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Outline

@ Time-dependent Ham. Sim.

e Quantum Linear Differential Equations Solvers
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Revisit: Summary of Hamiltonian Simulation

@ Hamiltonian simulation: motivation; set-up

@ Expected cost: No-fast-forwarding theorem and BQP-hardness
@ Trotterization

@ truncated Taylor series

@ QSVT

Important take-home message:
QSVT + OAA = Optimal Hamiltonian Simulation
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Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

uapp _ Te—ifo” H(s)ds

<e.

1 [Low-Wiebe 2018]
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Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

Why time-dependent?

uapp _ Te—ifo” H(s)ds <e

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture !

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4/22



Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

Why time-dependent?

uapp _ Te—ifo” H(s)ds

<e.

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture !

H = A+ B and A has a much larger spectral norm.

1 [Low-Wiebe 2018]
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Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

Why time-dependent?

uapp _ Te—ifo” H(s)ds

<e.

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture !

H = A+ B and A has a much larger spectral norm.
Motivation: e.g.,

1
H=—SA+V(@), [Aul> V]
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Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

Why time-dependent?

uapp _ Te—ifo” H(s)ds

<e.

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture !

H = A+ B and A has a much larger spectral norm.

A + 1A = —iBy

Integratin i . .
% elAtatw + lelAtAw _ 71€1AtBQZJ
factor
= 6t(€iAt’l/)) — *i@iAth = _i eiAtBeiiAt 1/}1
—— ——
Y1 Hi(t)

1 [Low-Wiebe 2018]
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Time-dependent Ham. Sim.
[ Jelele]

Time-dependent Hamiltonian Simulation

Why time-dependent?

uapp _ Te—ifo” H(s)ds

<e.

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture !

H = A+ B and A has a much larger spectral norm.

A + 1A = —iBy

Integratin i . .
% elAtatw + lelAtAw _ 71€1AtB¢
factor
= 6t(€iAt’l/)) — *i@iAth = _i eiAtBefiAt 1/}1
—— ——
Y1 Hi(t)

H[(t) = eiAtBefiAt, 1/)[ = eiAt1/1 and ia,ﬂ/)] = Hﬂ/)]

1 [Low-Wiebe 2018]
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Time-dependent Ham. Sim.
0@00

Time-dependent Hamiltonian Simulation

Set-up
H(t) 7€]0,¢

Desire feature: log-dependence on ||0, H (t)||.

2conlinuous gDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]
3[Berry-ChiIds—CIeve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim.
0@00

Time-dependent Hamiltonian Simulation

Set-up
H(t) 7€]0,¢
Desire feature: log-dependence on ||0, H (t)||.

Idea: divide the time-interval into short intervals 0 < 1 < --- <ty = t,
and apply numerical integrators on sub-intervals, followed by OAA.

2conlinuous gDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]
3[Berry-ChiIds—CIeve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim.
0@00

Time-dependent Hamiltonian Simulation

Set-up
H(t) 7€]0,¢

Desire feature: log-dependence on ||0, H (t)||.

Idea: divide the time-interval into short intervals 0 < 1 < --- <ty = t,
and apply numerical integrators on sub-intervals, followed by OAA.
Methods (short-time integrators):
e Trotterization, if H(r) = S.F_, Hy (7). x
@ Randomized methods?, e.g., continuous gDRIFT (sample and
weak convergence) v’

@ LCU + Series truncation 3: truncated Dyson series, rescaled
Dyson series, truncated Magnus series, e.g., qHOP, etc v/

2conlinuous DRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]
3[Berry-Childs—Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim.
[e]e] le]

Time-dependent Hamiltonian Simulation
@ Trotterization: H = H1(t) + Ha(t)

i [rit : -
T@ lftj H(s)ds ~ e*thQ(’Tj)efthl(Tj)’

where 7; € [t;,t;41] are chosen according to Suzuki
construction. The number of unitaries depends on ||0. H (¢)]].
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Time-dependent Ham. Sim.
[e]e] le]

Time-dependent Hamiltonian Simulation
@ Trotterization: H = H1(t) + Ha(t)

i [rit : -
T@ lftj H(s)ds ~ e*thQ(’Tj)efthl(Tj)’

where 7; € [t;,t;41] are chosen according to Suzuki
construction. The number of unitaries depends on ||0. H (¢)]].
1/(p+1)

