Quantum algorithms for Dynamics Simulation: Hamiltonian Simulation and Linear Differential Equations

Di Fang

Department of Mathematics Duke Quantum Center Duke University

IPAM Tutorial, 2023

Outline

Time-dependent Ham. Sim.

Quantum Linear Differential Equations Solvers

Revisit: Summary of Hamiltonian Simulation

- Hamiltonian simulation: motivation; set-up
- Expected cost: No-fast-forwarding theorem and BQP-hardness
- Trotterization
- truncated Taylor series
- QSVT

Important take-home message:

QSVT + OAA \Rightarrow Optimal Hamiltonian Simulation

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

¹ [Low-Wiebe 2018]

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

Why time-dependent?

Besides its own applications, it can also arise from time-independent problems under the Interaction Picture ¹

^{1 [}Low-Wiebe 2018]

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

Why time-dependent?

Besides its own applications, it can also arise from time-independent problems under the Interaction Picture ¹

H = A + B and A has a much larger spectral norm.

[[]Low-Wiebe 2018]

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

Why time-dependent?

Besides its own applications, it can also arise from time-independent problems under the Interaction Picture ¹

H = A + B and A has a much larger spectral norm.

Motivation: e.g.,

$$H = -\frac{1}{2}\Delta + V(x), \quad \|\Delta_h\| \gg \|V\|$$

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

Why time-dependent?

Besides its own applications, it can also arise from time-independent problems under the Interaction Picture ¹

H = A + B and A has a much larger spectral norm.

$$\partial_t \psi + iA\psi = -iB\psi$$

$$\xrightarrow{\text{Integrating}} e^{iAt}\partial_t \psi + ie^{iAt}A\psi = -ie^{iAt}B\psi$$

$$\Rightarrow \partial_t \left(\underbrace{e^{iAt}\psi}_{\psi_I}\right) = -ie^{iAt}B\psi = -i\underbrace{e^{iAt}Be^{-iAt}}_{H_I(t)}\psi_I$$

[Low-Wiebe 2018]

$$\left\| \mathcal{U}_{\mathsf{app}} - \mathcal{T}e^{-\mathrm{i}\int_{0}^{t}H(s)\,ds} \right\| \leq \epsilon.$$

Why time-dependent?

Besides its own applications, it can also arise from time-independent problems under the Interaction Picture ¹

H = A + B and A has a much larger spectral norm.

$$\begin{array}{l} \partial_t \psi + iA\psi = -iB\psi \\ & \xrightarrow{\text{Integrating}} e^{iAt}\partial_t \psi + ie^{iAt}A\psi = -ie^{iAt}B\psi \\ & \Rightarrow \partial_t \left(\underbrace{e^{iAt}\psi}_{\psi_I}\right) = -ie^{iAt}B\psi = -i\underbrace{e^{iAt}Be^{-iAt}}_{H_I(t)}\psi_I \\ H_I(t) := e^{iAt}Be^{-iAt}, \ \psi_I := e^{iAt}\psi \text{ and } i\partial_t\psi_I = H_I\psi_I \end{array}$$

¹ [Low-Wiebe 2018]

Set-up

$$H(\tau) \quad \tau \in [0, t]$$

Desire feature: log-dependence on $\|\partial_t H(t)\|$.

² continuous qDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]

³[Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

Set-up

$$H(\tau) \quad \tau \in [0, t]$$

Desire feature: log-dependence on $\|\partial_t H(t)\|$.

Idea: divide the time-interval into short intervals $0 < t_1 < \cdots < t_L = t$, and apply numerical integrators on sub-intervals, followed by OAA.

²continuous qDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]

³[Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

Set-up

$$H(\tau) \quad \tau \in [0, t]$$

Desire feature: log-dependence on $\|\partial_t H(t)\|$.

Idea: divide the time-interval into short intervals $0 < t_1 < \cdots < t_L = t$, and apply numerical integrators on sub-intervals, followed by OAA.

