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State space

• The state of a single-qubit system is described by ℓ2-normalized 

vectors 𝜓 = 𝛽0 0 + 𝛽1 1 ∈ ℂ2, with 0 , |1⟩  orthonormal and

𝛽0
2 + 𝛽1

2 = 1.

• If two subsystems are in states |𝜓⟩ and |𝜙⟩ respectively, then the 

joint system is in the tensor product state 𝜓 ⊗ |𝜙⟩.

• More generally, an 𝑛-qubit quantum system can be in state

ℂ2 ⊗𝑛 ∋ σ𝑧0,…,𝑧𝑛−1=0
1 𝛽𝑧𝑛−1,…,𝑧0

𝑧𝑛−1 ⊗ ⋯ ⊗ 𝑧0  

                 = σ𝑧0,…,𝑧𝑛−1=0
1 𝛽𝑧𝑛−1,…,𝑧0

𝑧𝑛−1, … , 𝑧0 = σ𝛾=0
2𝑛−1 𝛽𝛾|𝛾⟩ ∈ ℂ2𝑛

with ℓ2-normalized coefficients.
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Quantum circuit model

• Single-qubit operations are unitaries 𝑈†𝑈 = 𝐼 acting on ℂ2:

• 𝑛-qubit operations are unitaries acting on ℂ2𝑛
:

• In the circuit model, quantum computation is realized by a 

sequence of elementary quantum gates.

• Complexity is usually quantified by the number of gates that 

appear in the circuit. 4



Quantum simulation

5

Definition: Hamiltonian simulation

Given a description of Hamiltonian 𝐻 and evolution time 𝑡, approximate 

𝑒−𝑖𝑡𝐻 with spectral-norm error ≤ 𝜖.

“… nature isn't classical, dammit, and if you want to make 

a simulation of nature, you'd better make it quantum 

mechanical, and by golly it's a wonderful problem, 

because it doesn't look so easy.”



Toward practical quantum advantage
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[Beverland, Murali, Troyer, Svore, Hoefler, Kliuchnikov, Low, Soeken, Sundaram, Vaschillo, arXiv:2211.07629]



Trotterization

• Also known as “product-formula method” or “splitting method”.

• Target system: 𝐻 = σ𝛾=1
Γ 𝐻𝛾, where each 𝐻𝛾 is Hermitian and can be directly 

exponentiated on a quantum computer.

• Can use the first-order Lie-Trotter formula

𝑆1 𝑡 ≔ 𝑒−𝑖𝑡𝐻Γ ⋯ 𝑒−𝑖𝑡𝐻1 = 𝑒−𝑖𝑡𝐻 + 𝑶(𝒕𝟐)

    with Trotter error 𝑶 𝒕𝟐 .

• Formulas of higher order 𝑆𝑝 𝑡 = 𝑒−𝑖𝑡𝐻 + 𝑂(𝑡𝑝+1) exist.

• Long-time evolution can be simulated by repeating short steps.

#Gate = #Step × #Gate/Step.
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Trotter error with commutator scaling

• Trotter error has a commutator scaling,* which implies commutator 

scaling of the number of Trotter steps:

#Step = 𝒪 𝑯 𝒄𝑡
𝑯 𝒄𝑡

𝜖

1/𝑝
,

𝑯 𝒄: = σ𝜸𝟏,…,𝜸𝒑+𝟏
𝑯𝜸𝒑+𝟏

, … 𝑯𝜸𝟐
, 𝑯𝜸𝟏

𝟏/(𝒑+𝟏)

.

• One can achieve nearly linear time simulation by using a sufficiently high 

order formula: 1/𝑝 = 𝑜 1 .
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* [Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]



Sequential Trotter steps

• Trotter steps can be implemented in a sequential manner. 

But the cost inevitably scales with the total Hamiltonian term number 𝚪.

• For 𝑛-qubit 2-local Hamiltonians,

#Gate/Step ∼ Γ ∼ 𝑛
2

∼ 𝑛2,  System size ∼ 𝑛.

• The gap 𝑛𝜅 vs 𝑛 becomes larger for 𝜅-local systems.

• Can we perform faster Trotter steps with complexity sublinear in the term 

number? When and how?
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Power-law Hamiltonians

• Many interaction potentials can be expressed as a power-law series

𝑣 𝑗, 𝑘 =
𝑐1

𝑗 − 𝑘
+

𝑐2

𝑗 − 𝑘 2
+

𝑐3

𝑗 − 𝑘 3
+ ⋯

• This models physically relevant systems (trapped ions, Rydberg atoms, 

ultracold atoms/molecules, nitrogen-vacancy centers, and superconducting 

systems).

