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Open quantum systems

▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment

▶ Early proposal: simulate both system and environment on a quantum computer
▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98

▶ Very resource intensive: many qubits are devoted to environment simulation
▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits

▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions

▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Open quantum systems
▶ We have a (small) quantum system that is coupled to a (large) environment
▶ Early proposal: simulate both system and environment on a quantum computer

▶ See Terhal, DiVincenzo ’98
▶ Very resource intensive: many qubits are devoted to environment simulation

▶ We would like to only simulate what happens with system qubits
▶ Idea – describe effective dynamics using Lindbladian Master equation:

dρ
dt

= −i[H, ρ]︸  ︷︷  ︸
coherent part

(Schrödinger equation)

+
m∑

j=0

transition︷  ︸︸  ︷
L j[ρ]L

†

j −

decay︷      ︸︸      ︷
1

2
{L†j L j, ρ}︸                         ︷︷                         ︸

dissipative part

=: L[ρ]

L j-s describe infinitesimal quantum transitions
▶ After time t the induced channel is the superoperator

exp(tL[·])

2 / 1



Classical counterpart: continuous-time Markov chains
Continuous-time Markov chains

▶ We have a continuous-time Markov chain with generator L

▶ The off-diagonal entries of L are the (non-negative) jump rates
▶ The diagonal entry is minus the sum of the off-diagonal elements in the column
▶ I.e., L is the Laplacian of a weighted directed graph

▶ After time t the Markov transition matrix is exp(tL)

(Do not confuse the Laplacian L with the Lindblad operators L j.)
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New generic input model

Block-encoding of a Lindbladian

Given a purely dissipative Lindbladian

L[ρ] :=
∑
j∈J

(
L jρL

†

j −
1

2
L†j L jρ −

1

2
ρL†j L j

)
,

we say that a unitary matrix is a block-encoding of the Lindblad operators {L j}j∈J if

(
〈
0b
∣∣∣ ⊗ I) · ·(

∣∣∣0c〉 ⊗ I) =
∑
j∈J

|j⟩ ⊗ L j for b , c ∈ N.

▶ In principle a block-encoding exists if

∥∥∥∥∥∥∥
m∑

j=0

L†j L j

∥∥∥∥∥∥∥ ≤ 1

▶ Prior methods depended on
∑m

j=0

∥∥∥∥L†j L j

∥∥∥∥ ≤ 1
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Weak measurement scheme for Lindbladians

Block-encoding of Lindblad generators

We say that the unitary U is a block encoding of the purely irreversible generator L
consisting of Lindblad operators L j if (

〈
0b
∣∣∣ ⊗ I)U(|0a⟩ ⊗ I) =

∑m
j=0 |j⟩ ⊗ L j.

19

|0⟩ Yδ

discard / reset
∣∣0b
〉

U U†
∣∣0c−b

〉

ρ ≈ eδL[ρ]

Figure 3. Quantum circuit implementation of an approximate δ-time step via a weak measurement scheme.a
a The scheme can be extended to general Lindbladians that include the coherence term −i[H, ρ] by applying O(δ2)-precise

Hamiltonian time-evolution for time δ on the system register before the above circuit is applied. For example, one could use
Trotterized time-evolution. (In case ∥H∥ > 1, the entire Lindbladian should be first scaled down by a factor of ∥H∥.)

Theorem III.1 (Weak-measurement for incoherent Lindbladian simulation). Suppose U is a block-encoding of
the purely irreversible Lindbladian L as in Definition I.2. We can simulate the action of the superoperator etL to
precision ϵ in diamond norm using

c+ 1 (resettable) ancilla qubits,
O
(
t2/ϵ

)
(controlled) uses of U ,U †,

and O
(
(b+ 1)t2/ϵ

)
other two-qubit gates.

Proof. We can simulate an approximate δ-time step by L using the following weak-measurement scheme displayed
in Figure 3.

