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• A central goal of science is to learn how our universe operates. 

• Because our universe is inherently quantum, the ability to efficiently learn in the quantum 
world could lead to many advances.
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• To accelerate and automate the development of (quantum) science, it is important to 
understand how to design better algorithms to learn in the quantum universe.
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• Learning is the combination of: 

1. receiving information about the universe, 2. processing that information to form models, 
3. storing the models and, subsequently,      4. using the models to predict in new scenarios.
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How to efficiently learn in the quantum universe?

Learning with classical machines Learning with quantum machines

What can classical machines learn? 
Can classical ML perform 

better than non-ML algorithms?

Can quantum machines learn faster 
and/or predict more accurately 

than classical machines?

Overview
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• How can classical machines “see” quantum many-body systems?
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The big question 

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.



• What do we mean by “seeing” a quantum system? 

• Converting the quantum system to a classical form that accurately 
captures many properties of the quantum system.

The big question 

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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• Quantum state tomography: 

     Learn the density matrix representation of the -qubit state . n ρ

Sample complexity: Θ(22n)

• Sample-optimal protocol (Haah et al.; O’Donnel, Wright):

Quantum resource:  qubits + exponentially long circuitsΘ(n22n)

Classical storage: Ω(22n)

Classical post-processing: Ω(22n)

Standard approach

(  PSD matrix with trace 1)2n × 2n



Sample complexity: Unknown (could be exponential)

Quantum resource: Simple quantum circuit + measurements

Classical storage: Unknown (depends on sample complexity)

Classical post-processing: Unknown (could be very long)

• POVM Neural Network Tomography (Carrasquilla et al.):

Perform simple quantum measurements. 

Train a neural network to represent the quantum state.

• Deep learning:

?

?
?

Recent approach



Find a provably efficient procedure that 
    1. Learns a classical representation of an unknown -qubit state  
        from very few measurements (not exponential in ). 
    2. Uses the classical representation to predict many properties 
        of the quantum state .
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Predicting…

…

hO1i , hO2i , hO3i ,
hO4i , hO5i , hO6i ,
hO7i , hO8i , hO9i ,
hO10i , hO11i ,

O1,O2,O3,O4, . . .
A Large Number of Properties

Step 2:

Prediction

What one wants
Find a provably efficient procedure that 
    1. Learns a classical representation of an unknown -qubit state  
        from very few measurements (not exponential in ). 
    2. Uses the classical representation to predict many properties 
        of the quantum state .

n ρ
n

ρ



For example: 
• , then naively we need  measurements. 
• This theorem shows that we only need  measurements. 
Furthermore, we don’t need to know  in advance.

M = 106, B = 1 106/ϵ2

6 log(10)/ϵ2

O1, …, OM

Let  = # of properties,  = norm bound,  = error.  a procedure that 
1. Learns a classical representation of an unknown -qubit state  from 

                            measurements. 
2.  Given any  with the procedure can use the 
     classical representation to predict where with high prob., 
                               , for all .

M B ϵ ∃
n ρ

T = 𝒪(B log(M)/ϵ2)
O1, …, OM B ≥ Tr(O2

i ),
̂o1, …, ̂oM,

| ̂oi − tr(Oiρ)| < ϵ i = 1,…, M

Theorem 1 [HKP20]

Classical shadow formalism
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The Procedure: 
Data Acquisition Phase
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|si⟩ = U†
i |bi⟩
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Repeat the following  times: 
• Sample a random Clifford circuit  to evolve the system. 
• Measure the system in the computational basis . 
• Store the classical shadow: .

T
Ui

|bi⟩ ∈ {0,1}n

̂σi = (2n + 1)U†
i |bi⟩⟨bi|Ui − I Only  bits𝒪(n2)



Given , 
           how to predict properties of the quantum state ?

ST(ρ) = { ̂σ1, …, ̂σT}
ρ

Predict  .̂o = median ( 1
T/K

T/K

∑
i=1

Xi, …,
1

T/K

N

∑
i=T−T/K+1

Xi)
Compute  .Xi = tr(O ̂σi), ∀i = 1,…, T

Algorithm for predicting : (median-of-means)tr(Oρ)

The Procedure: 
Prediction Phase

Classical shadow 
̂σi = (2n + 1)U†

i |bi⟩⟨bi|Ui − I
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• 1st moment  corresponds to the 4th moment of random Clifford circuit . 
                          

• 2nd moment  corresponds to the 6th moment of random Clifford circuit .

