Introduction to quantum numerical linear algebra

Dong An

Joint Center for Quantum Information and Computer Science, University of Maryland

dongan@umd.edu

September 12, 2023

Overview

Introduction

Basic linear algebra operations

Linear systems of equations

Eigenvalue problems

Matrix functions

Introduction

Quantum numerical linear algebra

- Numerical linear algebra: using matrix operations to design algorithms
 - Operations: Matrix/vector addition, multiplication
 - Tasks: solving linear systems of equations, matrix factorization, eigenvalue/singular value decomposition/transformation
- Quantum numerical linear algebra

Quantum numerical linear algebra: desired speedup

poly(N) vs polylog(N)

- ▶ For *N*-dimensional system (suppose $N = 2^n$), classical algorithms typically take cost at least linear in *N*
 - Storing an N-dimensional vector takes $\sim N$ cost
 - A single application of matrix-vector multiplication takes at least ~ N computational cost
- For quantum algorithms, we expect computational cost to be O(polylog(N)) = O(poly(n))
 - An *n*-qubit quantum state can be viewed as a 2^n -dimensional unit vector
 - Matrix operations are implemented by quantum operations on these n qubits

Quantum numerical linear algebra: restrictions

- Vectors (quantum states) are normalized under 2-norm
 - May lose some information
- Only a subset of operations are efficiently implementable: unitary matrices
 - For general matrix operations, we will embed its rescaled version into a sub-block of unitary operations
 - Will introduce extra computational cost
- No cloning theorem
 - Iterative methods are not generally efficient for quantum

Quantum vs Classical

	Classical	Quantum
Space	2 ⁿ	п
Unitary		\checkmark
General matrix	\checkmark	
Copying	\checkmark	
Entry-wise information	\checkmark	

- Quantum numerical linear algebra: linear algebra algorithms with restrictions but possible speedup
- Speedup for certain tasks:
 - Factorization
 - Unstructured search
 - Discrete Fourier transform
 - Applied math: linear system, differential equation, optimization, machine learning, ...

Quantum algorithm zoo: https://quantumalgorithmzoo.org Lecture notes by Lin Lin: [arXiv:2201.08309]

Today's talk

- Basic linear algebra operations
 - Input models for vectors and matrices
 - Matrix-vector multiplication
 - Matrix/vector addition: linear combination of unitaries (LCU)
 - Matrix multiplication
- Linear systems of equations
 - General algorithms: HHL, LCU, adiabatic quantum computing
 - Preconditioning
- Eigenvalue problems
- Matrix functions
 - Functions of Hermitian matrices: quantum signal processing (QSP), qubitization
 - Functions of general matrices: quantum singular value transformation (QSVT)
 - LCU

Basic linear algebra operations

Input model: vectors

• Single-qubit state
$$\cong \mathbb{C}^2 / \| \cdot \|_2$$

$$|0
angle = \left(egin{array}{c} 1 \\ 0 \end{array}
ight), \quad |1
angle = \left(egin{array}{c} 0 \\ 1 \end{array}
ight), \quad lpha \left|0
angle + eta \left|1
ight
angle = \left(egin{array}{c} lpha \\ eta \end{array}
ight)$$

Measurement: we get 0 with probability |α|², and 1 with probability |β|²
 General *n* qubit space: tensor product of *n* multiple single qubit

$$|i_1i_2\cdots i_n\rangle = |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle \in \mathbb{C}^{2^n}/\|\cdot\|_2$$

Common notations:

We use |j⟩, 0 ≤ j ≤ 2ⁿ − 1 to represent the orthonormal basis of the Hilbert space
 An element (a quantum state) in the *n*-qubit space:

$$|\mathbf{v}\rangle = \sum_{j=0}^{2^n-1} \alpha_j |j\rangle = (\alpha_0, \cdots, \alpha_{2^n-1})^T$$

• Measurement: we get j with probability $|\alpha_j|^2$ (but destroy the superposition)

Input model: state preparation oracle

$$O_u:\ket{0}
ightarrow \ket{u} = \sum_{j=0}^{2^n-1} u_j\ket{j}$$

Constructing O_u is generally hard, but easy in special cases¹

¹Grover-Rudolph [arXiv:quant-ph/0208112], Zhang-Li-Yuan [arXiv:2201.11495]

Input model: matrices

Definition (Block-encoding)

Let A be a 2^{n} -by- 2^{n} matrix. A block-encoding of A is a 2^{n+a} -by- 2^{n+a} unitary U_{A} such that

$$\boldsymbol{A} \approx \alpha \left(\langle \boldsymbol{0} |^{\otimes \boldsymbol{a}} \otimes \boldsymbol{I} \right) \, \boldsymbol{U}_{\boldsymbol{A}} \left(| \boldsymbol{0} \rangle^{\otimes \boldsymbol{a}} \otimes \boldsymbol{I} \right) \,,$$

or equivalently

$$U_{\mathcal{A}} \approx \left(\begin{array}{cc} rac{1}{lpha}\mathcal{A} & * \\ * & * \end{array}
ight).$$