High-order (p-th) generalization Z [|0F Hj || 4

j=1
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Time-dependent Ham. Sim.
[e]e] le]

Time-dependent Hamiltonian Simulation

@ Trotterization:
- 1/(p+1)
High-order (p-th) generalization Z |0F Hj || 4
j=1
@ Randomized algorithms (first-order accuracy and weak conv)
e.g., continuous gDRIFT, hybridized methods, etc 5

4 [Wiebe-Berry-Hoyer-Sanders 2010]

5[PouIin-C)arrv»Somma-Verstraete 2011]. [Berry-Childs-Su-Wang-Wiebe 2020]. [Rajput-Roggero-Wiebe 2021
Di Fang (Duke) Quantum algorithms for Dynamics Simulation 6/22




Time-dependent Ham. Sim.
[e]e] le]

Time-dependent Hamiltonian Simulation

@ Trotterization:
- 1/(p+1)
High-order (p-th) generalization Z |0F Hj || 4
j=1
@ Randomized algorithms (first-order accuracy and weak conv)
e.g., continuous gDRIFT, hybridized methods, etc 5

5(t7 0) (p) =U(t, O)pUT (t,0)

=T, exp (—i /Ot dr H(r))p’r_> exp t (—i /Ot dr H(T))

H(r)

t H(r)
~U(L0)(p) = / drp(r)e” 70 pe’ v
0

Ll ”H(T)” is a probability density

where p(7) := fririar = AT
function defined for 0 < 7 < t.

4 [Wiebe-Berry-Hoyer-Sanders 2010]

5[PouIin-C)arrv»Somma-Verstraete 2011]. [Berry-Childs-Su-Wang-Wiebe 2020]. [Rajput-Roggero-Wiebe 2021
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Time-dependent Ham. Sim.
[e]e]e] )

Time-dependent Hamiltonian Simulation

@ Series truncation (LCU) based e.g., truncated Dyson series,
rescaled Dyson series, truncated Magnus series, etc. ©

T_>€71 fot H(s)ds

_2(;3” /Otdtn/otdtn_lm/ dty TH(t,)H (ty—1) - H(t1).

t
0

t t to
:I—i/ dtlH(tl)—/ dtz/ dt H(t2)H(t1) + -
0 0 0

6[Berry»ChiIds-CIeve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim.
[e]e]e] )

Time-dependent Hamiltonian Simulation

@ Series truncation (LCU) based e.g., truncated Dyson series,
rescaled Dyson series, truncated Magnus series, etc. ©

T_>€71 fot H(s)ds

]
_7;) - /Odtn/o dtn—1 /Odt1TH(tn)H(tn_1) H(ty).

t t to
:I—i/ dtlH(tl)—/ dtz/ dt H(t2)H(t1) + -
0 0 0

Why? How to derive?
d,U(t,0) = —iH()U(t,0), U(0,0) =1

6[Berry»ChiIds-CIeve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim.
[e]e]e] )

Time-dependent Hamiltonian Simulation

@ Series truncation (LCU) based e.g., truncated Dyson series,
rescaled Dyson series, truncated Magnus series, etc. ©

T_>€71 fot H(s)ds

= 3 (71)’” t ' '
_nz:% — /Odtn/o dty_4 /OdtlTH(tn)H(tn_l) Hity).

t t to
:I—i/ dtlH(tl)—/ dtz/ dt H(t2)H(t1) + -
0 0 0

Why? How to derive?
d,U(t,0) = —iH()U(t,0), U(0,0) =1

U(t0) =1 —i / At H (6D (60,0)
0

I—i/o dtlH(t1)+(—i)2/0 H(tz)dtz/o dt H (1)U (t1,0)



Time-dependent Ham. Sim.
[e]e]e] )

Time-dependent Hamiltonian Simulation

@ Series truncation (LCU) based e.g., truncated Dyson series,
rescaled Dyson series, truncated Magnus series, etc. ©

T_>€71 fot H(s)ds

= 3 (71)’” t ' '
_nz:% — /Odtn/o dty_4 /OdtlTH(tn)H(tn_l) Hity).

t t to
:I—i/ dtlH(tl)—/ dtz/ dt H(t2)H(t1) + -
0 0 0

Why? How to derive?
d,U(t,0) = —iH()U(t,0), U(0,0) =1

U(t0) =1 —i / At H (6D (60,0)
0

I—i/o dtlH(t1)+(—i)2/0 H(tz)dtz/o dt H (1)U (t1,0)