1. Apply U .

2. Append an ancilla qubit in state |0⟩ and rotate it with angle arcsin
√
δ controlled on the

∣∣0b
〉

state (indicating
the successful application of a jump).

3. Apply U † controlled on the ancilla qubit being 0.

4. Measure and discard all but the system register.

Assuming the system register is in the pure state |ψ⟩, this circuit C acts as follows:

|0⟩ · |0c⟩|ψ⟩ (1)→ |0⟩ ·U |0c⟩|ψ⟩
(2)→
(√

1− δ|0⟩+
√
δ|1⟩

)
·
(
|0b⟩⟨0b| ⊗ I

)
U |0c⟩|ψ⟩ + |0⟩ · (I − |0b⟩⟨0b| ⊗ I)U |0c⟩|ψ⟩

= |0⟩ ·U |0c⟩|ψ⟩ +
√
δ|1⟩ ·

∣∣0b
〉
(
〈
0b
∣∣⊗ I)U |0c⟩|ψ⟩︸ ︷︷ ︸
|ψ′

0⟩:=
− (1−

√
1− δ)|0⟩ ·

(
|0b⟩⟨0b| ⊗ I

)
U |0c⟩|ψ⟩

(3)→ |0⟩ · |0c⟩|ψ⟩ +
√
δ|1⟩ ·

∣∣0b
〉
|ψ′

0⟩ − (1−
√

1− δ)|0⟩ ·U †(|0b⟩⟨0b| ⊗ I
)
U |0c⟩|ψ⟩

= |0⟩ · |0c⟩|ψ⟩ +
√
δ|1⟩ ·

∣∣0b
〉
|ψ′

0⟩ − (1−
√

1− δ)|0⟩ · |0c⟩(⟨0c| ⊗ I)U †(
∣∣0b
〉
⊗ I) · (

〈
0b
∣∣⊗ I)U |0c⟩|ψ⟩

− (1−
√

1− δ)|0⟩ · (I − |0c⟩⟨0c| ⊗ I)U †(|0b⟩⟨0b| ⊗ I
)
U |0c⟩|ψ⟩

= |0⟩ · |0c⟩


I − (1−

√
1− δ)︸ ︷︷ ︸

δ
2 +O(δ2)

∑

j∈J
L†
jLj


|ψ⟩+

√
δ|1⟩ ·

∣∣0b
〉∑

j∈J
|j⟩Lj |ψ⟩ − (1−

√
1− δ)︸ ︷︷ ︸

δ
2 +O(δ2)

|0⟩ · |0c ⊥⟩, (3.2)

where |0c ⊥⟩ is some quantum state such that ∥|0c ⊥⟩∥ ≤ 1 and (⟨0c| ⊗ I) · |0c ⊥⟩ = 0. Tracing out the first a+ 1
qubits we get that the resulting state is O

(
δ2)-close to the desired state. Indeed, let |ψ′⟩ denote the final state

above in (3.2); we now show that

∥(I + δL)[|ψ⟩⟨ψ|]− Trc+1[|ψ′⟩⟨ψ′|]∥1 = O
(
δ2) (3.3)

Here Yδ = e−i arcsin
√
δY for the Pauli-Y gate.
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|0⟩ Yδ

discard / reset
∣∣0b
〉

U U†
∣∣0c−b

〉

ρ ≈ eδL[ρ]

Figure 3. Quantum circuit implementation of an approximate δ-time step via a weak measurement scheme.a
a The scheme can be extended to general Lindbladians that include the coherence term −i[H, ρ] by applying O(δ2)-precise

Hamiltonian time-evolution for time δ on the system register before the above circuit is applied. For example, one could use
Trotterized time-evolution. (In case ∥H∥ > 1, the entire Lindbladian should be first scaled down by a factor of ∥H∥.)