Methods (short-time integrators):

- Trotterization, if $H(\tau) = \sum_{k=1}^{L} H_k(\tau)$. ×
- Randomized methods², e.g., continuous qDRIFT (sample and weak convergence) √
- LCU + Series truncation ³: truncated Dyson series, rescaled Dyson series, truncated Magnus series, e.g., qHOP, etc √

² continuous qDRIFT [Berry-Childs-Su-Wang-Wiebe 2020], Monte-Carlo type [Poulin-Qarry-Somma-Verstraete 2011]

³[Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

• Trotterization: $H = H_1(t) + H_2(t)$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_{j+1}}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

• Trotterization: $H = H_1(t) + H_2(t)$

$$\mathcal{T}e^{-\mathrm{i}\int_{t_j}^{t_{j+1}}H(s)\,ds}\approx e^{-\mathrm{i}hH_2(\tau_j)}e^{-\mathrm{i}hH_1(\tau_j)},$$

where $\tau_j \in [t_j, t_{j+1}]$ are chosen according to Suzuki construction. The number of unitaries depends on $\|\partial_t H(t)\|$.

High-order (p-th) generalization $\left(\sum_{j=1}^m \|\partial_t^p H_j\|\right)^{1/(p+1)}$

Trotterization:

High-order (*p*-th) generalization
$$\left(\sum_{j=1}^{m} \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

 Randomized algorithms (first-order accuracy and weak conv) e.g., continuous qDRIFT, hybridized methods, etc ⁵

Quantum algorithms for Dynamics Simulation

^{4 [}Wiebe-Berry-Hoyer-Sanders 2010]

⁵[Poulin-Qarry-Somma-Verstraete 2011], [Berry-Childs-Su-Wang-Wiebe 2020], [Rajput-Roggero-Wiebe 2021]

Trotterization:

High-order (*p*-th) generalization
$$\left(\sum_{j=1}^{m} \|\partial_t^p H_j\|\right)^{1/(p+1)}$$

 Randomized algorithms (first-order accuracy and weak conv) e.g., continuous qDRIFT, hybridized methods, etc ⁵

$$\mathcal{E}(t,0)(\rho) = U(t,0)\rho U^{\dagger}(t,0)$$
$$= \mathcal{T}_{\rightarrow} \exp\left(-i\int_{0}^{t} \mathrm{d}\tau \, H(\tau)\right)\rho \mathcal{T}_{\rightarrow} \exp\left(-i\int_{0}^{t} \mathrm{d}\tau \, H(\tau)\right)$$
$$\approx \mathcal{U}(t,0)(\rho) = \int_{0}^{t} \mathrm{d}\tau \, p(\tau)e^{-i\frac{H(\tau)}{p(\tau)}}\rho e^{i\frac{H(\tau)}{p(\tau)}},$$
ere $p(\tau) := \frac{\|H(\tau)\|}{cture} := \frac{\|H(\tau)\|}{\|H(\tau)\|}$ is a probability density

where $p(\tau) := \frac{\|H(\tau)\|}{\int_0^t \|H(\tau)\| d\tau} := \frac{\|H(\tau)\|}{\|H\|_{\infty,1}}$ is a probability densi function defined for $0 \le \tau \le t$.

Di Fang (Duke)

⁴ [Wiebe-Berry-Hoyer-Sanders 2010]

⁵[Poulin-Qarry-Somma-Verstraete 2011], [Berry-Childs-Su-Wang-Wiebe 2020], [Rajput-Roggero-Wiebe 2021]

 Series truncation (LCU) based e.g., truncated Dyson series, rescaled Dyson series, truncated Magnus series, etc. ⁶

$$\begin{aligned} \mathcal{T}_{\to} e^{-i\int_0^t H(s)\,ds} \\ &= \sum_{n=0}^\infty \frac{(-i)^n}{n!} \int_0^t dt_n \int_0^t dt_{n-1} \cdots \int_0^t dt_1 \,\mathcal{T}H(t_n) H(t_{n-1}) \cdots H(t_1). \\ &= I - i \int_0^t dt_1 H(t_1) - \int_0^t dt_2 \int_0^{t_2} dt_1 H(t_2) H(t_1) + \cdots \end{aligned}$$

^{6 [}Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

 Series truncation (LCU) based e.g., truncated Dyson series, rescaled Dyson series, truncated Magnus series, etc. ⁶

$$\mathcal{T}_{\to} e^{-i\int_0^t H(s) \, ds}$$

= $\sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \int_0^t dt_n \int_0^t dt_{n-1} \cdots \int_0^t dt_1 \, \mathcal{T}H(t_n) H(t_{n-1}) \cdots H(t_1).$
= $I - i \int_0^t dt_1 H(t_1) - \int_0^t dt_2 \int_0^{t_2} dt_1 H(t_2) H(t_1) + \cdots$

Why? How to derive?

