Quantum algorithmic tools for simulating open quantum systems

András Gilyén
Alfréd Rényi Institute of Mathematics

joint work with
Anthony (Chi-Fang) Chen, Michael Kastoryano, and Fernando Brandão

CQCWS1, IPAM, UCLA, CA, US 4th October 2023

CAUTION

Open quantum systems

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation
- We would like to only simulate what happens with system qubits

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation
- We would like to only simulate what happens with system qubits
- Idea - describe effective dynamics using Lindbladian Master equation:

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation
- We would like to only simulate what happens with system qubits
- Idea - describe effective dynamics using Lindbladian Master equation:

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { conherent part } \\ \text { (Schrodonger onlaion) }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L_{j}^{\dagger}}^{\text {transition }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation
- We would like to only simulate what happens with system qubits
- Idea - describe effective dynamics using Lindbladian Master equation:

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { conherent part } \\ \text { (Schrodonger onlaion) }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L_{j}^{\dagger}}^{\text {transition }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

$L_{j}-$ s describe infinitesimal quantum transitions

Open quantum systems

- We have a (small) quantum system that is coupled to a (large) environment
- Early proposal: simulate both system and environment on a quantum computer
- See Terhal, DiVincenzo '98
- Very resource intensive: many qubits are devoted to environment simulation
- We would like to only simulate what happens with system qubits
- Idea - describe effective dynamics using Lindbladian Master equation:

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { conherent part } \\ \text { (sennodinger culution) }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L L_{j}^{\dagger}}^{\text {transilion }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

L_{j}-s describe infinitesimal quantum transitions

- After time t the induced channel is the superoperator

$$
\exp (t \mathcal{L}[\cdot])
$$

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
- l.e., L is the Laplacian of a weighted directed graph

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
- I.e., L is the Laplacian of a weighted directed graph
- After time t the Markov transition matrix is $\exp (t L)$

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
- I.e., L is the Laplacian of a weighted directed graph
- After time t the Markov transition matrix is $\exp (t L)$

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
- I.e., L is the Laplacian of a weighted directed graph
- After time t the Markov transition matrix is $\exp (t L)$
(Do not confuse the Laplacian L with the Lindblad operators L_{j}.)

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { conerent part } \\ \text { (schiodinger equition) }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L_{j}^{\dagger}}^{\text {transition }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
$>$ I.e., L is the Laplacian of a weighted directed graph
- After time t the Markov transition matrix is $\exp (t L)$
(Do not confuse the Laplacian L with the Lindblad operators L_{j}.)

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { conherent part } \\ \text { (scrindongore cultion) }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L_{j}^{\dagger}}^{\text {transiion }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

L_{j}-s describe infinitesimal quantum transitions

Classical counterpart: continuous-time Markov chains

Continuous-time Markov chains

- We have a continuous-time Markov chain with generator L
- The off-diagonal entries of L are the (non-negative) jump rates
- The diagonal entry is minus the sum of the off-diagonal elements in the column
$>$ I.e., L is the Laplacian of a weighted directed graph
- After time t the Markov transition matrix is $\exp (t L)$
(Do not confuse the Laplacian L with the Lindblad operators L_{j}.)

$$
\frac{d \rho}{d t}=\underbrace{-i[H, \rho]}_{\substack{\text { concerent } \\ \text { (scrindongoner enationtion }}}+\underbrace{\sum_{j=0}^{m} \overbrace{L_{j}[\rho] L_{j}^{\dagger}}^{\text {transition }}-\overbrace{\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}}^{\text {decay }}}_{\text {dissipative part }}=: \mathcal{L}[\rho]
$$

L_{j}-s describe infinitesimal quantum transitions After time t the induced channel is the superoperator $\exp (t \mathcal{L}[\cdot])$

New generic input model

Block-encoding of a Lindbladian

Given a purely dissipative Lindbladian

$$
\mathcal{L}[\rho]:=\sum_{j \in J}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j} \rho-\frac{1}{2} \rho \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j}\right),
$$

we say that a unitary matrix is a block-encoding of the Lindblad operators $\left\{L_{j}\right\}_{j \in J}$ if

$$
\left(\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \cdots\left(\left|0^{c}\right\rangle \otimes \boldsymbol{I}\right)=\sum_{j \in J}|j\rangle \otimes \boldsymbol{L}_{j} \quad \text { for } \quad b, c \in \mathbb{N} .
$$