Theorem III.1 (Weak-measurement for incoherent Lindbladian simulation). Suppose U is a block-encoding of
the purely irreversible Lindbladian L as in Definition I.2. We can simulate the action of the superoperator etL to
precision ϵ in diamond norm using

c+ 1 (resettable) ancilla qubits,
O
(
t2/ϵ

)
(controlled) uses of U ,U †,

and O
(
(b+ 1)t2/ϵ

)
other two-qubit gates.

Proof. We can simulate an approximate δ-time step by L using the following weak-measurement scheme displayed
in Figure 3.

1. Apply U .
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√
δ controlled on the

∣∣0b
〉

state (indicating
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〉
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〈
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√
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where |0c ⊥⟩ is some quantum state such that ∥|0c ⊥⟩∥ ≤ 1 and (⟨0c| ⊗ I) · |0c ⊥⟩ = 0. Tracing out the first a+ 1
qubits we get that the resulting state is O

(
δ2)-close to the desired state. Indeed, let |ψ′⟩ denote the final state

above in (3.2); we now show that

∥(I + δL)[|ψ⟩⟨ψ|]− Trc+1[|ψ′⟩⟨ψ′|]∥1 = O
(
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Simulation uses quantum Zeno-like effect

Combine with "compression" cf. "Efficient quantum algorithms for simulating Lindblad
evolution" by Richard Cleve, Chunhao Wang (2017)

71

|0⟩ Yδ
Y †

δ
4

accept the all-zero outcome
and when the second qubit is 1

|0⟩

∣∣0b
〉

U U†
∣∣0a−b

〉

ρ = (1 − δ
4 )eδL[ρ] + O

(
δ2)

Figure 10. Alternative quantum circuit implementation of an approximate δ-time step via a postselective weak measurement
scheme. Let C′ be the circuit that we get by removing the two single qubit rotation gates Yδ, Y †

δ/4 from the first qubit. For
our compression argument it is of paramount importance that C′ · |0a+2⟩⟨0a+2| ⊗ I = |0a+2⟩⟨0a+2| ⊗ I.

|0⟩
∣∣0c+1〉

|0⟩
∣∣0c+1〉

|0⟩
∣∣0c+1〉

ρ

Yδ

... . .
.

Yδ

Yδ

C′

C′

C′

C′

C′

Y †
δ/4

...

Y †
δ/4

Y †
δ/4

accept the all-zero outcome
and when the second qubit is 1

accept the all-zero outcome
and when the second qubit is 1

accept the all-zero outcome
and when the second qubit is 1

= (1 − δ
4 )rerδL[ρ] + O

(
rδ2)

Figure 11. r subsequent repetitions of the circuit C′ from Figure 10. The circuits C′ act on potentially non-adjacent qubits,
which is indicated by the vertical curly connection between the visually split “halves” of the affected C′ circuits.

(√
1− δ|0⟩+

√
δ|1⟩

)⊗r
is greater than h := (1 + y)t is at most eh−tth

hh ≤ ( eth )h ≤ ( 2e
h )h. In particular, choosing

h = Θ
(

log(1/ϵ)
log log(1/ϵ)

)

ensures that this probability is at most O
(
ϵ2
)
. Therefore, the initial state can be replaced by its (normalized)

projection |ϕ0⟩ to the subspace of Hamming-weight ≤ h states while inflicting error that is bounded by

∥Y ⊗r
δ |0r⟩ − |ϕ0⟩∥ ≤ ϵ.