 $\partial_t U(t,0) = -\mathrm{i} H(t) U(t,0), \quad U(0,0) = I$

⁶[Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

 Series truncation (LCU) based e.g., truncated Dyson series, rescaled Dyson series, truncated Magnus series, etc. ⁶

$$\mathcal{T}_{\rightarrow} e^{-i\int_{0}^{t} H(s) \, ds}$$

$$= \sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{0}^{t} dt_{n} \int_{0}^{t} dt_{n-1} \cdots \int_{0}^{t} dt_{1} \mathcal{T}H(t_{n})H(t_{n-1}) \cdots H(t_{1}).$$

$$= I - i \int_{0}^{t} dt_{1}H(t_{1}) - \int_{0}^{t} dt_{2} \int_{0}^{t_{2}} dt_{1}H(t_{2})H(t_{1}) + \cdots$$
Why? How to derive?
 $\partial_{t}U(t,0) = -iH(t)U(t,0), \quad U(0,0) = I$
 $U(t,0) = I - i \int_{0}^{t} dt_{1}H(t_{1})U(t_{1},0)$
 $I - i \int_{0}^{t} dt_{1}H(t_{1}) + (-i)^{2} \int_{0}^{t} H(t_{2})dt_{2} \int_{0}^{t_{2}} dt_{1}H(t_{1})U(t_{1},0)$

 Series truncation (LCU) based e.g., truncated Dyson series, rescaled Dyson series, truncated Magnus series, etc. ⁶

$$\begin{aligned} \mathcal{T}_{\rightarrow} e^{-i\int_{0}^{t}H(s)\,ds} \\ &= \sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{0}^{t}dt_{n} \int_{0}^{t}dt_{n-1} \cdots \int_{0}^{t}dt_{1} \,\mathcal{T}H(t_{n})H(t_{n-1}) \cdots H(t_{1}). \\ &= I - i\int_{0}^{t}dt_{1}H(t_{1}) - \int_{0}^{t}dt_{2} \int_{0}^{t_{2}}dt_{1}H(t_{2})H(t_{1}) + \cdots \\ & \text{Why? How to derive?} \\ &\partial_{t}U(t,0) = -iH(t)U(t,0), \quad U(0,0) = I \\ & U(t,0) = I - i\int_{0}^{t}dt_{1}H(t_{1})U(t_{1},0) \\ & I - i\int_{0}^{t}dt_{1}H(t_{1}) + (-i)^{2}\int_{0}^{t}H(t_{2})dt_{2} \int_{0}^{t_{2}}dt_{1}H(t_{1})U(t_{1},0) \end{aligned}$$

⁶[Berry-Childs-Cleve-Kothari-Somma 2015], [Low-Wiebe 2018], [Kieferova-Scherer-Berry 2018], [An-Fang-Lin 2022], etc

Part 2: General Linear Differential Equations (non-unitary dynamics)

Outline of Quantum Linear Differential Equation Solvers

- Definition of the task
- Challenges
- Ways to address
 - QSLA + Padding
 - Time-marching
 - LCHS

Linear differential equations

$$\frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = A(t) |\psi(t)\rangle, \quad |\psi(0)\rangle = |\psi_0\rangle,$$

Task: To prepare a quantum state that is proportional to the final solution $|\psi(T)\rangle$ with certain precision ϵ .

To prepare a quantum state $|\widetilde{\psi}(T)\rangle$ that satisfies

$$\left\|\frac{|\psi(T)\rangle}{\|\,|\psi(T)\rangle\,\|} - \frac{|\widetilde{\psi}(T)\rangle}{\|\,|\widetilde{\psi}(T)\rangle\,\|}\right\| = \mathcal{O}(\epsilon).$$

Note that

$$\left|\psi(T)\right\rangle = \mathcal{T}e^{\int_0^T A(s)\mathrm{d}s} \left|\psi_0\right\rangle,\,$$

and hence it is reasonable to construct $\mathcal{T}e^{\int_0^T A(s)ds}$ and then apply it to the quantum state.

Question: How to solve linear ODEs classically?

• Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{\text{num}}\psi^k$).

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$,

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$.

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$. Block-encoding is needed!

Question: How to solve linear ODEs classically?

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$.

Block-encoding is needed!

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix}$$

Question: How to solve linear ODEs classically?