▶ α is called the block-encoding factor and should satisfy $\alpha \ge \|A\|$

Input model: matrices

$$U_A \approx \left(\begin{array}{cc} rac{1}{lpha} A & * \\ * & * \end{array}
ight)$$

For a arbitrarily given matrix A, constructing U_A is in general hard
 Special cases: unitary, sparse matrices, structured matrices, ···²

²Gilyen Etal [arXiv:1806.01838], Camps Etal [arXiv:2203.10236]

Matrix-vector multiplication

Input:

Block-encoding of A:

 $A \approx \alpha (\langle 0 | \otimes I) U_A (| 0 \rangle \otimes I)$

$$\begin{array}{ll} \text{or} & \left. \left. \left. U_{\mathcal{A}} \approx \left| 0 \right\rangle \left\langle 0 \right| \otimes \frac{\mathcal{A}}{\alpha} + \left| 0 \right\rangle \left\langle 1 \right| \otimes * \right. \\ & \left. + \left| 1 \right\rangle \left\langle 0 \right| \otimes * + \left| 1 \right\rangle \left\langle 1 \right| \otimes * \right. \end{array} \right. \end{array}$$

Quantum state:

$$\ket{u} = \sum_{j=0}^{2^n-1} u_j \ket{j}$$

'Algorithm': applying block-encoding

or

or

$$U_{\mathcal{A}}\ket{0}\ket{u}pproxrac{1}{lpha}\ket{0}\mathcal{A}\ket{u}+c\ket{1}\ket{*}$$

$$\left(\begin{array}{cc}\frac{1}{\alpha}A & *\\ * & *\end{array}\right)\left(\begin{array}{c}u\\0\end{array}\right) = \left(\begin{array}{c}\frac{1}{\alpha}Au\\ *\end{array}\right)$$

Need to measure the first ancilla qubit

Success probability: $(\|A|u\rangle \|/\alpha)^2$

Number of repeats (after amplitude amplification): $\mathcal{O}\left(\alpha/\|A|u\rangle\|\right)$

Matrix addition: Linear combination of unitaries (LCU)

Task of LCU³: given a set of unitary operators U_j and coefficients c_j , compute

 $\sum_{j} c_{j} U_{j}$

³Childs-Wiebe [arXiv:1202.5822], Childs-Kothari-Somma [arXiv:1511.02306]

Matrix addition: LCU

A toy example: computing $\frac{1}{2}(U_0 + U_1) |u_0\rangle$

 $\begin{array}{l} \text{Prepare Oracle } O_p: |0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_1}} \sum_j \sqrt{c_j} \, |j\rangle \\ \text{Select Oracle } O_s = \sum_j |j\rangle \, \langle j| \otimes U_j \end{array}$

Matrix addition: LCU

$$egin{aligned} |0
angle & |u_0
angle & rac{O_{
ho}}{\longrightarrow} & rac{1}{\sqrt{\|c\|_1}} \sum_j \sqrt{c_j} \ket{j} \ket{u_0} \ & rac{O_s}{\longrightarrow} & rac{1}{\sqrt{\|c\|_1}} \sum_j \sqrt{c_j} \ket{j} U_j \ket{u_0} \ & rac{O_p^{\dagger}}{\longrightarrow} & rac{1}{\|c\|_1} \ket{0} \sum_j c_j U_j \ket{u_0} + \ket{\perp} \end{aligned}$$

▶ Repeats: O(||c||₁/||∑c_jU_j|u₀⟩||)
 ▶ Overall complexity depends on the cost of constructing O_p and O_s

General: computing
$$\sum_{j} c_{j} U_{j}$$

Prepare Oracle
$$O_p : |0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_1}} \sum_j \sqrt{c_j} |j\rangle$$

Select Oracle $O_s = \sum_j |j\rangle \langle j| \otimes U_j$

Matrix addition

▶ Goal: compute (block encode) $\sum_j c_j A_j$ for general matrices $\|A_j\| \leq 1$

Algorithm: LCU where unitaries are block-encodings

$$O_{s} = \sum_{j} \ket{j} ra{j} \otimes U_{\mathcal{A}_{j}}, \qquad U_{\mathcal{A}_{j}} = \left(egin{array}{cc} \mathcal{A}_{j} & st \ st & st \end{array}
ight)$$

Vector addition

- Goal: compute $\sum_{j} c_{j} |u_{j}\rangle$ for quantum states $|u_{j}\rangle$
- ▶ Algorithm: Implement $\sum_{i} c_{j} U_{j}$ on $|0\rangle$ where U_{j} 's are state preparation oracles

$$U_j:\ket{0}
ightarrow \ket{u_j}, \qquad \sum_j c_j U_j\ket{0} = \sum_j c_j \ket{u_j}$$

Matrix multiplication

Let us start with two matrices

• Two unitaries $U_1 U_0$

$$|u_0\rangle - U_0 - U_1 - U_1$$

▶ Two matrices: A_0 and A_1 , block-encodings U_{A_0} and U_{A_1} . Can we try this?