6[Berry»ChiIds-CIeve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Linear Differential Equations
®00000000000000

Part 2: General Linear Differential Equations
(non-unitary dynamics)
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Linear Differential Equations
O®@0000000000000

Outline of Quantum Linear Differential Equation
Solvers

@ Definition of the task
@ Challenges
@ Ways to address

e QSLA + Padding
e Time-marching
e LCHS
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Linear Differential Equations
O0@000000000000

Linear differential equations

% () = A@) |[&(2)) . [#(0)) = |¢o)

Task: To prepare a quantum state that is proportional to the final
solution |4 (T)) with certain precision e.

To prepare a quantum state |¢)(T)) that satisfies

H 4(T)) 4(T))

T~ TR H o

Note that .
[W(T)) = Telo A9 |y)

and hence it is reasonable to construct Telo A(*)ds and then apply it
to the quantum state.
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11/22



Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as ¥ ! = V.., v").
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?
@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.
@ Step 2: For each time step [tx, tx+1], apply some numerical

integrators (denote as "1 = V,..¢*). e.g,
YL =k 1 AtA(t)p* = (I + AtA(tg))*,
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?
@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.
@ Step 2: For each time step [tx, tx+1], apply some numerical

integrators (denote as "1 = V,..¢*). e.g,
q/)Ichl — ¢k 4 AtA(tk) k _ (I + AtA(tk))dJk, wk+1 — eA(tk)Atwk.
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?
@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as "1 = V,..¢*). e.g,
q/)Ichl — ¢k 4 AtA(tk) k _ (I + AtA(tk))dJk, wk+1 — eA(tk)Atwk.
Block-encoding is needed!
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as "1 = V,..¢*). e.g,
q/)Ichl — ¢k 4 AtA(tk) k _ (I + AtA(tk))dJk, wk+1 — eA(tk)Atwk.
Block-encoding is needed!

I+AtA *
1+ At Al
* *

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11/22



Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as "1 = V,..¢*). e.g,
q/)Ichl — ¢k 4 AtA(tk) k _ (I + AtA(tk))dJk, wk+1 — eA(tk)Atwk.
Block-encoding is needed!

I+AtA (I+AtA)"
<1+At|A| ) - | aFagqapr  *
* * * *
The success probability vanishes exponentially in the number of

time steps L!
Question: Why not use Amplitude Amplification at each time step?
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as ¥+ = V,,,v"). e.g,

q/)Ichl 1/)19 JrAtA(tk)l/Jk (IJrAtA(tk))dJk wk+1 tk)Atwk.
Block-encoding is needed!

I+AtA (I+AtA)"
<1+At|A| ) - | aFagqapr  *
* * * *
The success probability vanishes exponentially in the number of

time steps L!

Question: Why not use Amplitude Amplification at each time step’?
Needs access the initial state (9( =) times per step = O(( )L)
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?
@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as ¥+ = V,,,v"). e.g,

q/)Ichl 1/)19 JrAtA(tk)l/Jk (IJrAtA(tk))dJk wk+1 tk)Atwk.
Block-encoding is needed!

I+AtA (I+AtA)"
<1+At|A| ) - | aFagqapr  *
* * * *
The success probability vanishes exponentially in the number of

time steps L!

Question: Why not use Amplitude Ampilification at each time step’?
Needs access the initial state O(f) times per step = O(( )L)

Question: Why it works for Hamiltonian Simulation?
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Linear Differential Equations
0008000000000 00

Question: How to solve linear ODEs classically?

@ Step 1: divide the interval [0, ¢] into small pieces 0 < t; < --- < tr,
with ¢, = kt/L and step size At =¢/L.

@ Step 2: For each time step [tx, tx+1], apply some numerical
integrators (denote as "1 = V,..¢*). e.g,
q/)Ichl 1/)19 JrAtA(tk)l/Jk (IJrAtA(tk))dJk wk+1 tk)Atwk.
Block-encoding is needed!

I+AtA (I+AtA)* "
T+ALA]l = | AQ+At[A]HE
* * * *

The success probability vanishes exponentially in the number of
time steps L!
Question: Why not use Amplitude Amplification at each time step’?
Needs access the initial state O(f) times per step = O(( )L)
Question: Why it works for Hamiltonian Simulation?