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$. Block-encoding is needed!

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} (I+\Delta tA)^L & *\\ (1+\Delta t\|A\|)^L & *\\ * & * \end{pmatrix}$$

The success probability vanishes exponentially in the number of time steps L!

Question: Why not use Amplitude Amplification at each time step?

Question: How to solve linear ODEs classically?

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{\text{num}}\psi^k$). e.g. $\psi^{k+1} = \psi^k + \Delta t A(t_k) \psi^k = (I + \Delta t A(t_k)) \psi^k, \ \psi^{k+1} = e^{A(t_k)\Delta t} \psi^k.$

Block-encoding is needed!

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} (I+\Delta tA)^L & *\\ (1+\Delta t\|A\|)^L & *\\ * & * \end{pmatrix}$$

The success probability vanishes exponentially in the number of time steps L!

Question: Why not use Amplitude Amplification at each time step? Needs access the initial state $\mathcal{O}(\frac{1}{\sqrt{n}})$ times per step $\Rightarrow \mathcal{O}((\frac{1}{\sqrt{n}})^{L})$

Question: How to solve linear ODEs classically?

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$.

Block-encoding is needed!

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} (I+\Delta tA)^L & *\\ (1+\Delta t\|A\|)^L & *\\ * & * \end{pmatrix}$$

The success probability vanishes exponentially in the number of time steps L!

Question: Why not use Amplitude Amplification at each time step? Needs access the initial state $\mathcal{O}(\frac{1}{\sqrt{p}})$ times per step $\Rightarrow \mathcal{O}((\frac{1}{\sqrt{p}})^L)$ Question: Why it works for Hamiltonian Simulation?

Question: How to solve linear ODEs classically?

- Step 1: divide the interval [0, t] into small pieces $0 < t_1 < \cdots < t_L$ with $t_k = kt/L$ and step size $\Delta t = t/L$.
- Step 2: For each time step $[t_k, t_{k+1}]$, apply some numerical integrators (denote as $\psi^{k+1} = V_{num}\psi^k$). e.g, $\psi^{k+1} = \psi^k + \Delta t A(t_k)\psi^k = (I + \Delta t A(t_k))\psi^k$, $\psi^{k+1} = e^{A(t_k)\Delta t}\psi^k$.

Block-encoding is needed!

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} (I+\Delta tA)^L & *\\ (1+\Delta t\|A\|)^L & *\\ * & * \end{pmatrix}$$

The success probability vanishes exponentially in the number of time steps L!

Question: Why not use Amplitude Amplification at each time step? Needs access the initial state $\mathcal{O}(\frac{1}{\sqrt{p}})$ times per step $\Rightarrow \mathcal{O}((\frac{1}{\sqrt{p}})^L)$ Question: Why it works for Hamiltonian Simulation? For general *A*, *V*_{num} are NOT close to unitaries! Cannot use OAA!

Major Challenge: Short time \Rightarrow Long time?

Sidenote for simple cases

Consider the simple time-independent case $A(t) \equiv A$. We seek to implement e^{tA} .

• When *A* is anti-Hermitian, the task becomes Hamiltonian simulation and QSVT gives the best asymptotic scaling.

⁷[Tong-An-Wiebe-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]

Sidenote for simple cases

Consider the simple time-independent case $A(t) \equiv A$. We seek to implement e^{tA} .

- When *A* is anti-Hermitian, the task becomes Hamiltonian simulation and QSVT gives the best asymptotic scaling.
- For general A, a direct application of QSVT should just work?

^{7 [}Tong-An-Wiebe-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]

Sidenote for simple cases

Consider the simple time-independent case $A(t) \equiv A$. We seek to implement e^{tA} .

- When *A* is anti-Hermitian, the task becomes Hamiltonian simulation and QSVT gives the best asymptotic scaling.
- For general A, a direct application of QSVT should just work? Issue: matrix exponential is defined via eigenvalue decomposition that does not agree with singular value decomposition unless the matrix is normal. Remedy: Contour integral formulation ⁷.

$$e^{A} = \frac{1}{2\pi i} \oint_{\Gamma} e^{z} (z-A)^{-1} dz \approx \frac{1}{K} \sum_{k=0}^{K-1} e^{z_{k}} z_{k} (z_{k}-A)^{-1}.$$

⁷ [Tong-An-Wiebe-Lin 2021], [Takahira-Ohashi-Sogabe-Usuda 2021], [Fang-Lin-Tong 2023]

Major Challenge: Short time \Rightarrow Long time?