• In particular, we improve the electronic structure Hamiltonian simulation in 

real space (𝛼 = 1) over the best previous results.
10

Definition: 1D Power-law Hamiltonians

𝐻 = σ1≤𝑗<𝑘≤𝑛𝐻𝑗,𝑘, where 𝐻𝑗,𝑘 are 2-local terms acting nontrivially only on 

sites 𝑗 and 𝑘 with norm 𝐻𝑗,𝑘 ≤ 1/ 𝑗 − 𝑘 𝛼 and decay exponent 𝛼.



Evaluating commutator scaling
• Terms in the power-law Hamiltonians are nonuniform and satisfy certain 

commutation relations.

• Cancelling commuting terms, we have

σ𝑗1,𝑘1,𝑗2,𝑘2,𝑗3,𝑘3,…,𝑗𝑝+1,𝑘𝑝+1
𝐻𝑗𝑝+1,𝑘𝑝+1

, … 𝐻𝑗3,𝑘3
, 𝐻𝑗2,𝑘2

, 𝐻𝑗1,𝑘1
 

= σ 𝑗1,𝑘1
𝑗2 𝑜𝑟 𝑘2∈{𝑗1,𝑘1}

𝑗3 𝑜𝑟 𝑘3∈{𝑗1,𝑘1,𝑗2,𝑘2}

𝐻𝑗𝑝+1,𝑘𝑝+1
, … 𝐻𝑗3,𝑘3

, 𝐻𝑗2,𝑘2
, 𝐻𝑗1,𝑘1

.

• Furthermore, for a fixed value of 𝑗,

σ𝑗<𝑘≤𝑛 ‖𝐻𝑗,𝑘‖ ≤ σ𝑗<𝑘≤𝑛
1

𝑗−𝑘 𝛼 = ൞

𝒪 1 ,  𝛼 > 1,
𝒪 log 𝑛 ,  𝛼 = 1,

 𝒪 𝑛1−𝛼 ,  1 > 𝛼 > 0.
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Exponentiating Pauli strings

• In the computational basis, 𝑍𝑍 has the action

𝑍𝑍 00 = 00 ,  𝑍𝑍 01 = − 01 ,

𝑍𝑍 10 = − 10 ,  𝑍𝑍 11 = 11 .

• Exponentiation of Pauli strings can thus be implemented by computing 

parity (and changing basis):

• Parity trick holds for a general Pauli string:
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Best previous result

• For 𝑛-qubit 1D power-law Hamiltonians,

#Step ∼ ൝
𝑡(𝑛𝑡/𝜖)𝑜(1),  𝛼 ≥ 1,

𝑛1−𝛼𝑡(𝑛𝑡/𝜖)𝑜(1),  1 > 𝛼 > 0.
 

• Meanwhile, #Gate/Step=𝒪(𝑛2) with the sequential method.
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Decay

Method
𝜶 ≥ 𝟏 𝟏 > 𝜶 > 𝟎

Sequential* 𝑛2𝑡 𝑛3−𝛼𝑡

* [Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]

Complexity of best previous Trotterization of 𝑛-qubit power-law Hamiltonians 

with decay exponent 𝛼 for time 𝑡 and accuracy 𝜖, neglecting (𝑛𝑡/𝜖)𝑜(1) factors.



Our result: Reduced Complexity
• Faster Trotter steps are possible when coefficients in the Hamiltonian have 

additional structural properties.
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Decay
Method

𝜶 ≥ 𝟐 𝟐 > 𝜶 ≥ 𝟏 𝟏 > 𝜶 > 𝟎

Sequential* 𝑛2𝑡 𝑛2𝑡 𝑛3−𝛼𝑡

Block encoding† 𝑛𝑡 𝑛3−𝛼𝑡 𝑛3−𝛼𝑡

Average-cost† — 𝑛2−𝛼/2𝑡 𝑛5/2−𝛼𝑡

Low-rank† 𝑛𝑡 𝑛𝑡 𝑛2−𝛼𝑡

Gate complexity comparison between our Trotterization and the best previous result for 𝑛-qubit power-law 

Hamiltonians with decay exponent 𝛼 for time 𝑡 and accuracy 𝜖, neglecting (𝑛𝑡/𝜖)𝑜(1) factors.