This bound on Hamming-weights translates into a reduction of applications of the circuit C ′. Since |ϕ0⟩ is a
superposition of bitstrings of Hamming-weights at most h, in all branches of the superposition all but h applications
of C ′ can be neglected, crucially because it acts trivially when the ancilla register is in state

∣∣0a+2〉:

C ′ · |0a+2⟩⟨0a+2| ⊗ I = |0a+2⟩⟨0a+2| ⊗ I. (F1)

Now we define a compression scheme for the r ancilla registers, each containing (a + 2) qubits47 in Figure 11,
inspired by [BCG14, CW17]. The compression scheme can represent the ≤ h Hamming-weight states of the ancilla
registers on just h · (log(r + 1) + a + 2) qubits (with respect to the r registers to be compressed, by Hamming
weight, we mean the number of registers that do not contain the state

∣∣0a+2〉). Marking the register state
∣∣0a+2〉

by 0· and the content of the i-th non-zero register by di the encoding works as follows:
(
{0, 1}a+2)r ∋ 0·s1d10·s2d2 . . .→ (s1, s2, . . .)× (d1, d2, . . .) ∈ {0, 1, 2, . . . , r}h ×

(
{0, 1}a+2)h. (F2)

47 Note that the first qubit is redundant in this encoding, but we add it here for clarity of the presentation.
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Davies generator – simulating thermalization?
▶

LDavies(ρ) =
∑
a∈A

∑
ν∈B

γ(ν)

Aa
νρ(A

a
ν︸   ︷︷   ︸)†

transition rates

−
1

2
((Aa

ν )
†Aa

νρ+ ρ(A
a
ν )
†Aa

ν )︸                             ︷︷                             ︸
decay rates

,
where the quantum mechanical transition rates Aa

ν are defined as

Aa
ν :=

∑
Ei−Ej=ν

PEi A
aPEj for Bohr frequency ν ∈ spec(H) − spec(H) =: B(H),

▶ Folklore knowledge: "unphysical exponential relaxation", etc.
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Simulating Nature = preparing Gibbs states?

▶ Simulating Nature on a quantum computer should be “easy”
▶ Preparing Gibbs states can be QMA-hard!
▶ So Nature might get stuck at local minima ...
▶ "Local minima in quantum systems" by Chi-Fang Chen, Hsin-Yuan Huang, John

Preskill, Leo Zhou Sep 29 2023 arXiv:2309.16596
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Back to first principles
▶ "Coarse graining can beat the rotating-wave approximation in quantum

markovian master equations" Christian Majenz, Tameem Albash, Heinz-Peter
Breuer, and Daniel A. Lidar. Phys. Rev. A, (2013)

▶

Lβ[ρ] :=
∑
a∈A

∫ ∞

−∞

γ(ω)
(
Â

a
(ω)ρÂ

a
(ω)† −

1

2

{
Â

a
(ω)†Â

a
(ω), ρ

})
dω

where γ(ω) = min(1, e−βω) may be the Metropolis weight or the (smoother)
Glauber dynamics weight γ(ω) = (eβω + 1)−1, or something similar and

Â
a
(ω) :∝

∫ T/2

−T/2
e−iωte iHtAae−iHtdt for each a ∈ A and ω ∈ R.
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a
(ω)† −

1

2

{
Â
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Discretization + Operator Fourier transform
▶ We want to turn L to∑

ν

γ(ν)|ν⟩L (ν) where L (ν) =
∑

ψ,ψ′ : ν=Eψ′−Eψ

|ψ′⟩⟨ψ′|L |ψ⟩⟨ψ|

▶ (Flat) Operator Fourier transform:

T/2∑
t=−T/2

1

T
|t⟩︸      ︷︷      ︸

flat weights

L →
∑

t

1

T
|t⟩exp(iHt)L exp(−iHt)︸                    ︷︷                    ︸∑

ν exp(iνt)L(ν)

→
∑
ν

∑
w

f̂(w − ν)|w⟩︸             ︷︷             ︸
peak at ν

L (ν)

(Show figure from paper block-encoding the jumps.)
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Block-encoding the Lindblad operators via quantum operator Fourier transform:

24

|0⟩ Y1−γ(ω̄) |0⟩

∣∣0̄
〉

P rep QFT |ω̄⟩

∣∣0b
〉

Vjp

∣∣0b
〉

∣∣0c−b
〉

|a⟩

ρ e−iH t̄ eiH t̄ γ(ω̄)Âa(ω̄)ρÂa(ω̄)†

Figure 4. Circuit U for block-encoding the Lindbladian. Practically, if we use the simpler weak-measurement-based
simulation (Theorem III.1), then by Corollary III.1, we can use a single randomly chosen Lindblad operator Aa at a time.
Moreover, if Aa is unitary, we can simply replace Vjump with Aa, implying b = c = 0, i.e., the third and the forth registers
can be omitted, thus n + ⌈log(N)⌉ + 2 qubits suffice to simulate the Lindbladian eLt

.