Ideas:

- Postpone A.A. as much as possible
- Device new ways to boost success probability at each time step

Approach 1: Apply QLSA + padding to history state ⁸

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

⁸[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

Approach 1: Apply QLSA + padding to history state ⁸

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

$$\begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ -(I + \Delta t A_1) & I & 0 & \cdots & 0 & 0 \\ 0 & -(I + \Delta t A_2) & I & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & -(I + \Delta t A_{L-1}) & I \end{pmatrix} \begin{pmatrix} \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L$$

⁸[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

Approach 1: Apply QLSA + padding to history state ⁸

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

$$\begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ -(I + \Delta t A_1) & I & 0 & \cdots & 0 & 0 \\ 0 & -(I + \Delta t A_2) & I & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & -(I + \Delta t A_{L-1}) & I \end{pmatrix} \begin{pmatrix} \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^2 \\ \psi^2 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_{L-1}) & \psi^1 \\ \psi^2 \\ \psi^2$$

Cost of applying QLSA:

 $\mathcal{O}(s\kappa \operatorname{polylog}(Ns\kappa/\epsilon))$

queries to oracles for ${\cal L}$ and ${\bf b}$

⁸[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

Approach 1: Apply QLSA + padding to history state ⁸

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

$$\begin{pmatrix} I & 0 & 0 & \cdots & 0 & 0 \\ -(I + \Delta t A_1) & I & 0 & \cdots & 0 & 0 \\ 0 & -(I + \Delta t A_2) & I & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & -(I + \Delta t A_{L-1}) & I \end{pmatrix} \begin{pmatrix} \psi^1 \\ \psi^2 \\ \psi^3 \\ \vdots \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \\ \psi^L \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \\ \psi^L \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \\ \psi^L \\ \psi^L \\ \psi^L \end{pmatrix} = \begin{pmatrix} (I + \Delta t A_1) & U \\ \psi^L \\$$

Cost of applying QLSA:

$$\mathcal{O}(s\kappa \operatorname{polylog}(Ns\kappa/\epsilon))$$

queries to oracles for \mathcal{L} and b (which in turn gives query complexity to oracles for A and for preparing ψ^0).

 \Rightarrow estimate the condition number of $\mathcal{L} \sim 1/\Delta t^{\alpha}$ for $\alpha > 0$.

⁸[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

Approach 1: Apply QLSA + padding to history state 9

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

information of ψ^L out of x.

Approach 1: Apply QLSA + padding to history state ⁹

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

So far we only get the history state $\mathbf{x} \Rightarrow$ still needs to extract information of ψ^L out of \mathbf{x} .

Success probability issue: padding + A.A.

Approach 1: Apply QLSA + padding to history state ⁹

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic dissipative $A(t) = V(t)\Lambda(t)V(t)^{-1}$ is diagonalizable for all time and the condition number of V(t) has a uniform(-in-t) upper bound; all derivatives of the solution have a uniform upper bound),

$$\mathcal{O}(qT \operatorname{polylog}(T/\epsilon)) \quad (q := \|\psi(0)\| / \|\psi(t)\|)$$

queries to both Oracle for A and Oracle preparing the initial state.

⁹[Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

^{10 [}An-Liu-Wang-Zhao 2022]

Approach 1: Apply QLSA + padding to history state ⁹

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic dissipative $A(t) = V(t)\Lambda(t)V(t)^{-1}$ is diagonalizable for all time and the condition number of V(t) has a uniform(-in-t) upper bound; all derivatives of the solution have a uniform upper bound),

$$\mathcal{O}(qT \operatorname{polylog}(T/\epsilon)) \quad (q := \|\psi(0)\| / \|\psi(t)\|)$$

queries to both Oracle for *A* and Oracle preparing the initial state. Lower bound: linear in *q* is needed, but the optimal queries to the oracle preparing the initial state is O(q).¹⁰

^{9[}Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

^{10 [}An-Liu-Wang-Zhao 2022]

Approach 1: Apply QLSA + padding to history state ⁹

$$\mathcal{L}\mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \left((\psi^1)^T (\psi^2)^T \cdots (\psi^L)^T \right)^T$$

Success probability issue: padding + A.A.