Does not work:

$$\begin{array}{c|c} U_{A_1}U_{A_0} \left| 0 \right\rangle \left| u_0 \right\rangle = U_{A_1} \left(\left| 0 \right\rangle A_0 \left| u_0 \right\rangle + \left| 1 \right\rangle \left| * \right\rangle \right) \\ \left(\begin{array}{c} A_1 & * \\ * & * \end{array} \right) \left(\begin{array}{c} A_0 & * \\ * & * \end{array} \right) \left(\begin{array}{c} u_0 \\ 0 \end{array} \right) = \left(\begin{array}{c} A_1 & * \\ * & * \end{array} \right) \left(\begin{array}{c} A_0 u_0 \\ * \end{array} \right) \end{array}$$

Matrix multiplication

Method 1: duplicate ancilla qubits

$$\begin{aligned} |0\rangle_{1} |0\rangle_{0} |u_{0}\rangle &\xrightarrow{U_{A_{0}}} |0\rangle_{1} \left(|0\rangle_{0} A_{0} |u_{0}\rangle + |1\rangle_{0} |*\rangle\right) \\ &= |0\rangle_{0} |0\rangle_{1} A_{0} |u_{0}\rangle + |1\rangle_{0} |0\rangle_{1} |*\rangle \\ &\xrightarrow{U_{A_{1}}} |0\rangle_{0} \left(|0\rangle_{1} A_{1}A_{0} |u_{0}\rangle + |1\rangle_{1} |*\rangle\right) + |1\rangle_{0} |0\rangle_{1} |*\rangle + |1\rangle_{0} |1\rangle_{1} |*\rangle \end{aligned}$$

Multiplication of J matrices: using $\mathcal{O}(J)$ extra ancilla qubits

Matrix multiplication

Method 2: compression gadget (Low-Wiebe [arXiv:1805.00675], Fang-Lin-Tong [arXiv:2208.06941])

Summary: basic linear algebra operations

- Input models: quantum state, block-encoding
- Matrix-vector multiplication: applying block-encoding
- Matrix/vector addition: LCU
- Matrix multiplication

Linear systems of equations

Quantum linear system problem (QLSP)

▶ Classical: given A: $N \times N$ Hermitian matrix, b: N-dimensional vector, compute

$$x = A^{-1}b$$

► Non-Hermitian: consider
$$\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

• Quantum: find an ϵ -approximation of the quantum state

$$\ket{x} = rac{A^{-1} \ket{b}}{\lVert A^{-1} \ket{b}
Vert}$$

► Assume ||A|| = 1 and we have some black-box access to A and |b⟩ (e.g., block-encoding and state preparation oracle)

Important parameters: dimension N, tolerated error level ε, condition number κ = ||A||||A⁻¹||

Harrow-Hassidim-Lloyd (HHL)

- ⁴The first quantum algorithm for solving QLSP
- Key equation: let $(\lambda_j, |v_j\rangle)$ be the eigenvalues and eigenvectors of A, and $|b\rangle = \sum_{j=0}^{N-1} \beta_j |v_j\rangle$, then

$$A^{-1} \ket{b} = \left(\sum_{j=0}^{N-1} \lambda_j^{-1} \ket{v_j} \langle v_j \right) \left(\sum_{j=0}^{N-1} \beta_j \ket{v_j}\right) = \sum_{j=0}^{N-1} \frac{\beta_j}{\lambda_j} \ket{v_j}$$

- Need to do:
 - store the information (binary encoding) of λ_j 's in an ancilla register coherently
 - multiply the factor λ_i^{-1} to each eigenvector $|v_j\rangle$

⁴Harrow-Hassidim-Lloyd [arXiv:0811.3171]

HHL

Need to do:

- store the information (binary encoding) of λ_j 's in an ancilla register coherently
- multiply the factor λ_i^{-1} to each eigenvector $|v_j\rangle$

Useful subroutines:

• Quantum phase estimation (QPE): Let U be a unitary and $U |\psi\rangle = e^{2\pi i \theta} |\psi\rangle$ for a real number $\theta \in [0, 1]$. The (ideal) QPE algorithm is U_{QPE} such that

$$U_{\mathrm{QPE}} \ket{\psi} \ket{0} = \ket{\psi} \ket{\theta}$$
 .