𝔼[ ̂σi] Ui
𝔼[ ̂σi] = 𝔼Ui ∑

bi∈{0,1}n

⟨bi|UiρU†
i |bi⟩[(2n + 1)U†

i |bi⟩⟨bi|Ui − I]
𝔼[ ̂σi ⊗ ̂σi] Ui

Proof Sketch: 
Moments

Classical shadow 
̂σi = (2n + 1)U†

i |bi⟩⟨bi|Ui − I
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• Weingarten calculus fully characterizes moments of random -size circuit. 
                   The moments of  correspond to the symmetric group. 

• Random Clifford circuit matches random -size circuit up to the 6th moments.

exp(n)
SU(2n)

exp(n)

Proof Sketch: 
Weingarten Calculus

Classical shadow 
̂σi = (2n + 1)U†

i |bi⟩⟨bi|Ui − I
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• 1st moment . So  up to random fluctuations. 

• 2nd moment  is well-controlled despite the  factor. 
• Median-of-means estimator only cares about the first two moments.

𝔼[ ̂σi] = ρ ̂σi ≈ ρ

𝔼[ ̂σi ⊗ ̂σi] (2n + 1)

Proof Sketch: 
Concentration

Classical shadow 
̂σi = (2n + 1)U†

i |bi⟩⟨bi|Ui − I



Classical shadow formalism
Theorem (Huang et al.; 2020)

We can predict any  with  to  error from 
                   measurements.

O1, …, OM B ≥ Tr(O2
i ) ϵ

T = 𝒪(B log(M)/ϵ2)

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.



Classical shadow formalism
Theorem (Huang et al.; 2020)

We can predict any  with  to  error from 
                   measurements.

O1, …, OM B ≥ Tr(O2
i ) ϵ

T = 𝒪(B log(M)/ϵ2)

Q: Could this be further improved?

Theorem (Huang et al.; 2020)

To predict any  with  to  error, we need 
                   measurements.

O1, …, OM B ≥ Tr(O2
i ) ϵ

T = Ω(B log(M)/ϵ2)

• Proved by relating to quantum communication tasks. 
• This lower bound applies *only* to learning using classical machines.

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.



∥O∥shadow = max
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The corresponding norm: 
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The corresponding norm: 
 ∥O∥shadow ≤ 2k∥O∥∞

Observable  acts on  qubitsO k

Application: 
2-point correlation, 
local Hamiltonian.

Classical shadow formalism

∥O∥shadow = max
σ∈S2n

(𝔼U∼𝒰 ∑
b∈{0,1}n

⟨b |UσU† |b⟩⟨b |Uℳ−1 (O) U† |b⟩2)
1/2

.

Theorem (Huang et al.; 2020)

We can predict any  with  to  error from 
                   measurements.

O1, …, OM B ≥ ∥Oi∥2
shadow ϵ

T = 𝒪(B log(M)/ϵ2)



Classical shadow formalism

[HKP20] Hsin-Yuan Huang, Richard Kueng, John Preskill. Predicting many properties of a quantum system from very few measurements, Nature Physics, 2020.
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Applications of classical shadows
Benchmarking quantum systems

The ability to estimate quantum fidelity and verify 
entanglement enables efficient benchmarking.
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Benchmarking quantum systems

The ability to estimate quantum fidelity and verify 
entanglement enables efficient benchmarking.
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Applications of classical shadows
Quantum chemistry simulation

Quantum simulation algorithms often need to estimate 
many properties (e.g., local observables, Hamiltonian).

[c] Zhao et al. Physical Review Letters (2021). 
[d] Huggins et al. Nature (2022).
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Applications of classical shadows

Universal quantum-to-classical converter

Enable a variety of classical computational techniques 
(e.g., ML) for addressing quantum problems.
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• Can classical machines learn to solve challenging problems in quantum physics? 

• And can they yield better solutions than non-ML algorithms?

Classical ML for quantum problems

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

Classical machinePhysical world



Predicting ground states: Task

• Given  that describes an -qubit Hamiltonian , the machine predicts 
a classical representation (e.g., classical shadow) of the ground state  of . 

• Vector  specifies laser intensities, few-body interactions, magnetic fields, etc.

x ∈ [−1,1]m n H(x)
ρ(x) H(x)

x

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Computational hardness

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

• This problem is *extremely* hard! 

• Consider a smooth class of -qubit 2D Hamiltonians  with spectral gap 1, 
and the machine only predicts 1-body observable  in ground state . 

• Furthermore, we only care about average prediction error.

n H(x)
O ρ(x)
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Computational hardness

Proposition 1

If a classical randomized algorithm  running in time  can achieve an average prediction error 

                                                    1/4, 

for any smooth class of 2D local Hamiltonians with spectral gap 1 and any 1-body observable , 
then RP = NP.