Generic Result: Under certain assumptions (sparse smooth/analytic dissipative $A(t) = V(t)\Lambda(t)V(t)^{-1}$ is diagonalizable for all time and the condition number of V(t) has a uniform(-in-t) upper bound; all derivatives of the solution have a uniform upper bound),

$$\mathcal{O}(qT \operatorname{polylog}(T/\epsilon)) \quad (q := \|\psi(0)\|/\|\psi(t)\|)$$

queries to both Oracle for *A* and Oracle preparing the initial state. Lower bound: linear in *q* is needed, but the optimal queries to the oracle preparing the initial state is O(q).¹⁰

Natural Question: Can we achieve optimal state preparation cost?

^{9 [}Berry 2014], [Berry-Childs-Ostrander-Wang 2017], [Childs-Liu 2019], [Krovi 2023], etc

^{10 [}An-Liu-Wang-Zhao 2022]

Approach 2: Remedy time-marching strategy by Uniform Singular Value Amplification (USVA) ¹¹

Motivation:

$$\begin{pmatrix} \frac{I + \Delta tA}{1 + \Delta t \|A\|} & * \\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I + \Delta tA)^L}{(1 + \Delta t \|A\|)^L} & * \\ * & * \end{pmatrix}$$
Success probability: $\Omega\left(\frac{\|\psi(t)\|^2}{\|\psi(0)\|^2(1 + \Delta t \|A\|)^{2L}}\right)$

^{11 [}Fang-Lin-Tong 2023]

Approach 2: Remedy time-marching strategy by Uniform Singular Value Amplification (USVA) ¹¹

Motivation:

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^{L}}{(1+\Delta t\|A\|)^{L}} & *\\ * & * \end{pmatrix}$$
Success probability: $\Omega\left(\frac{\|\psi(t)\|^{2}}{\|\psi(0)\|^{2}(1+\Delta t\|A\|)^{2L}}\right)$

$$\begin{pmatrix} \frac{I+\Delta tA}{\|I+\Delta tA\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^{L}}{\|I+\Delta tA\|^{L}} & *\\ * & * \end{pmatrix}$$

^{11 [}Fang-Lin-Tong 2023]

Approach 2: Remedy time-marching strategy by Uniform Singular Value Amplification (USVA) ¹¹

Motivation:

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^{L}}{(1+\Delta t\|A\|)^{L}} & *\\ * & * \end{pmatrix}$$

Success probability: $\Omega\left(\frac{\|\psi(t)\|^{2}}{\|\psi(0)\|^{2}(1+\Delta t\|A\|)^{2L}}\right)$
$$\left(\frac{\frac{I+\Delta tA}{\|I+\Delta tA\|}}{*}\right) \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^{L}}{\|I+\Delta tA\|^{L}} & *\\ * & * \end{pmatrix}$$

Observation: $\|I + \Delta tA\|^L \approx \|e^{\Delta tA}\|^L \sim \|e^{tA}\|$. For dissipative system and unitary dynamics, it is ok!

^{11 [}Fang-Lin-Tong 2023]

Approach 2: Remedy time-marching strategy by Uniform Singular Value Amplification (USVA) ¹¹

Motivation:

$$\begin{pmatrix} \frac{I+\Delta tA}{1+\Delta t\|A\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^{L}}{(1+\Delta t\|A\|)^{L}} & *\\ * & * \end{pmatrix}$$

Success probability: $\Omega\left(\frac{\|\psi(t)\|^{2}}{\|\psi(0)\|^{2}(1+\Delta t\|A\|)^{2L}}\right)$

$$\begin{pmatrix} \frac{I+\Delta tA}{\|I+\Delta tA\|} & *\\ * & * \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{(I+\Delta tA)^L}{\|I+\Delta tA\|^L} & *\\ * & * \end{pmatrix}$$

Observation: $\|I + \Delta tA\|^L \approx \|e^{\Delta tA}\|^L \sim \|e^{tA}\|$. For dissipative system and unitary dynamics, it is ok!

Needs:

$$\begin{pmatrix} \Xi & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} \Xi & * \\ \|\Xi\| & * \end{pmatrix}$$

11 [Fang-Lin-Tong 2023]

Needs:

$$\begin{pmatrix} \Xi \\ \alpha \\ * \\ * \\ * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} \Xi \\ \|\Xi\| \\ * \\ * \\ * \end{pmatrix}$$

Needs:

$$\begin{pmatrix} \Xi & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} \Xi & * \\ \|\Xi\| & * \\ * & * \end{pmatrix}$$

Remark: For unitary dynamics, OAA works the magic! OAA only needs to boost a singular value, say 1/2 to 1 using $3x - 4x^3$.)