Here $|\theta\rangle = |\theta_{m-1}\rangle \cdots |\theta_1\rangle |\theta_0\rangle$ where $\theta = (.\theta_0 \theta_1 \cdots \theta_{m-1})$ is its binary representation Controlled rotation: A unitary U_{CR} such that

$$\ket{U_{\mathsf{CR}}\ket{ heta}\ket{0}}=\ket{ heta}\left(f(heta)\ket{0}+\sqrt{1-|f(heta)|^2}\ket{1}
ight)$$

HHL

HHL

- Complexity analysis: two sources
 - The cost of a single run: mainly due to QPE

 $\mathcal{O}(\kappa/\epsilon)$

Number of repeats:

 $\mathcal{O}(1/(C\|A^{-1}\ket{b}\|))=\mathcal{O}(\kappa)$

Overall complexity:

 $\mathcal{O}(\kappa^2/\epsilon)$

- Need two efficient subroutines:
 - Hamiltonian simulation: implement $e^{2\pi i A}$

QPE

Output (here $C \sim 1/\kappa$):

$$\sum_{j} C \ket{0} \ket{0} (A^{-1} \ket{b}) + \ket{\perp}$$

LCU

- Review of LCU:
 - Output: $\frac{1}{\|c\|_1} |0\rangle \sum_j c_j U_j |u_0\rangle + |\bot\rangle$
 - Cost of each run: depend on O_s
 - Repeats: $\mathcal{O}(\|c\|_1 / \|\sum c_j U_j |u_0\rangle\|)$
- Idea for QLSP: decompose A⁻¹ as linear combination of unitaries

$$|0\rangle^{l} - O_{p} - O_{s}$$

Conorali computing $\sum c_{i} U_{i}$

Prepare Oracle
$$O_p : |0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_1}} \sum_j \sqrt{c_j} |j\rangle$$

Select Oracle $O_s = \sum_j |j\rangle \langle j| \otimes U_j$

⁴Childs-Kothari-Somma [arXiv:1511.02306]

LCU: Fourier approach

Key identity:

$$\frac{1}{x} = \frac{i}{\sqrt{2\pi}} \int_0^\infty dy \int_{-\infty}^\infty dz z e^{-z^2/2} e^{-ixyz}.$$

For a Hermitian matrix A,

$$A^{-1} = \frac{i}{\sqrt{2\pi}} \int_0^\infty dy \int_{-\infty}^\infty dz z e^{-z^2/2} e^{-iyzA}$$
$$\approx \frac{i}{\sqrt{2\pi}} \int_0^Y dy \int_{-Z}^Z dz z e^{-z^2/2} e^{-iyzA}$$
$$\approx \sum c_{j,j'} e^{-iy_j z_{j'}A}$$

• ϵ -approximation if $Y = \mathcal{O}(\kappa \sqrt{\log(\kappa/\epsilon)}), Z = \mathcal{O}(\sqrt{\log(\kappa/\epsilon)})$

• Cost of Hamiltonian simulation for e^{-iHT} : $\mathcal{O}(T \operatorname{poly} \log(1/\epsilon))$

Overall complexity

$$\kappa \operatorname{poly} \log(\kappa/\epsilon) imes \kappa \sqrt{\log(\kappa/\epsilon)} = \mathcal{O}(\kappa^2 \operatorname{poly} \log(\kappa/\epsilon))$$

LCU: Chebyshev approach

- ldea: expand 1/x using Chebyshev polynomials
 - Chebyshev polynomials:

$$T_n(\cos(\theta)) = \cos(n\theta)$$

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad T_0(x) = 1, T_1(x) = x$

- Bounded by 1 on [-1,1], minimize Runge's phenomenon, close to the best polynomial approximation
- Approach:

$$\begin{split} &\frac{1}{x} \approx \frac{1 - (1 - x^2)^d}{x} \qquad \qquad (d \sim \kappa^2 \log(\kappa/\epsilon)) \\ &= 4 \sum_{j=0}^{d-1} (-1)^j \left(2^{-2d} \sum_{i=j+1}^d \binom{2d}{d+i} \right) T_{2j+1}(x) \\ &\approx 4 \sum_{j=0}^J (-1)^j \left(2^{-2d} \sum_{i=j+1}^d \binom{2d}{d+i} \right) T_{2j+1}(x) \qquad (J \sim \sqrt{d \log(d/\epsilon)}) \end{split}$$

LCU: Chebyshev approach

$$A^{-1}pprox \sum_{j=0}^{\mathcal{O}(\kappa ext{ poly log}(\kappa/\epsilon))} c_j \, T_{2j+1}(A)$$

*||T*_{2j+1}(*A*)*||* ≤ 1 but not unitary, so we need to construct its block-encoding
 The same overall complexity:

$$\kappa \operatorname{poly} \log(\kappa/\epsilon) \times \kappa \sqrt{\log(\kappa/\epsilon)} = \mathcal{O}(\kappa^2 \operatorname{poly} \log(\kappa/\epsilon))$$

Adiabatic Quantum Computing (AQC)

$$egin{aligned} &\imath\partial_t \ket{\psi(t)} = H(t/T) \ket{\psi(t)}, \quad t \in [0,T] \ H(0) \ket{\psi(0)} &= \lambda_0 \ket{\psi(0)} \end{aligned}$$

- Starting from the (easily prepared) eigenvector of H(0), the wavefunction at the final time will approximate the corresponding eigenvector of H(1) if
 - the Hamiltonian is slow enough (equivalently T is large enough)
 - gap condition is satisfied
- Application: a quantum computing model to solve eigenvalue problem^a