𝒜 poly(n, m)

𝔼x∼[−1,1]m |𝒜(x, O) − Tr(Oρ(x)) |2 ≤

O

Parameters describing
a physical Hamiltonian

Classical representation
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Predicting ground states

1D

2D

Assuming RP  NP, then no randomized classical algorithm can achieve 
an average prediction error  within  time.

≠
≤ 1/4 poly(n)

RP  NP: NP-complete problems cannot be solved 
in randomized polynomial time.

≠

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

• This problem is *extremely* hard! 

• Consider a smooth class of -qubit 2D Hamiltonians  with spectral gap 1, 
and the machine only predicts 1-body observable  in ground state . 

• Furthermore, we only care about average prediction error.

n H(x)
O ρ(x)
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Predicting ground states: Task

• Can classical ML algorithms do something useful for this challenging problem?

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Training data: {xℓ → σT(ρ(xℓ))}N
ℓ=1
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Predicting ground states: Theorem

2D  any finite spatial dimension, 
spectral gap 1  any constant spectral gap, 
1-body observable  any sum of few-body observables, 
average prediction error 1/4  any average prediction error 

→
→

→
→ ϵ = 𝒪(1)

Proposition 1

If a classical randomized algorithm  running in time  can achieve an average prediction error 

                                                    1/4, 

for any smooth class of 2D local Hamiltonians with spectral gap 1 and any 1-body observable , 
then RP = NP.

𝒜 poly(n, m)

𝔼x∼[−1,1]m |𝒜(x, O) − Tr(Oρ(x)) |2 ≤

O

Assuming RP  NP, then no randomized classical algorithm can achieve 
an average prediction error  within polynomial-time.

≠
≤ 1/4

Assuming RP  NP, then no randomized classical algorithm can achieve 
an average prediction error  within  time.

≠
≤ 1/4 poly(n)

Classical algorithm

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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Theorem 1: Improved version from [LHT+23]

If a classical randomized algorithm  running in time  can achieve an average prediction error 

                                                    1/4, 

for any smooth class of 2D local Hamiltonians with spectral gap 1 and any 1-body observable , 
then RP = NP.

𝒜 poly(n, m)

𝔼x∼[−1,1]m |𝒜(x, O) − Tr(Oρ(x)) |2 ≤

O

Assuming RP  NP, then no randomized classical algorithm can achieve 
an average prediction error  within polynomial-time.

≠
≤ 1/4

Predicting ground states: Theorem

A classical ML algorithm can achieve an average prediction error  
using  training data and  computational time.

≤ ϵ
log(n) nlog(n)

any constant dimension 
any constant spectral gap 
any local observable 
any average prediction error ϵ = 𝒪(1)

Classical ML (trained with data)Classical algorithm

[LHT+23] Lewis, Huang, Tran, Lehner, Kueng, Preskill. Improved machine learning algorithm for predicting ground state properties, Submitted, 2023.

[HKT+22] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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A classical ML algorithm can achieve an average prediction error  
using  training data and  computational time.
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Theorem 1: Improved version from [LHT+23]



2D  any finite spatial dimension, 
spectral gap 1  any constant spectral gap, 
1-body observable  any sum of few-body observables, 
average prediction error 1/4  any average prediction error 

→
→

→
→ ϵ = 𝒪(1)

Predicting ground states: Theorem
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[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

We proved that a poly-time classical ML algorithm (w/ data) can 
predict much better than any poly-time classical algorithm.
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Why ML can be more useful than 

non-ML algorithms?

The answer      : 
Generalizing from data can be 

easier than computing everything



Predicting ground states: Theorem

[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.

The question      : 
Why ML can be more useful than 

non-ML algorithms?

The answer      : 
Generalizing from data can be 

easier than computing everything

[HBM+21] Huang, Broughton, et al. Power of data in quantum machine learning. Nature Communications, 2021.

Data contain computational power 
(e.g., nature operates quantumly)



2D random Heisenberg model
We consider training data size ,  randomized measurements for constructing classical shadows. 
The best ML model is chosen from Gaussian kernel method, infinite-width neural networks, and -Dirichlet kernel.
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[HKT+21] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.



Classifying quantum phases: Theorem
Theorem 2

• The assumption is believed to hold for gapped quantum systems.

If there exists a nonlinear function of few-body reduced density matrices 
for classifying the phases, then the classical ML algorithm can efficiently 
learn to classify these phases.
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[HKT+22] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.