New generic input model

Block-encoding of a Lindbladian

Given a purely dissipative Lindbladian

$$
\mathcal{L}[\rho]:=\sum_{j \in J}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2} L_{j}^{\dagger} L_{j} \rho-\frac{1}{2} \rho L_{j}^{\dagger} L_{j}\right),
$$

we say that a unitary matrix is a block-encoding of the Lindblad operators $\left\{\boldsymbol{L}_{j}\right\}_{j \in J}$ if

$$
\left(\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \cdots\left(\left|0^{c}\right\rangle \otimes \boldsymbol{I}\right)=\sum_{j \in J}|j\rangle \otimes \boldsymbol{L}_{j} \quad \text { for } \quad b, c \in \mathbb{N} .
$$

- In principle a block-encoding exists if $\left\|\sum_{j=0}^{m} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j}\right\| \leq 1$

New generic input model

Block-encoding of a Lindbladian

Given a purely dissipative Lindbladian

$$
\mathcal{L}[\rho]:=\sum_{j \in J}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2} L_{j}^{\dagger} L_{j} \rho-\frac{1}{2} \rho L_{j}^{\dagger} L_{j}\right),
$$

we say that a unitary matrix is a block-encoding of the Lindblad operators $\left\{L_{j}\right\}_{j \in J}$ if

$$
\left(\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \cdots\left(\left|0^{c}\right\rangle \otimes \boldsymbol{I}\right)=\sum_{j \in J}|j\rangle \otimes \boldsymbol{L}_{j} \quad \text { for } \quad b, c \in \mathbb{N} .
$$

- In principle a block-encoding exists if $\left\|\sum_{j=0}^{m} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j}\right\| \leq 1$
- Prior methods depended on $\sum_{j=0}^{m}\left\|\boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j}\right\| \leq 1$

Weak measurement scheme for Lindbladians

Block-encoding of Lindblad generators

We say that the unitary U is a block encoding of the purely irreversible generator \mathcal{L} consisting of Lindblad operators L_{j} if $\left(\left\langle 0^{b}\right| \otimes I\right) U\left(\left|0^{a}\right\rangle \otimes I\right)=\sum_{j=0}^{m}|j\rangle \otimes L_{j}$.

Here $Y_{\delta}=e^{-i \arcsin \sqrt{\delta} Y}$ for the Pauli- Y gate.

1. Apply \boldsymbol{U}.
2. Append an ancilla qubit in state $|0\rangle$ and rotate it with angle $\arcsin \sqrt{\delta}$ controlled on the $\left|0^{b}\right\rangle$ state (indicating the successful application of a jump).
3. Apply \boldsymbol{U}^{\dagger} controlled on the ancilla qubit being 0 .
4. Measure and discard all but the system register.

Assuming the system register is in the pure state $|\psi\rangle$, this circuit \boldsymbol{C} acts as follows:

$$
\begin{aligned}
&|0\rangle \cdot\left|0^{c}\right\rangle|\psi\rangle \stackrel{(1)}{\rightarrow}|0\rangle \cdot \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
& \xrightarrow{(2)}(\sqrt{1-\delta}|0\rangle+\sqrt{\delta}|1\rangle) \cdot\left(\left|0^{b}\right\rangle\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle+|0\rangle \cdot\left(\boldsymbol{I}-\left|0^{b}\right\rangle\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
&=|0\rangle \cdot \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle+\sqrt{\delta}|1\rangle \cdot\left|0^{b}\right\rangle \underbrace{\left(\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle}_{\left|\psi_{0}^{\prime}\right\rangle:=}-(1-\sqrt{1-\delta})|0\rangle \cdot\left(\left|0^{b}\right\rangle\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
& \stackrel{(3)}{\rightarrow}|0\rangle \cdot\left|0^{c}\right\rangle|\psi\rangle+\sqrt{\delta}|1\rangle \cdot\left|0^{b}\right\rangle\left|\psi_{0}^{\prime}\right\rangle-(1-\sqrt{1-\delta})|0\rangle \cdot \boldsymbol{U}^{\dagger}\left(\left|0^{b}\right\rangle\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
&=|0\rangle \cdot\left|0^{c}\right\rangle|\psi\rangle+\sqrt{\delta}|1\rangle \cdot\left|0^{b}\right\rangle\left|\psi_{0}^{\prime}\right\rangle \\
&-(1-\sqrt{1-\delta})|0\rangle \cdot\left|0^{c}\right\rangle\left(\left\langle 0^{c}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}^{\dagger}\left(\left|0^{b}\right\rangle \otimes \boldsymbol{I}\right) \cdot\left(\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
&-(1-\sqrt{1-\delta})|0\rangle \cdot\left(\boldsymbol{I}-\left|0^{c}\right\rangle 0^{c} \mid \otimes \boldsymbol{I}\right) \boldsymbol{U}^{\dagger}\left(\left|0^{b}\right\rangle\left\langle 0^{b}\right| \otimes \boldsymbol{I}\right) \boldsymbol{U}\left|0^{c}\right\rangle|\psi\rangle \\
&=|0\rangle \cdot\left|0^{c}\right\rangle(\boldsymbol{I}-\underbrace{(1-\sqrt{1-\delta)}}_{\frac{\delta}{2}+\mathcal{O}\left(\delta^{2}\right)} \sum_{j \in J} \boldsymbol{L}_{j}^{\dagger} \boldsymbol{L}_{j})|\psi\rangle+\sqrt{\delta}|1\rangle \cdot\left|0^{b}\right\rangle \sum_{j \in J}|j\rangle \boldsymbol{L}_{j}|\psi\rangle-\underbrace{(1-\sqrt{1-\delta)}}_{\frac{\delta}{2}+\mathcal{O}\left(\delta^{2}\right)}|0\rangle \cdot\left|0^{c} \perp\right\rangle,(3.2)
\end{aligned}
$$