Needs:

$$\begin{pmatrix} \Xi & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} \Xi & * \\ \|\Xi\| & * \\ * & * \end{pmatrix}$$

Remark: For unitary dynamics, OAA works the magic! OAA only needs to boost a singular value, say 1/2 to 1 using $3x - 4x^3$.) Here we need to boost all singular values uniformly.

Denote $\gamma := \alpha / \|\Xi\|$.

We seek for a polynomial approximation of γx on $[-\gamma^{-1}, \gamma^{-1}]$.

Needs:

$$\begin{pmatrix} \frac{\Xi}{\alpha} & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} \frac{\Xi}{\|\Xi\|} & * \\ * & * \end{pmatrix}$$

Remark: For unitary dynamics, OAA works the magic! OAA only needs to boost a singular value, say 1/2 to 1 using $3x - 4x^3$.) Here we need to boost all singular values uniformly.

Denote
$$\gamma := \alpha / \|\Xi\|$$
.

We seek for a polynomial approximation of γx on $[-\gamma^{-1}, \gamma^{-1}]$.

Needs:

$$\begin{pmatrix} \Xi & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} (1-\delta) \frac{\Xi}{\|\Xi\|} & * \\ * & * \end{pmatrix}$$

Remark: For unitary dynamics, OAA works the magic! OAA only needs to boost a singular value, say 1/2 to 1 using $3x - 4x^3$.) Here we need to boost all singular values uniformly.

Denote
$$\gamma := \alpha / \|\Xi\|$$
.

We seek for a polynomial approximation of $(1 - \delta)\gamma x$ on $[-\gamma^{-1}, \gamma^{-1}]$.

Needs:

$$\begin{pmatrix} \frac{\Xi}{\alpha} & * \\ * & * \end{pmatrix} \xrightarrow{\text{oblivious to the state}} \begin{pmatrix} (1-\delta) \frac{\Xi}{\|\Xi\|} & * \\ * & * \end{pmatrix}$$

Remark: For unitary dynamics, OAA works the magic! OAA only needs to boost a singular value, say 1/2 to 1 using $3x - 4x^3$.) Here we need to boost all singular values uniformly.

Denote
$$\gamma := \alpha / \|\Xi\|$$
.

We seek for a polynomial approximation of $(1 - \delta)\gamma x$ on $[-\gamma^{-1}, \gamma^{-1}]$.

Gibbs phenomena

Algorithm per time step:

- Numerical integrator (Dyson, Magnus, Euler, etc)
- Uniform Singular Value Amplification (QSVT)

[Fang-Lin-Tong 2023 / arXiv 2022]

Algorithm per time step:

Numerical integrator (Dyson, Magnus, Euler, etc)

Uniform Singular Value Amplification (QSVT)

Construct a block-encoding of long-time evolution by compression gadget.

Generic Result for dissipative or near-unitary dynamics: The quantum algorithm makes

 $\mathcal{O}\left(qT^2 \operatorname{polylog}(T/\epsilon)\right)$

queries to the oracle for A and

 $\mathcal{O}\left(q
ight)$

queries to the oracle preparing the initial state. (smoothness is not required; bounded variation is sufficient)

[[]Fang-Lin-Tong 2023 / arXiv 2022]

Approach 3: Complex analysis (Linear combination of Hamiltonian simulation) ¹²

$$A(t) = L(t) + iH(t), \quad L(t) = \frac{A(t) + A^{\dagger}(t)}{2}, \quad H(t) = \frac{A(t) - A^{\dagger}(t)}{2i}.$$

Assume $L(t) \preceq 0$ for all $t \in \mathcal{I}$.

$$\mathcal{T}e^{-\int_0^t A(s)ds} = \int_{\mathbb{R}} \frac{1}{\pi(1+k^2)} \mathcal{T}e^{-i\int_0^t (H(s)+kL(s))ds}dk, \quad t \in \mathcal{I}.$$

^{12 [}An-Lin-Liu 2023]