For general A, V., are NOT close to unitaries! Cannot use OAA!
Di Fang (Duke) 11/22



Linear Differential Equations
0O000@0000000000

Major Challenge:
Short time = Long time?
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Sidenote for simple cases

Consider the simple time-independent case A(t) = A. We seek to
implement et4.
@ When A is anti-Hermitian, the task becomes Hamiltonian
simulation and QSVT gives the best asymptotic scaling.

7[Tong-An-Wiet:ne-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]
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Sidenote for simple cases

Consider the simple time-independent case A(t) = A. We seek to
implement et4.

@ When A is anti-Hermitian, the task becomes Hamiltonian
simulation and QSVT gives the best asymptotic scaling.

@ For general A, a direct application of QSVT should just work?

7[Tcng-An-Wiet:ne-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]
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Sidenote for simple cases

Consider the simple time-independent case A(t) = A. We seek to
implement et4.

@ When A is anti-Hermitian, the task becomes Hamiltonian
simulation and QSVT gives the best asymptotic scaling.

@ For general A, a direct application of QSVT should just work?

Issue: matrix exponential is defined via eigenvalue
decomposition that does not agree with singular value
decomposition unless the matrix is normal.

Remedy: Contour integral formulation 7.

1 =
A z -1 ~ z o -1
e’ =5 Fe (z—A) 'dz = ,;:0 eFzi(zy — A

7[Tcng-Ar\-Wiet:ne-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]
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Linear Differential Equations
0O00000®@00000000

Major Challenge:
Short time = Long time?

Ideas:

@ Postpone A.A. as much as possible

@ Device new ways to boost success probability at each time step
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Linear Differential Equations
0O000000@0000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 8

Lx=b, x= ("W @")7T)"

8[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 15/22
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Linear Differential Equations
0O000000@0000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 8

I 0 0 0 0\ /! (1
—(I + AtAy) I 0 0 ol (w2

0 —(I+ AtAy) T 0 ol || _

0 0 0 - —(I+AtA;_,) I) \wt

8[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
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Linear Differential Equations
0O000000@0000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 8

I 0 0 0 0\ /! (I
—(I + AtAy) I 0 0 ol |2
0 —(I+ AtAy) T 0 ol || _
0 0 0 - —(I+AtAp_y) 1) \w*
Cost of applying QLSA:
O(sk polylog(Nsk/e))

queries to oracles for £ and b

8[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
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Linear Differential Equations
0O000000@0000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 8

I 0 0 0 0\ /! (I
—(I+ AtAy) I 0 0 ol |2
0 —(I+ AtAy) T 0 ol || _
0 0 0 - —(I+AtAp_y) 1) \w*
Cost of applying QLSA:
O(sk polylog(Nsk/e))

queries to oracles for £ and b (which in turn gives query complexity to
oracles for A and for preparing °).
= estimate the condition number of £ ~ 1/At* for a > 0.

8[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
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Linear Differential Equations
0O0000000e000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state °
Lx=b, x= (YT @HT)"

I 0 0 - 0 0\ [t (I
—(I + AtAy) I 0 .- 0 0l [ v?

0 —(I+AtAy) T --- 0 ol | v |~

0 0 0 -+ —(I+AtAL,) I) \»t

So far we only get the history state x = still needs to extract
information of 1’ out of x.

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 16/22
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Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state °
Lx=b, x= (YT @HT)"

I 0 0 - 0 0\ [t (I
—(I + AtAy) I 0 .- 0 0l [ v?

0 —(I+AtAy) T --- 0 ol | v |~

0 0 0 -+ —(I+AtAL,) I) \»t

So far we only get the history state x = still needs to extract
information of 1’ out of x.

Success probability issue: padding + A.A.

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 16/22
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Linear Differential Equations
0O0000000e000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state °
Lx=b, x= (YT @HT)"

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic
dissipative A(t) = V(t)A(t)V (t)~! is diagonalizable for all time and
the condition number of V' (¢) has a uniform(-in-t) upper bound; all
derivatives of the solution have a uniform upper bound),

O(qT polylog(T/€)) (g := [[¥(O)II/l[¥(®)I])

queries to both Oracle for A and Oracle preparing the initial state.