^aAlbash-Lidar [arXiv:1611.04471]

AQC for QLSP

(Vanilla) AQC for QLSP algorithm:

(t)

• Eigenpath corresponding to eigenvalue 0 is of interest, which connects $(b^{\top}, 0^{\top})^{\top}$ and $(x^{\top}, 0^{\top})^{\top 5}$

⁵Subasi-Somma-Orsucci [arXiv:1805.10549]

Quantum Adiabatic Theorem

Theorem (Jansen-Ruskai-Seiler (arXiv:quant-ph/0603175))

Assume gap $\Delta(s)$, then the distance between the dynamics and the eigenvector can be bounded by

$$\eta(s) = C \Big\{ \frac{\|H'(0)\|_2}{T\Delta^2(0)} + \frac{\|H'(s)\|_2}{T\Delta^2(s)} + \frac{1}{T} \int_0^s \left(\frac{\|H''(\tau)\|_2}{\Delta^2(\tau)} + \frac{\|H'(\tau)\|_2^2}{\Delta^3(\tau)} \right) d\tau \Big\}.$$

- ▶ To bound the error by ϵ : $T = O(\Delta_*^{-3} \epsilon^{-1})$
- Cubic dependence on the gap

▶ In QLSP,
$$\Delta_* \sim 1/\kappa \Longrightarrow T = \mathcal{O}(\kappa^3 \epsilon^{-1})$$

Time-optimal AQC

$$\imath \partial_t \ket{\psi(t)} = H(t/T) \ket{\psi(t)}, \quad t \in [0, T]$$

▶ Idea: generally interpolate $H(s) = (1 - f(s))H_0 + f(s)H_1$, choose proper f(s) to slow down the Hamiltonian when the gap is small

$$AQC(p): \ f(s) = c\Delta^p(f(s))$$

$$\implies T = \mathcal{O}(\kappa/\epsilon)$$
⁶

⁶An-Lin [arXiv:1909.05500]

AQC(exp)

Quantum adiabatic theorem can be improved to error ~ O(T^{-k}) if we only care about the final state error⁷

Requiring boundary cancellation condition, *i.e.*, the support of H'(s) is in (0,1)

$$\eta(s) = C \Big\{ \frac{\|H'(0)\|_2}{T\Delta^2(0)} + \frac{\|H'(s)\|_2}{T\Delta^2(s)} + \frac{1}{T} \int_0^s \left(\frac{\|H''(\tau)\|_2}{\Delta^2(\tau)} + \frac{\|H'(\tau)\|_2^2}{\Delta^3(\tau)} \right) d\tau \Big\}.$$

• Error = Boundary₁ + $\frac{1}{T} \int_0^1$ = Boundary₁ + Boundary₂ + $\frac{1}{T^2} \int_0^1$ = Boundary₁ + Boundary₂ + Boundary₃ + $\frac{1}{T^3} \int_0^1$ = ···

AQC(exp)

• AQC(exp): $f(s) = c^{-1} \int_0^s \exp[-u^{-1}(1-u)^{-1}] du$, happens to be slow as well at the smallest gap

$$\implies T = \mathcal{O}\left(\kappa \text{ poly}\log(\kappa/\epsilon)\right)^{-8}$$

⁸An-Lin [arXiv:1909.05500]

Preconditioning

- QLSP algorithms with cost O(κ poly log(κ/ε)), can still be expensive if the system is ill-conditioned
- Classical solution: preconditioning

$$Ax = b \iff MAx = Mb$$

Effective if

• $\kappa(MA) \ll \kappa(A)$

- the matrix-vector multiplication My is easily accessible, and in particular its cost is independent of κ(M)
- Classical: diagonal matrix, incomplete factorization, sparse approximate inverse (SPAI), etc.
- Quantum:
 - SPAI (Clader-Jacobs-Sprouse [arXiv:1301.2340])
 - Circulant matrix (Shao-Xiang [arXiv:1807.04563])
 - Diagonal matrix (Tong-An-Wiebe-Lin [arXiv:2008.13295])

Preconditioning

$$(A+B)\ket{x}\sim\ket{b}$$

- ► Assume A is easily invertible with very large ||A|| and moderate ||B||, ||A⁻¹||, ||(A + B)⁻¹||
- $\blacktriangleright \ \kappa(A+B) \sim \mathcal{O}(\|A\|)$
- An example: Poisson's equation $-\Delta u(r) + V(r)u(r) = b(r)$
- Preconditioner: A^{-1}

Algorithm:

 $A^{-1} \rightarrow A^{-1}B \rightarrow I + A^{-1}B \rightarrow (I + A^{-1}B)^{-1} \rightarrow (I + A^{-1}B)^{-1}A^{-1} = (A + B)^{-1}$

Need matrix addition and multiplication, and fast-inversion of a diagonal matrix

Summary: QLSP

► HHL algorithm:

QPE and Hamiltonian simulation

$$\mathcal{O}(\kappa^2/\epsilon) \xrightarrow{improvable} \mathcal{O}(\kappa/\epsilon^3)$$

► LCU:

• Polynomial approximation of 1/x

•
$$\mathcal{O}(\kappa^2 \operatorname{\text{poly}} \log(\kappa/\epsilon)) \xrightarrow{improvable} \mathcal{O}(\kappa \operatorname{\text{poly}} \log(\kappa/\epsilon))$$

► AQC:

- QLSP as an eigenvalue/eigenvector problem
- $\blacktriangleright \mathcal{O}(\kappa \operatorname{poly} \log(\kappa/\epsilon)) \xrightarrow{improvable} \mathcal{O}(\kappa \log(1/\epsilon))$
- Lower bound⁹: $\Omega(\kappa \log(1/\epsilon))$
- Preconditioning

⁹Harrow-Kothari (in preparation)

Eigenvalue problems

Eigenvalue problems

- ▶ We discussed AQC approach, and "discussed" QPE
- Ground state/energy problem
- General optimization: variational quantum eigensolvers, a hybrid quantum-classical approach

Matrix functions

Matrix functions

► For Hermitian matrices: eigenvalue transformation

$$A = V \operatorname{diag}(\lambda_j) V^{\dagger} \quad \stackrel{or}{ o} \quad f(A) = V \operatorname{diag}(f(\lambda_j)) V^{\dagger}$$

► For general matrices: singular value transformation

$$\begin{array}{rcl} A = W \mathrm{diag}(\sigma_j) V^{\dagger} & \rightarrow & f(A) = W \mathrm{diag}(f(\sigma_j)) V^{\dagger} \\ & \stackrel{\mathrm{or}}{\to} & f(A) = V \mathrm{diag}(f(\sigma_j)) V^{\dagger} \\ & \stackrel{\mathrm{or}}{\to} & f(A) = W \mathrm{diag}(f(\sigma_j)) W^{\dagger} \end{array}$$

Main result

Suppose that U_A is the block-encoding of a Hermitian matrix A with $||A|| \le 1$, and p(x) is a real-coefficient polynomial such that

- 1. degree of p(x) is d,
- 2. $|p(x)| \le 1$ for all $x \in [-1, 1]$.

Then, p(A) can be block-encoded with complexity

 $\mathcal{O}(d)$

⁹Gilyen Etal [arXiv:1806.01838]

Applications

- Solving linear systems of equations: $f(x) = \frac{1}{\kappa x}$
- Hamiltonian simulation: $f(x) = e^{-iAt}$
- ► Filtering¹⁰
- Amplitude amplification:

$$\begin{array}{l} U \left| 0 \right\rangle \left| \psi \right\rangle = \frac{1}{q} \left| 0 \right\rangle A \left| \psi \right\rangle + \left| \bot \right\rangle \quad \rightarrow \quad \widetilde{U} \left| 0 \right\rangle \left| \psi \right\rangle = \frac{1}{2} \left| 0 \right\rangle A \left| \psi \right\rangle + \left| \bot \right\rangle \\ f(x) = qx/2, \quad x \in [-1/q, 1/q] \\ f(x) \approx p(x) \quad \text{where} \quad \deg(p(x)) \sim q \log(1/\epsilon) \end{array}$$

• • • • • • •

¹⁰Lin-Tong [arXiv:1910.14596]

Toy example: Chebyshev polynomials

Consider a 2-by-2 matrix

$$O = \left(\begin{array}{cc} \lambda & -\sqrt{1-\lambda^2} \\ \sqrt{1-\lambda^2} & \lambda \end{array}\right) = \left(\begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right).$$

Then

$$O^{k} = \begin{pmatrix} \cos(k\theta) & -\sin(k\theta) \\ \sin(k\theta) & \cos(k\theta) \end{pmatrix} = \begin{pmatrix} T_{n}(\lambda) & * \\ * & * \end{pmatrix}$$

where $T_k = \cos(k\theta)$ is the Chebyshev polynomial.

For Hermitian matrix case T_k(A) = VT_k(Λ)V[†]: for each eigenvalue, find its corresponding 2-dimensional subspace and perform this O^k

Suppose $A = \sum \lambda_j \ket{v_j} \langle v_j \ket{}$ and U_A is its *Hermitian* block-encoding $(U_A = U_A^{\dagger})$.

