementing Trotter steps
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Our result: Reduced Complexity

* Faster Trotter steps are possible when coefficients in the Hamiltonian have
additional structural properties.

R TN AT AP

Sequential™®

Block encodingt nt n3-%t n3-%
Average-costt — n?-a/2¢ n®/2-a¢
Low-rank® nt nt né- %t

Gate complexity comparison between our Trotterization and the best previous result for n-qubit power-law
Hamiltonians with decay exponent a for time t and accuracy €, neglecting (nt/€)°™® factors.

" [Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]
"[Low, Su, Tong, Tran, On the complexity of implementing Trotter steps, arXiv:2211.09133]
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Our result: Application and Limitation

* In second quantization in real space, Coulomb potential is represented as

o i = Y
X
I—m] IL—m| 2 2

 Application: With a slightly tighter Trotter error bound, we show that
electronic structure can be simulated with gate complexity

(n2/3n4/3 n5/3>n0(1)t1+0(1)

13 T 2/3 co)

with n = #electrons and w = the computational cell volume, giving the
fastest simulation of electronic structure Hamiltonians in real space.

 Limitation: sequential method is optimal if Hamiltonian coefficients
take arbitrary values.
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Block encoding as unitary dilation

* Problem: given matrix H, construct a unitary U such that
_[H *
U= [* *]
* This unitary dilation is mathematically feasible if and only if ||H|| < 1: if H =
VEWT is SVD, then define

g=[V 0 ) —V1 — 132 [WT 0
0 VIlv/1 =12 y 0 wtl
« Assume H = Z)F/=1,5’yUy, where B, > 0 and U, are Hermitian unitaries such

that [0)(0] ® I + |1)(1] ® U, can be directly implemented. Then choosing
1

PREP|0) = =By =1y/Byly), SEL=E,=1lv)rI ® Uy

H
IH|l1

gives ((0|PREPT ® I)SEL(PREP|0) ® I) = —— with ||H||; = X, B,
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Block encoding & quantum simulation

* One can perform quantum simulation by introducing auxiliary qubits and
running quantum algorithms on larger Hilbert spaces.

* Assume H = Y,_1B8,U,, where B, > 0 and U, are Hermitian unitaries such
that [0)(0] ® I + |1)(1] ® U, can be directly implemented.

* Then, perform the following circuit #Step ~||H||t = (3., B,)t

0) -4—— PREP

where PREP|0) =

SEL

i1 Z

T

T

PREPT

X

PREP

1

JVIHI

SEL

PREPT

T

Sy-1y/By ), SEL=X, 1y ® U,

" [Low, Chuang, arXiv:1610.06546]

Bl
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Block encoding cost

 SEL has cost often linear in the system size:

SEL= uzlm, v u,v| @ XY, = (;quul 0 Xu> (;hﬂ)(vl X Yv)»

PREP can be improved correspondingly using structural properties of
the coefficients. So #Gate/Step ~ n.

» However, unlike Trotter, qubitization does not have a commutator scaling

#Step ~ ||H||1t = <z ﬁy) t,
) 4

which completely washes out the improvements from PREP and SEL for
power-law interactions.
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Low-rank diagonalization

* For a Hamiltonian with commuting terms, quantum simulation can be
realized using a diagonalization circuit.

* Suppose H = Y, ,fuvZ,Z, and the coefficient tensor has a singular value
decomposition with rank p

p
,Bu,v — E Uy sOsVy s -
s=1

* Then we can simply compute the diagonal phase factors

. )
e th |Zn; ey Z1> = e_ltzs=1o's(2uﬂu,s(_1)Zu)(zvv”»5(_1)zv) |Zn; cee ) Z1>

with cost ~pn depending on the rank.

« However, the coefficient tensor of a general power-law Hamiltonian does
not have low rank.
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Recursion & the master theorem

* Solve a problem of size n by solving m
subproblems, each of size n/m, and
combining the answers.

» The complexity of recursion can be n 29 L XX
: ,9 .q’-’,. .Q,'. .Q. .9.

P r"- B ot OO SR S R SRRt T P PR SR SR P Y

obtained from the master theorem:*

— m . _ + Q3
COStrec(n) m COStreC (m) T COSt(n) '?!‘?- \-'!’!? 1’!‘!’- *?!‘P
U
costrec(n) = O(cost(n)log(n) + n) v

+
o+

*,
¥ %
A i
AL, e X

" [CLRS, Introduction to Algorithms 22] [Neapolitan, Foundations of Algorithms "14]
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Recursive block encoding

« With a suitable recursion, the number of |
qubitization steps regains the commutator P /.//ﬁ%\mh\ AN

. . . 1 n n
scaling of Trotterization. 2
X 1Y X Y
. . ¢=2. [ SN [ ST
* This can be further improved for small a by r o

simulating commuting terms with an average =~ X.Y X.» X. 1 X ¥

. . 1 n
combination cost. 8
'IJ; [ 3 L ) [ ] L ] » » [ ] L ] 1"; L ] [ ] L ] » [ ] L ] » L ] "n-” -------- V"F --------
]_ [ ] [ ] [ ] [ ] [ ] [ ] [ ] L ] ]_ [ ) [ ] L] [ ] [ ] ] [ ] [ ] ]_ [ ] [ ] [ ] [ ] » [ ] [ ] » ]_ [ ] [ ] [ ] [ ] [ ] [ ] » [ ]
1 N 1 N l Vv | Vi

21



Analysis of Taylor approximation

« Power function f(x,y) =

can be uniformly Taylor approximated, with

Ix—yll%
error determined by size and distance of the regions f acts on.
X Y
Dist(X, V)

& Diam(X)

* Specifically, truncating the Taylor series of d-dimensional power functions
at order m gives®

s ¢ Diam(X0)\"
error: ||f — f”max,Xxy =0 (Dist(X,‘Z/)) , rank: p = 0(m?),

where constant ¢ > 1/2 can be chosen arbitrarily close to "%.

"[Hackbusch, Hierarchical Matrices: Algorithms and Analysis ‘15, Theorem 4.22]
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Recursive low-rank method

* Using the division-by-half strategy, we have

¢ Diam(X) — 0= \/_
Dist(X,Y) ' = 2

9

—0707 ~ = 0.866 ..

l\JIb—\
l\J|<|

Thus, the Taylor error decays exponentially with the truncate order m.
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Simulation in Hamming weight-2 subspace

* If coefficients of a 2-local Hamiltonian have no specific structure, then one
needs Q(n?) gates to simulate with e = Q(1/poly(n)) for t = Q(e).

» We give a gate-efficient reduction: performing diagonal unitaries can be

accomplished by simulating 2-local commuting Hamiltonians in the
Hamming weight-2 subspace.
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* Lower bound then follows from a volume-comparison technique.®

“[Knill, arXiv:quant-ph/9508006]



Summary

« We develop recursive methods to perform Trotter steps using structures of
Hamiltonian coefficients, going beyond the sequential approach.

» #Gate/Step is sublinear in the Hamiltonian term number, while #Step still
maintains the commutator scaling.

* The new result gives the fastest quantum simulation of second-quantized
electronic structure Hamiltonians in real space. Further studies on first-
quantized quantum simulation could be interesting.

« However, Trotter steps are hard to asymptotically improve if Hamiltonian
coefficients are arbitrarily chosen.

e It could be fruitful to further optimize Trotter circuits and error bounds, or
to find applications of product formulas beyond quantum simulation.
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