1D Symmetry protected topological phases
We consider  randomized measurements to construct classical shadows for each state. 
The classical unsupervised ML model is a kernel PCA using the shadow kernel.
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(XiXi+1 + YiYi+1 + �ZiZi+1)

[HKT+22] Huang, Kueng, Torlai, Albert, Preskill. Provably efficient machine learning for quantum many-body problems, Science, 2022.
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What can classical machines learn? 
Can classical ML perform 

better than non-ML algorithms?

Can quantum machines learn faster 
and/or predict more accurately 

than classical machines?

How to efficiently learn in the quantum universe?
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Classical agent

Classical 
Computation

Physical 
Measurements

Classical 
Memory

Receive, process, and store 
classical information

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Quantum 
Computation

Transduce from 
quantum sensors

Quantum 
Memory

Receive, process, and store 
quantum information

Quantum agent

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Classical vs Quantum

• What are the advantage of a quantum agent over a classical agent? 

• Could quantum technology fundamentally alter our ability to learn about the physical world?

Classical agentPhysical system

Classical 
information

Quantum agentPhysical system

Quantum 
information

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Learning a state
• Assume the only unknown that we care about is an -qubit state . 

• Classical agents can perform any measurement on  in each experiment. 

• Quantum agents can obtain and store  coherently from each experiment.

n ρ

ρ

ρ

Classical agentPhysical system

Classical 
information

Quantum agentPhysical system

Quantum 
information



Classical learning agent

Physical 
measurements

Classical 
computation

Classical 
memory

• We begin with the simpler task of learning about an unknown physical system  (density matrix). 
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• We consider a physical source that could generate a single copy of  at a time.
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Theorem

Classical agent needs  experiments to predict an adversarially chosen , 
but quantum agent only needs  experiments to predict all  observables.

Ω(2n) P
𝒪(n) 4n

• The classical/quantum agent learns about the unknown -qubit state . 

• Subsequently, the agent predicts  for any observable .

n ρ

Tr(Pρ) P ∈ {I, X, Y, Z}⊗n

Quantum advantage 
in predicting Pauli observables



Exponential quantum advantage is present even when the state  is 
a classical distribution over product states (no entanglement!).

ρ

Quantum advantage 
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• The classical/quantum agent learns about the unknown -qubit state . 
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Quantum advantage 
in predicting Pauli observables

Uncertainty principle significantly hinders the learning ability of classical agents, 
but surprisingly not the ability of a quantum agent.

• The classical/quantum agent learns about the unknown -qubit state . 

• Subsequently, the agent predicts  for any observable .

n ρ

Tr(Pρ) P ∈ {I, X, Y, Z}⊗n

Theorem

Classical agent needs  experiments to predict an adversarially chosen , 
but quantum agent only needs  experiments to predict all  observables.

Ω(2n) P
𝒪(n) 4n



Proof Sketch: Tree representation

• Consider the lower bound  for classical agents. 

• We consider a graphical representation of the memory state of the classical agent.

Ω(2n)

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.



Proof Sketch: Tree representation

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, PRL 2021.

ρA ρB

• Consider the lower bound  for classical agents. 

• We consider a graphical representation of the memory state of the classical agent.

Ω(2n)



Many-vs-one distinguishing task
• We reduce the prediction task to a many-vs-one distinguishing task. 

• Prediction task: Estimate  to  error for all . 

• Distinguishing task: Distinguish between null hypothesis and the alternative hypothesis.

Tr(Pρ) 1/4 P ∈ {I, X, Y, Z}⊗n∖{I⊗n}

and more…
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Many-vs-one distinguishing task

 ρ = I/2n

 ρ = (I + PB)/2n

 ρ = (I − PB)/2n

and more…

• We reduce the prediction task to a many-vs-one distinguishing task. 

• Prediction task: Estimate  to  error for all . 

• Distinguishing task: Distinguish between null hypothesis and the alternative hypothesis.

Tr(Pρ) 1/4 P ∈ {I, X, Y, Z}⊗n∖{I⊗n}



Information-theoretic bound
• Succeeding in the many-vs-one distinguishing task implies a lower bound on the TV in 

the probability over leaf nodes. 

• We then upper bound TV with a function of the number of experiments (i.e., samples).

and more…



Quantum advantage 
in predicting Pauli observables

Uncertainty principle significantly hinders the learning ability of classical agents, 
but surprisingly not the ability of a quantum agent.

• The classical/quantum agent learns about the unknown -qubit state . 

• Subsequently, the agent predicts  for any observable .

n ρ

Tr(Pρ) P ∈ {I, X, Y, Z}⊗n

Theorem

Classical agent needs  experiments to predict an adversarially chosen , 
but quantum agent only needs  experiments to predict all  observables.