Simulation uses quantum Zeno-like effect

Simulation uses quantum Zeno-like effect

Combine with "compression" cf. "Efficient quantum algorithms for simulating Lindblad evolution" by Richard Cleve, Chunhao Wang (2017)

Davies generator - simulating thermalization?

$$
\mathcal{L}_{\text {Davies }}(\boldsymbol{\rho})=\sum_{a \in A} \sum_{v \in B} \gamma(v)(\underbrace{\boldsymbol{A}_{v}^{a} \boldsymbol{\rho}\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger}}_{\text {transition rates }}-\underbrace{\frac{1}{2}\left(\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger} \boldsymbol{A}_{v}^{a} \boldsymbol{\rho}+\boldsymbol{\rho}\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger} \boldsymbol{A}_{v}^{a}\right)}_{\text {decay rates }}),
$$

where the quantum mechanical transition rates \boldsymbol{A}_{v}^{a} are defined as

$$
\boldsymbol{A}_{v}^{a}:=\sum_{E_{i}-E_{j}=v} \boldsymbol{P}_{E_{j}} \boldsymbol{A}^{a} \boldsymbol{P}_{E_{j}} \text { for Bohr frequency } v \in \operatorname{spec}(\boldsymbol{H})-\operatorname{spec}(\boldsymbol{H})=: B(\boldsymbol{H}),
$$

Davies generator - simulating thermalization?

$$
\mathcal{L}_{\text {Davies }}(\boldsymbol{\rho})=\sum_{a \in \boldsymbol{A}} \sum_{v \in B} \gamma(v)(\underbrace{\boldsymbol{A}_{v}^{a} \boldsymbol{\rho}\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger}}_{\text {transition rates }}-\underbrace{\frac{1}{2}\left(\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger} \boldsymbol{A}_{v}^{a} \boldsymbol{\rho}+\boldsymbol{\rho}\left(\boldsymbol{A}_{v}^{a}\right)^{\dagger} \boldsymbol{A}_{v}^{a}\right)}_{\text {decay rates }}),
$$

where the quantum mechanical transition rates \boldsymbol{A}_{v}^{a} are defined as

$$
\boldsymbol{A}_{v}^{a}:=\sum_{E_{i}-E_{j}=v} \boldsymbol{P}_{E_{j}} \boldsymbol{A}^{a} \boldsymbol{P}_{E_{j}} \text { for Bohr frequency } v \in \operatorname{spec}(\boldsymbol{H})-\operatorname{spec}(\boldsymbol{H})=: B(\boldsymbol{H}),
$$

- Folklore knowledge: "unphysical exponential relaxation", etc.

Simulating Nature = preparing Gibbs states?

Simulating Nature = preparing Gibbs states?

- Simulating Nature on a quantum computer should be "easy"

Simulating Nature = preparing Gibbs states?

- Simulating Nature on a quantum computer should be "easy"
- Preparing Gibbs states can be QMA-hard!

Simulating Nature = preparing Gibbs states?

- Simulating Nature on a quantum computer should be "easy"
- Preparing Gibbs states can be QMA-hard!
- So Nature might get stuck at local minima ...

Simulating Nature = preparing Gibbs states?