* [Childs, Su, Tran, Wiebe, Zhu, arXiv:1912.08854]
† [Low, Su, Tong, Tran, On the complexity of implementing Trotter steps, arXiv:2211.09133]



Our result: Application and Limitation
• In second quantization in real space, Coulomb potential is represented as

𝑉 ∝ ෍

𝑙,𝑚

1

𝑙 − 𝑚
𝑁𝑙𝑁𝑚 = ෍

𝑙,𝑚

1

𝑙 − 𝑚

1 − 𝑍𝑙

2

1 − 𝑍𝑚

2
.

• Application: With a slightly tighter Trotter error bound, we show that 

electronic structure can be simulated with gate complexity

𝜂2/3𝑛4/3

𝜔1/3
+

𝑛5/3

𝜔2/3

𝑛𝑜(1)𝑡1+𝑜(1)

𝜖𝑜(1)
,

   with 𝜂 = #electrons and 𝜔 = the computational cell volume, giving the 

   fastest simulation of electronic structure Hamiltonians in real space.

• Limitation: sequential method is optimal if Hamiltonian coefficients 

take arbitrary values.
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Block encoding as unitary dilation

• Problem: given matrix 𝐻, construct a unitary 𝑈 such that

𝑈 =
𝐻 ∗
∗ ∗

. 

• This unitary dilation is mathematically feasible if and only if 𝐻 ≤ 1: if 𝐻 =

𝑉Σ𝑊† is SVD, then define

𝑈 =
𝑉 0
0 𝑉

Σ − 1 − Σ2

1 − Σ2 Σ

𝑊† 0
0 𝑊†

. 

• Assume 𝐻 = σ𝛾=1
Γ 𝛽𝛾𝑈𝛾, where 𝛽𝛾 > 0 and 𝑈𝛾 are Hermitian unitaries such 

that | ⟩0 ۦ |0 ⊗ 𝐼 + | ⟩1 ۦ |1 ⊗ 𝑈𝛾 can be directly implemented. Then choosing

PREP| ⟩0 =
1

𝐻 1
σ𝛾=1

Γ 𝛽𝛾| ⟩𝛾 ,  SEL= σ𝛾=1
Γ | ⟩𝛾 ۦ |𝛾 ⊗ 𝑈𝛾 

gives †PREP|0ۦ ⊗ 𝐼 SEL PREP 0 ⊗ 𝐼 =
𝐻

𝐻 1
 with 𝐻 1 = σ𝛾 𝛽𝛾.
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Block encoding & quantum simulation

• One can perform quantum simulation by introducing auxiliary qubits and 

running quantum algorithms on larger Hilbert spaces.

• Assume 𝐻 = σ𝛾=1
Γ 𝛽𝛾𝑈𝛾, where 𝛽𝛾 > 0 and 𝑈𝛾 are Hermitian unitaries such 

that | ⟩0 ۦ |0 ⊗ 𝐼 + | ⟩1 ۦ |1 ⊗ 𝑈𝛾 can be directly implemented.

• Then, perform the following circuit #Step ~ 𝑯 𝟏𝑡 = (σ𝜸𝜷𝜸)𝑡

    where PREP| ⟩0 =
1

𝐻 1
σ𝛾=1

Γ 𝛽𝛾| ⟩𝛾 ,  SEL= σ𝛾=1
Γ | ⟩𝛾 ۦ |𝛾 ⊗ 𝑈𝛾 .*
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* [Low, Chuang, arXiv:1610.06546]



Block encoding cost

• SEL has cost often linear in the system size:

SEL= ෍

𝑢,𝑣=1

𝑛

| ⟩𝑢, 𝑣 ۦ |𝑢, 𝑣 ⊗ 𝑋𝑢𝑌𝑣 = ෍

𝑢=1

𝑛

| ⟩𝑢 ۦ |𝑢 ⊗ 𝑋𝑢 ෍

𝑣=1

𝑛

| ⟩𝑣 ۦ |𝑣 ⊗ 𝑌𝑣 ,

   PREP can be improved correspondingly using structural properties of 

   the coefficients. So #Gate/Step ∼ 𝒏.

• However, unlike Trotter, qubitization does not have a commutator scaling

#Step ∼ 𝑯 𝟏𝑡 = ෍

𝜸

𝜷𝜸 𝑡,

which completely washes out the improvements from PREP and SEL for 

power-law interactions.
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Low-rank diagonalization

• For a Hamiltonian with commuting terms, quantum simulation can be 

realized using a diagonalization circuit.