Ω(2n) P
𝒪(n) 4n



Quantum advantage 
in predicting general observables

• The classical/quantum agent learns about the unknown -qubit state . 

• Subsequently, the agent predicts  from a known set .

n ρ

Tr(Oiρ) O1, …, OM

Theorem

Classical agent needs  experiments to predict the  observables, 
but quantum agent only needs  experiments to predict the observables.

Ω̃(min(M,2n)) M
𝒪(n log2 M)

Quantum agent uses the truly-quantum shadow tomography [Badescu, O’Donnel]: 
“Online learning” + “Quantum threshold search.”



Exponential quantum advantage
Predicting many incompatible observables

To predict all Pauli observables , 
classical agent needs  experiments, 
quantum agent only needs  experiments.

{I, X, Y, Z}⊗n

Ω(2n)
𝒪(n)

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Exponential quantum advantage
Performing quantum PCA

To estimate property of principal component, 
classical agent needs exponential time, 
quantum agent needs polynomial.

Predicting many incompatible observables

To predict all Pauli observables , 
classical agent needs  experiments, 
quantum agent only needs  experiments.

{I, X, Y, Z}⊗n

Ω(2n)
𝒪(n)

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Exponential quantum advantage

Uncovering symmetry in dynamics

Performing quantum PCA

To estimate property of principal component, 
classical agent needs exponential time, 
quantum agent needs polynomial.

Predicting many incompatible observables

To predict all Pauli observables , 
classical agent needs  experiments, 
quantum agent only needs  experiments.

{I, X, Y, Z}⊗n

Ω(2n)
𝒪(n)

Classifying dynamics with or without time-reversal 
symmetry gives exponential separations

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Exponential quantum advantage

Learning physical dynamics

Classifying dynamics with or without time-reversal 
symmetry gives exponential separations

To learn a polynomial-time quantum process, 
a classical agent requires exponential experiments, 
a quantum agent only needs polynomial experiments.

Uncovering symmetry in dynamics

Performing quantum PCA

To estimate property of principal component, 
classical agent needs exponential time, 
quantum agent needs polynomial.

Predicting many incompatible observables

To predict all Pauli observables , 
classical agent needs  experiments, 
quantum agent only needs  experiments.

{I, X, Y, Z}⊗n

Ω(2n)
𝒪(n)

[HBC+] Huang, et all. Quantum advantage in learning from experiments, Science, 2022.

[HKP21] Huang, Kueng, Preskill. Information-theoretic bounds on quantum advantage in machine learning, Physical Review Letters, 2021.
[CCHL21] Chen, Cotler, Huang, Li. Exponential separations in learning with and without quantum memory, FOCS, 2021.



Quantum advantage in 𝖭𝖨𝖲𝖰

• Do these quantum advantages persist in noisy quantum computers? 
Yes! Rigorous analysis in [HFP22], Experiments in [HBC+].

Classical agentPhysical system

Classical 
information

Quantum agentPhysical system

Quantum 
information

[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.



Demonstration on Sycamore: 
Quantum advantage in learning states

[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.

Utilizing a total of 40 qubits

Sycamore Processor

[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.



Demonstration on Sycamore: 
Quantum advantage in learning states

[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
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[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
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[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.



Demonstration on Sycamore: 
Quantum advantage in learning dynamics

Quantum Quantum
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[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
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[HBC+] Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean. Quantum advantage in learning from experiments, Science, 2022.
[HFP22] Huang, Flammia, Preskill. Foundations for learning from noisy quantum experiments, QIP, 2022.
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How to efficiently learn in the quantum universe?

Learning with classical machines Learning with quantum machines

What can classical machines learn? 
Can classical ML perform 

better than non-ML algorithms?

Can quantum machines learn faster 
and/or predict more accurately 

than classical machines?

Overview

Classical machines    Classical learning machines    Quantum learning machines 
                (predicting ground states)                 (uncovering symmetry, …)

≪ ≪



Conclusion
• Significant recent progress in understanding how to learn in the quantum universe. 

But most on lower-level tasks (e.g., predicting properties). 

• How to create rigorous ML algorithms for higher-level tasks: 
designing quantum circuits / protocols / algorithms, discovering new physics?



• Could we develop an algorithmic theory to accelerate/automate (quantum) science 
and the discovery of new physical phenomena? 

• Could we build a quantum machine capable of learning and discovering new facets 
of our universe beyond humans and classical machines?

AI imagination of itself learning and discovering new facets of our quantum universe (Credit: DALL E)⋅

Long-term ambitions


