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Time-dependent Ham. Sim. Linear Differential Equations

Revisit: Summary of Hamiltonian Simulation

Hamiltonian simulation: motivation; set-up
Expected cost: No-fast-forwarding theorem and BQP-hardness
Trotterization
truncated Taylor series
QSVT

Important take-home message:
QSVT + OAA ⇒ Optimal Hamiltonian Simulation
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Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

Motivation: e.g.,

H = −1

2
∆ + V (x), ∥∆h∥ ≫ ∥V ∥

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
∥∥∥Uapp − T e−i

∫ t
0
H(s) ds

∥∥∥ ≤ ϵ.

Why time-dependent?

Besides its own applications, it can also arise from time-independent
problems under the Interaction Picture 1

H = A+B and A has a much larger spectral norm.

∂tψ + iAψ = −iBψ
Integrating
======⇒

factor
eiAt∂tψ + ieiAtAψ = −ieiAtBψ

=⇒ ∂t

(
eiAtψ︸ ︷︷ ︸
ψI

)
= −ieiAtBψ = −i eiAtBe−iAt︸ ︷︷ ︸

HI(t)

ψI

HI(t) := eiAtBe−iAt, ψI := eiAtψ and i∂tψI = HIψI

1 [Low-Wiebe 2018]

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 4 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation

Set-up
H(τ) τ ∈ [0, t]

Desire feature: log-dependence on ∥∂tH(t)∥.

Idea: divide the time-interval into short intervals 0 < t1 < · · · < tL = t,
and apply numerical integrators on sub-intervals, followed by OAA.

Methods (short-time integrators):

Trotterization, if H(τ) =
∑L
k=1Hk(τ). ×

Randomized methods2, e.g., continuous qDRIFT (sample and
weak convergence) ✓
LCU + Series truncation 3: truncated Dyson series, rescaled
Dyson series, truncated Magnus series, e.g., qHOP, etc ✓

2continuous qDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]
3 [Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
Trotterization: H = H1(t) +H2(t)

T e−i
∫ tj+1
tj

H(s) ds ≈ e−ihH2(τj)e−ihH1(τj),

where τj ∈ [tj , tj+1] are chosen according to Suzuki
construction. The number of unitaries depends on ∥∂tH(t)∥.

High-order (p-th) generalization

 m∑
j=1

∥∂ptHj∥

1/(p+1)

4

Randomized algorithms (first-order accuracy and weak conv)
e.g., continuous qDRIFT, hybridized methods, etc 5

E(t, 0)(ρ) = U(t, 0)ρU†(t, 0)

=T→ exp

(
−i
∫ t

0

dτ H(τ)

)
ρT→ exp †

(
−i
∫ t

0

dτ H(τ)

)
≈ U(t, 0)(ρ) =

∫ t

0

dτ p(τ)e−i
H(τ)
p(τ) ρei

H(τ)
p(τ) ,

where p(τ) := ∥H(τ)∥∫ t
0
∥H(τ)∥ dτ := ∥H(τ)∥

∥H∥∞,1
is a probability density

function defined for 0 ≤ τ ≤ t.

4 [Wiebe-Berry-Hoyer-Sanders 2010]
5 [Poulin-Qarry-Somma-Verstraete 2011], [Berry-Childs-Su-Wang-Wiebe 2020], [Rajput-Roggero-Wiebe 2021]
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Time-dependent Ham. Sim. Linear Differential Equations
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Time-dependent Ham. Sim. Linear Differential Equations

Time-dependent Hamiltonian Simulation
Series truncation (LCU) based e.g., truncated Dyson series,
rescaled Dyson series, truncated Magnus series, etc. 6

T→e−i
∫ t
0
H(s) ds

=

∞∑
n=0

(−i)n

n!

∫ t

0

dtn

∫ t

0

dtn−1 · · ·
∫ t

0

dt1 T H(tn)H(tn−1) · · ·H(t1).

=I − i

∫ t

0

dt1H(t1)−
∫ t

0

dt2

∫ t2

0

dt1H(t2)H(t1) + · · ·

Why? How to derive?
∂tU(t, 0) = −iH(t)U(t, 0), U(0, 0) = I

U(t, 0) =I − i

∫ t

0

dt1H(t1)U(t1, 0)

I − i

∫ t

0

dt1H(t1) + (−i)2
∫ t

0

H(t2)dt2

∫ t2

0

dt1H(t1)U(t1, 0)

6 [Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc
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Time-dependent Ham. Sim. Linear Differential Equations

Part 2: General Linear Differential Equations
(non-unitary dynamics)
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Time-dependent Ham. Sim. Linear Differential Equations

Outline of Quantum Linear Differential Equation
Solvers

Definition of the task
Challenges
Ways to address

QSLA + Padding
Time-marching
LCHS
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Time-dependent Ham. Sim. Linear Differential Equations

Linear differential equations

d

dt
|ψ(t)⟩ = A(t) |ψ(t)⟩ , |ψ(0)⟩ = |ψ0⟩ ,

Task: To prepare a quantum state that is proportional to the final
solution |ψ(T )⟩ with certain precision ϵ.