• Suppose 𝐻 = σ𝑢,𝑣𝛽𝑢,𝑣𝑍𝑢𝑍𝑣 and the coefficient tensor has a singular value 

decomposition with rank 𝜌

𝛽𝑢,𝑣 = ෍

𝑠=1

𝜌

𝜇𝑢,𝑠𝜎𝑠𝜈𝑣,𝑠 .

• Then we can simply compute the diagonal phase factors

𝑒−𝑖𝑡𝐻| ⟩𝑧𝑛, … , 𝑧1 = 𝑒−𝑖𝑡σ𝑠=1
𝜌

𝜎𝑠 σ𝑢𝜇𝑢,𝑠(−1)𝑧𝑢 σ𝑣𝜈𝑣,𝑠(−1)𝑧𝑣 | ⟩𝑧𝑛, … , 𝑧1

   with cost ~𝝆𝒏 depending on the rank.

• However, the coefficient tensor of a general power-law Hamiltonian does 

not have low rank.
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Recursion & the master theorem

• Solve a problem of size 𝑛 by solving 𝒎 

subproblems, each of size 𝒏/𝒎, and 

combining the answers.

• The complexity of recursion can be 

obtained from the master theorem:*

costrec 𝑛 = 𝑚 ⋅ costrec
𝑛

𝑚
+ cost 𝑛

⇓

costrec 𝒏 = 𝒪 cost 𝒏 log 𝑛 + 𝑛

20

* [CLRS, Introduction to Algorithms '22] [Neapolitan, Foundations of Algorithms '14]



Recursive block encoding

• With a suitable recursion, the number of 

qubitization steps regains the commutator 

scaling of Trotterization.

• This can be further improved for small 𝛼 by 

simulating commuting terms with an average 

combination cost.
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Analysis of Taylor approximation
• Power function 𝑓 𝑥, 𝑦 =

1

𝑥−𝑦 𝛼 can be uniformly Taylor approximated, with 

error determined by size and distance of the regions 𝑓 acts on.

• Specifically, truncating the Taylor series of 𝑑-dimensional power functions 

at order 𝑚 gives*

error: 𝑓 − ሚ𝑓
max,𝒳×𝒴

= 𝒪
𝑐 Diam 𝒳

Dist 𝒳, 𝒴

𝑚

,  rank: 𝜌 = 𝒪 𝑚𝑑 ,

where constant 𝑐 > 1/2 can be chosen arbitrarily close to ½. 
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Dist(𝒳, 𝒴)

𝒳 𝒴

Diam(𝒳)

*[Hackbusch, Hierarchical Matrices: Algorithms and Analysis ’15, Theorem 4.22]



Recursive low-rank method

• Using the division-by-half strategy, we have

Thus, the Taylor error decays exponentially with the truncate order 𝑚.

23

Dimensions 𝒅 = 𝟏 𝒅 = 𝟐 𝒅 = 𝟑

𝑐 Diam 𝒳

Dist 𝒳, 𝒴
≈

1

2
= 0.5 ≈

2

2
= 0.707 … ≈

3

2
= 0.866 …



Simulation in Hamming weight-2 subspace

• If coefficients of a 2-local Hamiltonian have no specific structure, then one 

needs Ω 𝑛2  gates to simulate with 𝜖 = Ω(1/poly(𝑛)) for 𝑡 = Ω 𝜖 .

• We give a gate-efficient reduction: performing diagonal unitaries can be 

accomplished by simulating 𝟐-local commuting Hamiltonians in the 

Hamming weight-2 subspace.

• Lower bound then follows from a volume-comparison technique.*

24

*[Knill, arXiv:quant-ph/9508006]



Summary

• We develop recursive methods to perform Trotter steps using structures of 

Hamiltonian coefficients, going beyond the sequential approach.

• #Gate/Step is sublinear in the Hamiltonian term number, while #Step still 

maintains the commutator scaling.

• The new result gives the fastest quantum simulation of second-quantized 

electronic structure Hamiltonians in real space. Further studies on first-

quantized quantum simulation could be interesting.

• However, Trotter steps are hard to asymptotically improve if Hamiltonian 

coefficients are arbitrarily chosen.

• It could be fruitful to further optimize Trotter circuits and error bounds, or 

to find applications of product formulas beyond quantum simulation.
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