- Simulating Nature on a quantum computer should be "easy"
- Preparing Gibbs states can be QMA-hard!
- So Nature might get stuck at local minima ...
> "Local minima in quantum systems" by Chi-Fang Chen, Hsin-Yuan Huang, John Preskill, Leo Zhou Sep 292023 arXiv:2309.16596

Back to first principles

- "Coarse graining can beat the rotating-wave approximation in quantum markovian master equations" Christian Majenz, Tameem Albash, Heinz-Peter Breuer, and Daniel A. Lidar. Phys. Rev. A, (2013)

Back to first principles

- "Coarse graining can beat the rotating-wave approximation in quantum markovian master equations" Christian Majenz, Tameem Albash, Heinz-Peter Breuer, and Daniel A. Lidar. Phys. Rev. A, (2013)

$$
\mathcal{L}_{\beta}[\boldsymbol{\rho}]:=\sum_{a \in \boldsymbol{A}} \int_{-\infty}^{\infty} \gamma(\omega)\left(\hat{\boldsymbol{A}}^{a}(\omega) \rho \hat{\boldsymbol{A}}^{a}(\omega)^{\dagger}-\frac{1}{2}\left\{\hat{\boldsymbol{A}}^{a}(\omega)^{\dagger} \hat{\boldsymbol{A}}^{a}(\omega), \boldsymbol{\rho}\right\}\right) d \omega
$$

where $\gamma(\omega)=\min \left(1, e^{-\beta \omega}\right)$ may be the Metropolis weight or the (smoother) Glauber dynamics weight $\gamma(\omega)=\left(e^{\beta \omega}+1\right)^{-1}$, or something similar and

$$
\hat{\boldsymbol{A}}^{a}(\omega): \propto \int_{-T / 2}^{T / 2} e^{-i \omega t} e^{i H t} \boldsymbol{A}^{a} e^{-i H t} d t \quad \text { for each } \quad a \in A \quad \text { and } \quad \omega \in \mathbb{R} .
$$

Discretization + Operator Fourier transform

- We want to turn L to

$$
\sum_{v} \gamma(v)|v\rangle \boldsymbol{L}^{(v)} \quad \text { where } \quad \boldsymbol{L}^{(v)}=\sum_{\psi, \psi^{\prime}: v=E_{\psi^{\prime}}-E_{\psi}}\left|\psi^{\prime} X \psi^{\prime}\right| L|\psi\rangle\langle\psi|
$$

Discretization + Operator Fourier transform

- We want to turn L to

$$
\sum_{v} \gamma(v)|v\rangle \boldsymbol{L}^{(v)} \quad \text { where } \quad \boldsymbol{L}^{(v)}=\sum_{\psi, \psi^{\prime}: v=E_{\psi^{\prime}}-E_{\psi}}\left|\psi^{\prime} X \psi^{\prime}\right| L|\psi X\rangle \mid
$$

- (Flat) Operator Fourier transform:

$$
\underbrace{\sum_{t=-T / 2}^{T / 2} \frac{1}{T}|t\rangle \boldsymbol{L}}_{\text {flat weights }} \rightarrow \sum_{t} \frac{1}{T}|t\rangle \underbrace{\exp (i H t) \boldsymbol{L} \exp (-i H t)}_{\sum_{v} \exp (i v t) L^{(v)}} \rightarrow \sum_{v} \underbrace{\sum_{w} \hat{f}(w-v)|w\rangle \boldsymbol{L}^{(v)}}_{\text {peak at } v}
$$

(Show figure from paper block-encoding the jumps.)

Block-encoding the Lindblad operators via quantum operator Fourier transform:

A coherent Szegedy quantum walk type variant

- (Discretized) discriminant proxy

$$
\sum_{a \in A} \int \sqrt{\gamma(\omega) \gamma(-\omega)} \hat{\boldsymbol{A}}^{a}(\omega) \otimes \hat{\boldsymbol{A}}^{a *}(\omega)-\frac{\gamma(\omega)}{2}\left(\boldsymbol{A}^{a}(\omega)^{\dagger} \hat{\boldsymbol{A}}^{a}(\omega) \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \hat{\boldsymbol{A}}^{a}(\omega)^{\psi_{*}} \hat{\boldsymbol{A}}^{a}(\omega)^{*}\right) d \omega
$$

- If the mixing time is sufficiently short then provides access to (approximately) the following specific purification of the Gibbs state

$$
\left|\sqrt{\rho_{\beta}}\right\rangle \propto \sum_{i} e^{-\beta E_{i} / 2}\left|\psi_{i}\right\rangle \otimes\left|\psi_{i}^{*}\right\rangle \quad \text { where } \quad \boldsymbol{H}=\sum_{i} E_{i}\left|\psi_{i} X \psi_{i}\right|
$$

Open questions

- In which (physical) systems can we expect rapid convergence?

Open questions

- In which (physical) systems can we expect rapid convergence?
- How to bound the gap of the generator?

Open questions

- In which (physical) systems can we expect rapid convergence?
- How to bound the gap of the generator?
- How noise resilient is this algorithm?

Open questions

- In which (physical) systems can we expect rapid convergence?
- How to bound the gap of the generator?
- How noise resilient is this algorithm?
- Finally a quadratic improvement for carbon capture?