To prepare a quantum state |ψ̃(T )⟩ that satisfies∥∥∥∥∥ |ψ(T )⟩
∥ |ψ(T )⟩ ∥

− |ψ̃(T )⟩
∥ |ψ̃(T )⟩ ∥

∥∥∥∥∥ = O(ϵ).

Note that
|ψ(T )⟩ = T e

∫ T
0
A(s)ds |ψ0⟩ ,

and hence it is reasonable to construct T e
∫ T
0
A(s)ds and then apply it

to the quantum state.
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Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.

Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k).

e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k,

ψk+1 = eA(tk)∆tψk.
Block-encoding is needed!( I+∆tA

1+∆t∥A∥ ∗
∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!

( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)

⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?

Needs access the initial state O( 1√
p ) times per step ⇒ O(( 1√

p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?

For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge
Question: How to solve linear ODEs classically?

Step 1: divide the interval [0, t] into small pieces 0 < t1 < · · · < tL
with tk = kt/L and step size ∆t = t/L.
Step 2: For each time step [tk, tk+1], apply some numerical
integrators (denote as ψk+1 = Vnumψ

k). e.g,
ψk+1 = ψk +∆tA(tk)ψ

k = (I +∆tA(tk))ψ
k, ψk+1 = eA(tk)∆tψk.

Block-encoding is needed!( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
The success probability vanishes exponentially in the number of
time steps L!

Question: Why not use Amplitude Amplification at each time step?
Needs access the initial state O( 1√

p ) times per step ⇒ O(( 1√
p )
L)

Question: Why it works for Hamiltonian Simulation?
For general A, Vnum are NOT close to unitaries! Cannot use OAA!

Di Fang (Duke) Quantum algorithms for Dynamics Simulation 11 / 22



Time-dependent Ham. Sim. Linear Differential Equations

Challenge

Major Challenge:

Short time ⇒ Long time?
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Time-dependent Ham. Sim. Linear Differential Equations

Sidenote for simple cases

Consider the simple time-independent case A(t) ≡ A. We seek to
implement etA.

When A is anti-Hermitian, the task becomes Hamiltonian
simulation and QSVT gives the best asymptotic scaling.

For general A, a direct application of QSVT should just work?

Issue: matrix exponential is defined via eigenvalue
decomposition that does not agree with singular value
decomposition unless the matrix is normal.
Remedy: Contour integral formulation 7.

eA =
1

2πi

∮
Γ

ez(z −A)−1dz ≈ 1

K

K−1∑
k=0

ezkzk(zk −A)−1.

7 [Tong-An-Wiebe-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]
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Time-dependent Ham. Sim. Linear Differential Equations

Challenge

Major Challenge:

Short time ⇒ Long time?

Ideas:
Postpone A.A. as much as possible

Device new ways to boost success probability at each time step
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 8

Lx = b, x =
(
(ψ1)T (ψ2)T · · · (ψL)T

)T


I 0 0 · · · 0 0

−(I +∆tA1) I 0 · · · 0 0
0 −(I +∆tA2) I · · · 0 0
...

...
0 0 0 · · · −(I +∆tAL−1) I




ψ1

ψ2

ψ3

...
ψL

 =


(I +∆tA0)ψ

0

0
0
...
0

 ,

Cost of applying QLSA:

O(sκpolylog(Nsκ/ϵ))

queries to oracles for L and b (which in turn gives query complexity to
oracles for A and for preparing ψ0).
⇒ estimate the condition number of L ∼ 1/∆tα for α > 0.

8 [Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 1
Approach 1: Apply QLSA + padding to history state 9

Lx = b, x =
(
(ψ1)T (ψ2)T · · · (ψL)T

)T


I 0 0 · · · 0 0
−(I +∆tA1) I 0 · · · 0 0

0 −(I +∆tA2) I · · · 0 0
...

...
0 0 0 · · · −(I +∆tAL−1) I




ψ1

ψ2

ψ3

...
ψL

 =


(I +∆tA0)ψ

0

0
0
...
0

 ,

So far we only get the history state x ⇒ still needs to extract
information of ψL out of x.

Success probability issue: padding + A.A.
Generic Result: Under certain assumptions (sparse smooth/analytic
dissipative A(t) = V (t)Λ(t)V (t)−1 is diagonalizable for all time and
the condition number of V (t) has a uniform(-in-t) upper bound; all
derivatives of the solution have a uniform upper bound),

O(qT polylog(T/ϵ)) (q := ∥ψ(0)∥/∥ψ(t)∥)
queries to both Oracle for A and Oracle preparing the initial state.
Lower bound: linear in q is needed, but the optimal queries to the
oracle preparing the initial state is O(q). 10

Natural Question: Can we achieve optimal state preparation cost?

