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L] = ,ZJ:( pL = SLiLip - SpL] L)

we say that a unitary matrix is a block-encoding of the Lindblad operators {L }c, if

((0°|@n--(joyel) = > lpeL; for b,ceN.
jed

m

>oLL

j=0

> Prior methods depended on ZIZOHL;L/H <1

> In principle a block-encoding exists if <1




We say that the unitary U is a block encoding of the purely irreversible generator £
consisting of Lindblad operators L; if (<Ob| @ NU(0Hel) =X ) ®L;

Here Y; = e '2rsin VoY for the Pauli-Y gate.



1. Apply U.

2. Append an ancilla qubit in state |0) and rotate it with angle arcsin V6 controlled on the ‘0”) state (indicating
the successful application of a jump).

3. Apply UT controlled on the ancilla qubit being 0.

4. Measure and discard all but the system register.
Assuming the system register is in the pure state [1), this circuit C acts as follows:

10y - 109 X Jo) - UJo°) )

B (VI=310) + VoI - ("0 @ U0+ [0) - (I~ [0")0"| & D)U0%) )
=10)- U09)g) + V1) |00 @ DUIOA) — (1= VI=0)[0)- (J0°K0’| & T)U0°) )
B
oy 0wy + VoI - [07)eh) — (1= VI=9)0)- Ut (070" @ DU0e) )
=10)- 10901+ VeI [on)gh) — (1= VI=8)0) - 0°)((0°] @ HUT(|0%) @ ) - (0] & U0 )
— (1= VT=8)l0)- (I = 040 & DU (0°)0"] & DU )

_ L1ne _ — T . b — L1ne
=10)-09) | T = (1 =V1I=8) Y LIL; [[0) + V3[1)-[0°) Y 1) Lylw) = (1= VI=5)[0)-[0° L), (3.2)

JjeJ JjeJ
2+0(52) 2+0(52)
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Simulation uses quantum Zeno-like effect

711



Combine with "compression" cf. "Efficient quantum algorithms for simulating Lindblad
evolution" by Richard Cleve, Chunhao Wang (2017)

accept the all-zero outcome
and when the second qubit is 1

accept the all-zero outcome
and when the second qubit is 1

accept the all-zero outcome
and when the second qubit is 1

_ Q)reréﬁ[p] + O(’I“52)
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Davies generator — simulating thermalization?
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Davies generator — simulating thermalization?

>

1
Lpavies(p ZZ?’ P Aa 2((Aa)TAaP+p(Aa)TAa)

acA veB

transmon rates
decay rates

where the quantum mechanical transition rates A2 are defined as

Z PeA%Pg,  for Bohr frequency v € spec(H) — spec(H) =: B(H),
Ei—Ej=v

» Folklore knowledge: "unphysical exponential relaxation”, etc.
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Simulating Nature = preparing Gibbs states?

» Simulating Nature on a quantum computer should be “easy”
» Preparing Gibbs states can be QMA-hard!
> So Nature might get stuck at local minima ...

> "Local minima in quantum systems" by Chi-Fang Chen, Hsin-Yuan Huang, John
Preskill, Leo Zhou Sep 29 2023 arXiv:2309.16596



Back to first principles

» "Coarse graining can beat the rotating-wave approximation in quantum
markovian master equations" Christian Majenz, Tameem Albash, Heinz-Peter
Breuer, and Daniel A. Lidar. Phys. Rev. A, (2013)
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Back to first principles

» "Coarse graining can beat the rotating-wave approximation in quantum
markovian master equations" Christian Majenz, Tameem Albash, Heinz-Peter
Breuer, and Daniel A. Lidar. Phys. Rev. A, (2013)

EDY [ )& (@A () - 5A" (@) A" (w).p) o

where y(w) = min(1, e#“) may be the Metropolis weight or the (smoother)
Glauber dynamics weight y(w) = (e®“ + 1)7!, or something similar and

T/2 ) ; )
A’ (w) :ocf e “teMA2e Mgt foreach aeA and weR.
—T/2



Discretization + Operator Fourier transform
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Discretization + Operator Fourier transform

» We want to turn L to

DyMLY) where L0 = 3 Xy LKy

vy v=E,—E,
» (Flat) Operator Fourier transform:

T/2

1 1 .

=|HL —|tyexp(iHt)L exp(—iHt f(w — L®
t;/sz _’ZT' Yexp(iHt)L exp(—i )HZJ; (W = v)|w)
:_\,__./ >, exp(ivt)L() _—
flat weights peak at v

(Show figure from paper block-encoding the jumps.)
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Block-encoding the Lindblad operators via quantum operator Fourier transform:

|0) Yi y@) —10)

|(_)> = Prep QFT =)

0%) o)
Oc7b> ‘/}p ‘(Z>

= = oHE (@) A% (@)pA* (@)
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A coherent Szegedy quantum walk type variant
» (Discretized) discriminant proxy

> f )y (-0)A%(w)® A% (w) - @(Aa(w)ma(w) ®1+189A%(w)"A%(w)") dw

aceA

» If the mixing time is sufficiently short then provides access to (approximately) the
following specific purification of the Gibbs state

|Vos) < D e iy e

wj) where H= ) Eluui
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» Finally a quadratic improvement for carbon capture?
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