9[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
0[An—Liu—Wang—Zhao 2022]
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Linear Differential Equations
0O0000000e000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state °
Lx=b, x= (YT @HT)"

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic
dissipative A(t) = V(t)A(t)V (t)~! is diagonalizable for all time and
the condition number of V' (¢) has a uniform(-in-t) upper bound; all
derivatives of the solution have a uniform upper bound),

O(qT polylog(T/e)) (g := [l (O)[|/[[(®)]])
queries to both Oracle for A and Oracle preparing the initial state.

Lower bound: linear in ¢ is needed, but the optimal queries to the
oracle preparing the initial state is O(q). 1°

9[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
0[An—Liu—Wang—Zhao 2022]
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Linear Differential Equations
0O0000000e000000

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state °
Lx=b, x= (YT @HT)"

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic
dissipative A(t) = V(t)A(t)V (t)~! is diagonalizable for all time and
the condition number of V' (¢) has a uniform(-in-t) upper bound; all
derivatives of the solution have a uniform upper bound),

O(qT polylog(T/e)) (g := [l (O)[|/[[(®)]])
queries to both Oracle for A and Oracle preparing the initial state.

Lower bound: linear in ¢ is needed, but the optimal queries to the
oracle preparing the initial state is O(q). 1°

Natural Question: Can we achieve optimal state preparation cost?

9[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
0[An—Liu—Wang—Zhao 2022]
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Short time to Long time: Approach 2

Approach 2: Remedy time-marching strategy by Uniform Singular
Value Amplification (USVA) !

Motivation:
I+AtA (I+AtA)* «
L+At A = [ (+AADHE
* * * *

2
Success probability: Q (\lw(o Tk ”gﬁﬂtHAH)QJ

1 [Fang-Lin-Tong 2023]
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Approach 2: Remedy time-marching strategy by Uniform Singular
Value Amplification (USVA) !

Motivation:
I+AtA (I+AtA)* «
L+At A = [ (+AADHE
* * * *

Success probability: © ( 0] )

9 (0)[I* (1+At[ AJ)2E

I+ALA (I+AtA)E ¥
[T+AtA| = | [[T+AtAlT
* % * *

1 [Fang-Lin-Tong 2023]
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Observation: || T+ AtA|* ~ [|eAt4||" ~ ||et4]|. For dissipative system
and unitary dynamics, it is ok!
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Observation: || T+ AtA|* ~ [|eAt4||" ~ ||et4]|. For dissipative system
and unitary dynamics, it is ok!

*

*

Needs:
* oblivious to the state I
:>
*
1 [Fang-Lin-Tong 2023]
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Short time to Long time: Approach 2

Needs:

%\ oblivious to the state HEH *
_ > =
* QsvT * ok

7 N
* 21m
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Needs:

(1

% *\ oblivious to the state *
:
* ok QSVT *

Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3z — 4x3.)
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* ok QSVT *

Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3z — 4x3.)
Here we need to boost all singular values uniformly.

Denote v := o/ || E]|.

We seek for a polynomial approximation of vz on [—y~1, v~ 1].
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Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3z — 4x3.)
Here we need to boost all singular values uniformly.

Denote v := o/ || E]|.

We seek for a polynomial approximation of vz on [—y~1, v~ 1].

* 1

1

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 18/22



Linear Differential Equations
000000000 0e0000

Short time to Long time: Approach 2

*\ oblivious to the state (1 - 5) I *
:
* QsvT * *

Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3z — 4x3.)

Here we need to boost all singular values uniformly.

Denote v := o/ || E]|.

We seek for a polynomial approximation of (1 — §)yz on [—y~1, v~ 1].

Needs:

m

m

* 1m

* Gibbs phenomena
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Short time to Long time: Approach 2

*\ oblivious to the state (1 - 5) I *
:
* QsvT * *

Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3z — 4x3.)

Here we need to boost all singular values uniformly.

Denote v := o/ || E]|.

We seek for a polynomial approximation of (1 — §)yz on [—y~1, v~ 1].

Needs:

m

m

* 1m

* Gibbs phenomena

Lemma(Uniform Singular Value Amplification)
d = O~ vlog(v/e)).

rr |

18/22
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Short time to Long time: Approach 2

Algorithm per time step:
@ Numerical integrator (Dyson, Magnus, Euler, etc)
@ Uniform Singular Value Amplification (QSVT)

[Fang-Lin-Tong 2023 / arXiv 2022]
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Short time to Long time: Approach 2

Algorithm per time step:

@ Numerical integrator (Dyson, Magnus, Euler, etc)

@ Uniform Singular Value Amplification (QSVT)
Construct a block-encoding of long-time evolution by compression
gadget.