$$egin{aligned} U_{\mathcal{A}} \ket{0} \ket{v_{j}} = \ket{0} \mathcal{A} \ket{v_{j}} + st = \lambda_{j} \ket{0} \ket{v_{j}} + \sqrt{1 - \lambda_{j}^{2}} \ket{\perp_{j}} \end{aligned}$$

where $\Pi |\perp_j\rangle = 0$, $\Pi = |0\rangle \langle 0| \otimes I$. Apply U_A again yields

$$egin{aligned} U_{\mathcal{A}}^2 \left| 0
ight
angle \left| \mathbf{v}_j
ight
angle &= \lambda_j (\lambda_j \left| 0
ight
angle \left| \mathbf{v}_j
ight
angle + \sqrt{1 - \lambda_j^2} \left| ot _j
ight
angle) + U_{\mathcal{A}} \sqrt{1 - \lambda_j^2} \left| ot _j
ight
angle \ U_{\mathcal{A}} \left| ot _j
ight
angle &= \sqrt{1 - \lambda^2} \left| 0
ight
angle \left| \mathbf{v}_j
ight
angle - \lambda_j \left| ot _j
ight
angle . \end{aligned}$$

Invariant space: $\mathcal{H}_{j} = \text{span} \{ \ket{0} \ket{v_{j}}, \ket{\perp_{j}} \}$. We may write

$$[U_{\mathcal{A}}]_{\mathcal{H}_j} = \begin{pmatrix} \lambda_j & \sqrt{1-\lambda_j^2} \\ \sqrt{1-\lambda_j^2} & -\lambda_j \end{pmatrix}, \quad [\Pi]_{\mathcal{H}_j} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

¹⁰Low-Chuang [arXiv:1610.06546]

$$[U_{\mathcal{A}}]_{\mathcal{H}_j} = \begin{pmatrix} \lambda_j & \sqrt{1-\lambda_j^2} \\ \sqrt{1-\lambda_j^2} & -\lambda_j \end{pmatrix}, \quad [\Pi]_{\mathcal{H}_j} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Let

$$Z_{\mathsf{\Pi}} = 2\mathsf{\Pi} - 1, \quad [Z_{\mathsf{\Pi}}]_{\mathcal{H}_j} = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight).$$

Then

$$O = U_A Z_{\Pi}, \quad [O]_{\mathcal{H}_j} = \left(egin{array}{cc} \lambda_j & -\sqrt{1-\lambda_j^2} \ \sqrt{1-\lambda_j^2} & \lambda_j \end{array}
ight),$$

and thus

$$[O^k]_{\mathcal{H}_j} = \left(egin{array}{cc} T_k(\lambda_j) & * \ & * \end{array}
ight), \quad O^k = \left(egin{array}{cc} T_k(A) & * \ & * \end{array}
ight)$$

So far we have assumed *Hermitian* block-encoding for Hermitian matrices (i.e., $U_A = U_A^{\dagger}$), now we relax this assumption

$$U_{A} \ket{0} \ket{v_{j}} = \lambda_{j} \ket{0} \ket{v_{j}} + \sqrt{1 - \lambda_{j}^{2}} \ket{\perp_{j}'}$$

where $\Pi |\perp'_j\rangle = 0$, $\Pi = |0\rangle \langle 0| \otimes I$. Notice that since A is Hermitian,

$$U_{A}^{\dagger}=\left(egin{array}{cc} A & st \ st & st \end{array}
ight), \quad U_{A}^{\dagger}\ket{0}\ket{v_{j}}=\lambda_{j}\ket{0}\ket{v_{j}}+\sqrt{1-\lambda_{j}^{2}}\ket{\perp_{j}}$$

where $\Pi \left| \perp_{j} \right\rangle = 0.$ Apply U_{A} , then we have

$$egin{aligned} &|0
angle \left| m{v}_{j}
ight
angle &= \lambda_{j} (\lambda_{j} \left| 0
ight
angle \left| m{v}_{j}
ight
angle + \sqrt{1 - \lambda_{j}^{2}} \left| oldsymbol{\perp}_{j}
ight
angle) + \sqrt{1 - \lambda_{j}^{2}} U_{A} \left| oldsymbol{\perp}_{j}
angle \ &U_{A} \left| oldsymbol{\perp}_{j}
ight
angle &= \sqrt{1 - \lambda_{j}^{2}} \left| 0
ight
angle \left| m{v}_{j}
ight
angle - \lambda_{j} \left| oldsymbol{\perp}_{j}
ight
angle \end{aligned}$$

$$egin{aligned} U_A \ket{0}\ket{v_j} &= \lambda_j \ket{0}\ket{v_j} + \sqrt{1-\lambda_j^2}\ket{\perp_j'} \ U_A \ket{\perp_j} &= \sqrt{1-\lambda_j^2}\ket{0}\ket{v_j} - \lambda_j \ket{\perp_j'} \end{aligned}$$

So U_A maps $\mathcal{H}_j = \operatorname{span} \{ |0\rangle |v_j\rangle, |\perp_j\rangle \}$ to $\mathcal{H}'_j = \operatorname{span} \{ |0\rangle |v_j\rangle, |\perp'_j\rangle \}$, we can also verify that U_A^{\dagger} maps \mathcal{H}'_j to \mathcal{H}_j ,

$$[U_{\mathcal{A}}]_{\mathcal{H}_{j}\to\mathcal{H}_{j}'} = \begin{pmatrix} \lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\ \sqrt{1-\lambda_{j}^{2}} & -\lambda_{j} \end{pmatrix}, \quad [U_{\mathcal{A}}^{\dagger}]_{\mathcal{H}_{j}'\to\mathcal{H}_{j}} = \begin{pmatrix} \lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\ \sqrt{1-\lambda_{j}^{2}} & -\lambda_{j} \end{pmatrix}$$