9 [Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc
10 [An-Liu-Wang-Zhao 2022]
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 2
Approach 2: Remedy time-marching strategy by Uniform Singular
Value Amplification (USVA) 11

Motivation: ( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
Success probability: Ω

(
∥ψ(t)∥2

∥ψ(0)∥2(1+∆t∥A∥)2L

)

( I+∆tA
∥I+∆tA∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

∥I+∆tA∥L ∗
∗ ∗

)
Observation: ∥I +∆tA∥L ≈

∥∥e∆tA∥∥L ∼
∥∥etA∥∥. For dissipative system

and unitary dynamics, it is ok!
Needs: (

Ξ
α ∗
∗ ∗

)
oblivious to the state
===========⇒

( Ξ
∥Ξ∥ ∗
∗ ∗

)

11 [Fang-Lin-Tong 2023]
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Value Amplification (USVA) 11

Motivation: ( I+∆tA
1+∆t∥A∥ ∗

∗ ∗

)
⇒

(
(I+∆tA)L

(1+∆t∥A∥)L ∗
∗ ∗

)
Success probability: Ω

(
∥ψ(t)∥2

∥ψ(0)∥2(1+∆t∥A∥)2L

)
( I+∆tA

∥I+∆tA∥ ∗
∗ ∗

)
⇒

(
(I+∆tA)L

∥I+∆tA∥L ∗
∗ ∗

)
Observation: ∥I +∆tA∥L ≈

∥∥e∆tA∥∥L ∼
∥∥etA∥∥. For dissipative system

and unitary dynamics, it is ok!
Needs: (

Ξ
α ∗
∗ ∗

)
oblivious to the state
===========⇒

( Ξ
∥Ξ∥ ∗
∗ ∗

)
11 [Fang-Lin-Tong 2023]
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 2

Needs: (
Ξ
α ∗
∗ ∗

)
oblivious to the state
===========⇒

QSVT

( Ξ
∥Ξ∥ ∗
∗ ∗

)

Remark: For unitary dynamics, OAA works the magic! OAA only
needs to boost a singular value, say 1/2 to 1 using 3x− 4x3.)
Here we need to boost all singular values uniformly.
Denote γ := α/ ∥Ξ∥.
We seek for a polynomial approximation of γx on [−γ−1, γ−1].

1 8

-
2
- 1

Gibbs phenomena

Lemma(Uniform Singular Value Amplification)
d = O(δ−1γ log(γ/ϵ)).
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 2
Algorithm per time step:

1 Numerical integrator (Dyson, Magnus, Euler, etc)
2 Uniform Singular Value Amplification (QSVT)

Construct a block-encoding of long-time evolution by compression
gadget.

Generic Result for dissipative or near-unitary dynamics: The quantum
algorithm makes

O
(
qT 2 polylog(T/ϵ)

)
queries to the oracle for A and

O (q)

queries to the oracle preparing the initial state. (smoothness is not
required; bounded variation is sufficient)

[Fang-Lin-Tong 2023 / arXiv 2022]
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Time-dependent Ham. Sim. Linear Differential Equations

Short time to Long time: Approach 3
Approach 3: Complex analysis (Linear combination of Hamiltonian
simulation) 12

A(t) = L(t) + iH(t), L(t) =
A(t) +A†(t)

2
, H(t) =

A(t)−A†(t)

2i
.

Assume L(t) ⪯ 0 for all t ∈ I.

T e−
∫ t
0
A(s)ds =

∫
R

1

π(1 + k2)
T e−i

∫ t
0
(H(s)+kL(s))dsdk, t ∈ I.

Generic Result for dissipative dynamics: The quantum algorithm
makes

O
(
q2+2/pT 1+1/p/ϵ1+2/p)

)
queries to the oracle for H and L and

O (q)

queries to the oracle preparing the initial state.

12 [An-Lin-Liu 2023]
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Time-dependent Ham. Sim. Linear Differential Equations

Improved solver for special cases
Everything we discussed is on general quantum solvers (for general
A(t)) and attaining lower-bound in the worst-case scenario.
This doesn’t mean that the scaling for a specific case can not be
further improved.

Simulating coupled classical oscillators 13

a specific linear system with conservation laws.

For simplicity, consider E(0) ≡ E(t) =
∑N
j=1

ẋj(t)
2

2 +
xj(t)

2

2 .
Hamiltonian ODE: ẏ = Ay, y = (x1, · · · , xN , ẋ1, · · · , ẋN ).

Results (informal):
It can be mapped to Hamiltonian simulation, and the quantum
algorithm makes

O(t+ log(1/ϵ))

queries to the oracles representing the coefficient matrix.
still BQP-hard.

13 [Babbush-Berry-Kothari-Somma-Wiebe 2023]
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Time-dependent Ham. Sim. Linear Differential Equations

Summary of Quantum Linear Differential Equation
Solvers

Definition of the task
Challenges
Ways to address (general solvers)

QSLA + Padding
Time-marching
LCHS

Improved solver for specific cases, e.g., simulating coupled
classical oscillators

Thank you for your attention!
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