Approach 3: Complex analysis (Linear combination of Hamiltonian simulation) ¹²

$$A(t) = L(t) + iH(t), \quad L(t) = \frac{A(t) + A^{\dagger}(t)}{2}, \quad H(t) = \frac{A(t) - A^{\dagger}(t)}{2i}.$$

Assume $L(t) \preceq 0$ for all $t \in \mathcal{I}$.

$$\mathcal{T}e^{-\int_0^t A(s)ds} = \int_{\mathbb{R}} \frac{1}{\pi(1+k^2)} \mathcal{T}e^{-i\int_0^t (H(s)+kL(s))ds}dk, \quad t \in \mathcal{I}.$$

Generic Result for dissipative dynamics: The quantum algorithm makes

$$\mathcal{O}\left(q^{2+2/p}T^{1+1/p}/\epsilon^{1+2/p})\right)$$

queries to the oracle for H and L and

 $\mathcal{O}\left(q\right)$

queries to the oracle preparing the initial state.

12 [An-Lin-Liu 2023]

Everything we discussed is on general quantum solvers (for general A(t)) and attaining lower-bound in the worst-case scenario. This doesn't mean that the scaling for a specific case can not be further improved.

^{13 [}Babbush-Berry-Kothari-Somma-Wiebe 2023]

Everything we discussed is on general quantum solvers (for general A(t)) and attaining lower-bound in the worst-case scenario.

This doesn't mean that the scaling for a specific case can not be further improved.

Simulating coupled classical oscillators ¹³

a specific linear system with conservation laws.

^{13 [}Babbush-Berry-Kothari-Somma-Wiebe 2023]

Everything we discussed is on general quantum solvers (for general A(t)) and attaining lower-bound in the worst-case scenario.

This doesn't mean that the scaling for a specific case can not be further improved.

Simulating coupled classical oscillators ¹³

a specific linear system with conservation laws.

For simplicity, consider $E(0) \equiv E(t) = \sum_{j=1}^{N} \frac{\dot{x}_j(t)^2}{2} + \frac{x_j(t)^2}{2}$. Hamiltonian ODE: $\dot{y} = Ay$, $y = (x_1, \cdots, x_N, \dot{x}_1, \cdots, \dot{x}_N)$.

¹³[Babbush-Berry-Kothari-Somma-Wiebe 2023]

Everything we discussed is on general quantum solvers (for general A(t)) and attaining lower-bound in the worst-case scenario.

This doesn't mean that the scaling for a specific case can not be further improved.

Simulating coupled classical oscillators ¹³

a specific linear system with conservation laws.

For simplicity, consider $E(0) \equiv E(t) = \sum_{j=1}^{N} \frac{\dot{x}_j(t)^2}{2} + \frac{x_j(t)^2}{2}$. Hamiltonian ODE: $\dot{y} = Ay$, $y = (x_1, \cdots, x_N, \dot{x}_1, \cdots, \dot{x}_N)$.

Results (informal):

• It can be mapped to Hamiltonian simulation, and the quantum algorithm makes

$$\mathcal{O}(t + \log(1/\epsilon))$$

queries to the oracles representing the coefficient matrix.

¹³ [Babbush-Berry-Kothari-Somma-Wiebe 2023]

Everything we discussed is on general quantum solvers (for general A(t)) and attaining lower-bound in the worst-case scenario.

This doesn't mean that the scaling for a specific case can not be further improved.

Simulating coupled classical oscillators ¹³

a specific linear system with conservation laws.

For simplicity, consider $E(0) \equiv E(t) = \sum_{j=1}^{N} \frac{\dot{x}_j(t)^2}{2} + \frac{x_j(t)^2}{2}$. Hamiltonian ODE: $\dot{y} = Ay$, $y = (x_1, \cdots, x_N, \dot{x}_1, \cdots, \dot{x}_N)$.

Results (informal):

It can be mapped to Hamiltonian simulation, and the quantum algorithm makes

$$\mathcal{O}(t + \log(1/\epsilon))$$

queries to the oracles representing the coefficient matrix.

still BQP-hard.

¹³ [Babbush-Berry-Kothari-Somma-Wiebe 2023]

Summary of Quantum Linear Differential Equation Solvers

- Definition of the task
- Challenges
- Ways to address (general solvers)
 - QSLA + Padding
 - Time-marching
 - LCHS
- Improved solver for specific cases, e.g., simulating coupled classical oscillators

Thank you for your attention!