Generic Result for dissipative or near-unitary dynamics: The quantum
algorithm makes
O (qT? polylog(T'/e))

queries to the oracle for A and

O(q)

queries to the oracle preparing the initial state. (smoothness is not
required; bounded variation is sufficient)

[Fang-Lin-Tong 2023 / arXiv 2022]
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Short time to Long time: Approach 3

Approach 3: Complex analysis (Linear combination of Hamiltonian
simulation) 12
Alt)+ AT(t)

A(t) = L(t) +iH(t), L(t)= 2T 28 0 g =

A(t) — AT(t)
5 —

27
Assume L(t) < 0forallt € 7.

t 1 -t
— Jo A(s)ds _ —i [, (H(S)JrkL(s))dsdk teT.
Te Jo /R 77r(1 ey Te tJo , c

12 (a0 Lin-Liu 2023]
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Short time to Long time: Approach 3

Approach 3: Complex analysis (Linear combination of Hamiltonian
simulation) 12

At) = L) +iH (@), L) = 2AOTAO

A(t) — AT(t)
5 : —

27
Assume L(t) < 0forallt € 7.
Te~™ J§ A(s)ds _ / 1 Tefi fot(H(s)JrkL(s))dsdk teT.
r (14 k?) ’

Generic Result for dissipative dynamics: The quantum algorithm
makes

o <q2+2/pT1+1/;D/61+2/P))
queries to the oracle for H and L and

O (q)
queries to the oracle preparing the initial state.

12 (a0 Lin-Liu 2023]
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Improved solver for special cases

Everything we discussed is on general quantum solvers (for general
A(t)) and attaining lower-bound in the worst-case scenario.

This doesn’t mean that the scaling for a specific case can not be
further improved.

1 3[Babbush—Berry—Kothari—Somma—Wiebe 2023]
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Improved solver for special cases

Everything we discussed is on general quantum solvers (for general
A(t)) and attaining lower-bound in the worst-case scenario.

This doesn’t mean that the scaling for a specific case can not be
further improved.

Simulating coupled classical oscillators '3

a specific linear system with conservation laws.

For simplicity, consider £(0) = B(t) = Z;.V:l %;)2 + ’”1(2—”2
Hamiltonian ODE: ¢y = Ay, y = (z1, -+ ,ZN, &1, , EN).

1 3[Babbush—Berry—Kothari—Somma—Wiebe 2023]
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Improved solver for special cases

Everything we discussed is on general quantum solvers (for general
A(t)) and attaining lower-bound in the worst-case scenario.

This doesn’t mean that the scaling for a specific case can not be
further improved.

Simulating coupled classical oscillators '3
a specific linear system with conservation laws.

For simplicity, consider £(0) = E(t) = Y, %;)2 + ’”1(2—”2

Hamiltonian ODE: §y = Ay, y = (1, ,xN, %1, , IN)-
Results (informal):
@ |t can be mapped to Hamiltonian simulation, and the quantum
algorithm makes
O(t + log(1/e))
queries to the oracles representing the coefficient matrix.
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Improved solver for special cases

Everything we discussed is on general quantum solvers (for general
A(t)) and attaining lower-bound in the worst-case scenario.

This doesn’t mean that the scaling for a specific case can not be
further improved.

Simulating coupled classical oscillators '3
a specific linear system with conservation laws.

For simplicity, consider £(0) = E(t) = Y, %;)2 + ’”1(2—”2

Hamiltonian ODE: §y = Ay, y = (1, ,xN, %1, , IN)-
Results (informal):
@ |t can be mapped to Hamiltonian simulation, and the quantum
algorithm makes
O(t + log(1/e))
queries to the oracles representing the coefficient matrix.
@ still BQP-hard.

1 3[Babbush—Berry—Kothari—Somma—Wiebe 2023]
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Summary of Quantum Linear Differential Equation
Solvers

@ Definition of the task
@ Challenges
@ Ways to address (general solvers)

e QSLA + Padding
e Time-marching
e LCHS

@ Improved solver for specific cases, e.g., simulating coupled
classical oscillators

e
. ,,,.QUANfUl:fAfl‘H ~
Thank you for your attention! U
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