The operators Aa need not be self-adjoint nor proportional to a unitary. Still, one may conveniently choose√
|A|Aa to be unitary for all a ∈ A, (e.g., few-body unitary operators). Then, we can set b = 0 and choose

Vjump =
(∑

a∈A
|a⟩⟨a| ⊗Aa

)
· (B ⊗ Isys) where B|0c⟩ =

∑

a∈A

|a⟩√
|A|

. (3.8)

Note that implementing the Lindbladian does not require the set of jump operators to contain the adjoints
{Aa : a ∈ A} = {Aa† : a ∈ A}; this assumption is only used for the fixed point correctness (Theorem I.3).

• Controlled Hamiltonian simulation
∑

t̄∈St0

|t̄⟩⟨t̄| ⊗ e±it̄H .

• Quantum Fourier Transform

QF TN :
∣∣t̄
〉
→ 1√

N

∑

ω̄∈Sω0

e−iω̄t̄|ω̄⟩.

• State preparation unitary for the Fourier transform weights, acting on the frequency register

P repf such that P repf
∣∣0̄
〉

= |f⟩.

Naturally, the weight f(t̄) as amplitudes of a state is normalized
∑

t̄∈St0

∣∣f(t̄)
∣∣2 = 1.

It could be, e.g., an easily preparable step function or a Gaussian whose tail decays rapidly. Gaussian states
are attractive because they are relatively easy to prepare [MGB22], but as a matter of fact, any other so-called
window function could be used, such as the Kaiser-window [BSG+22, MGB22] potentially providing further
constant factor improvements.

• Controlled filter for the Boltzmann factors acting on the frequency register and the Boltzmann weight register

W :=
∑

ω̄∈Sω0

Y1−γ(ω̄) ⊗ |ω̄⟩⟨ω̄| where 0 ≤ γ(ω̄) ≤ 1 and γ(ω̄) = γ(−ω̄)e−βω̄.

The constraint 0 ≤ γ(ω̄) ≤ 1 ensures the matrix Y1−γ(ω̄) is unitary; the symmetry (i.e., the KMS condition)
γ(ω̄) = γ(−ω̄)e−βω̄ gives lower weights for “heating” transitions and is closely related to the detailed balance
condition. Important examples of weight functions are

(Metropolis) γ(ω̄) = min(1, e−βω̄) and (Glauber) γ(ω̄) = 1
eβω̄ + 1 ,
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A coherent Szegedy quantum walk type variant
▶ (Discretized) discriminant proxy∑

a∈A

∫ √
γ(ω)γ(−ω)Â

a
(ω) ⊗ Â

a∗
(ω) −

γ(ω)

2

(
Aa(ω)†Â

a
(ω) ⊗ I + I ⊗ Â

a
(ω)†∗Â

a
(ω)∗
)

dω

▶ If the mixing time is sufficiently short then provides access to (approximately) the
following specific purification of the Gibbs state∣∣∣√ρβ〉 ∝∑

i

e−βEi/2|ψi⟩ ⊗
∣∣∣ψ∗i 〉 where H =

∑
i

Ei |ψi⟩⟨ψi |
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Open questions
▶ In which (physical) systems can we expect rapid convergence?

▶ How to bound the gap of the generator?

▶ How noise resilient is this algorithm?

▶ Finally a quadratic improvement for carbon capture?
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