For the projector $\Pi=\left|0\right\rangle\left\langle 0\right|\otimes \textit{I},\;\textit{Z}_{\Pi}=2\Pi-1,$

$$[Z_{\mathsf{\Pi}}]_{\mathcal{H}_j} = [Z_{\mathsf{\Pi}}]_{\mathcal{H}'_j} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

Let
$$\mathcal{H}_{j} = \operatorname{span} \{ |0\rangle |v_{j}\rangle, |\perp_{j}\rangle \}, \ \mathcal{H}_{j}' = \operatorname{span} \{ |0\rangle |v_{j}\rangle, |\perp_{j}'\rangle \},$$

 $[\mathcal{U}_{\mathcal{A}}]_{\mathcal{H}_{j} \to \mathcal{H}_{j}'} = [\mathcal{U}_{\mathcal{A}}^{\dagger}]_{\mathcal{H}_{j}' \to \mathcal{H}_{j}} = \begin{pmatrix} \lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\ \sqrt{1-\lambda_{j}^{2}} & -\lambda_{j} \end{pmatrix}, \ \ [Z_{\Pi}]_{\mathcal{H}_{j}} = [Z_{\Pi}]_{\mathcal{H}_{j}'} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Then

$$[U_{A}^{\dagger}Z_{\Pi}U_{A}Z_{\Pi}]_{\mathcal{H}_{j}} = \begin{pmatrix} \lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\ \sqrt{1-\lambda_{j}^{2}} & -\lambda_{j} \end{pmatrix}^{2}, \quad [(U_{A}^{\dagger}Z_{\Pi}U_{A}Z_{\Pi})^{k}]_{\mathcal{H}_{j}} = \begin{pmatrix} T_{2k}(\lambda_{j}) & * \\ * & * \end{pmatrix}.$$

Therefore $(U_A^{\dagger}Z_{\Pi}U_AZ_{\Pi})^k$ block encodes $T_{2k}(A)$. For odd polynomials, notice that \mathcal{H}_j and \mathcal{H}'_i share common $|0\rangle |v_j\rangle$,

$$U_{A}Z_{\Pi}(U_{A}^{\dagger}Z_{\Pi}U_{A}Z_{\Pi})^{k}]_{\mathcal{H}_{j}\to\mathcal{H}_{j}'} = \begin{pmatrix} T_{2k+1}(\lambda_{j}) & * \\ * & * \end{pmatrix},$$
$$U_{A}Z_{\Pi}(U_{A}^{\dagger}Z_{\Pi}U_{A}Z_{\Pi})^{k} = \begin{pmatrix} T_{2k+1}(A) & * \\ * & * \end{pmatrix}$$

.

 $(U_A^{\dagger}Z_{\Pi}U_AZ_{\Pi})^k$

Now we can implement any polynomial by LCU, but may introduce extra overhead and control logic

Quantum signal processing (QSP)

Let us start with the 2-by-2 matrix again

$$U = \left(egin{array}{cc} \lambda & \sqrt{1-\lambda^2} \ \sqrt{1-\lambda^2} & -\lambda \end{array}
ight), \quad Z = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight),$$

we have shown that

$$(UZ)^k = \left(\begin{array}{cc} T_k(\lambda) & * \\ * & * \end{array} \right).$$

Notice that

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -i \begin{pmatrix} e^{i\frac{\pi}{2}} & 0 \\ 0 & e^{-i\frac{\pi}{2}} \end{pmatrix} = -ie^{i\frac{\pi}{2}Z}$$

What if we consider a more general

$$e^{i\phi_d Z} U e^{i\phi_{d-1} Z} \cdots U e^{i\phi_2 Z} U e^{i\phi_1 Z} U e^{i\phi_0 Z}$$

where $(\phi_0, \phi_1, \cdots, \phi_d) \in \mathbb{R}^{d+1}$.

Quantum signal processing (QSP)

Theorem (QSP)

$$U = \left(\begin{array}{cc} \lambda & \sqrt{1-\lambda^2} \\ \sqrt{1-\lambda^2} & -\lambda \end{array} \right).$$

Then there exist phase factors $(\phi_0, \phi_1, \cdots, \phi_d) \in \mathbb{R}^{d+1}$ such that

$$e^{i\phi_d Z} U e^{i\phi_{d-1} Z} \cdots U e^{i\phi_2 Z} U e^{i\phi_1 Z} U e^{i\phi_0 Z} = \left(egin{array}{cc} p(\lambda) & -q(\lambda)\sqrt{1-\lambda^2} \ q^*(\lambda)\sqrt{1-\lambda^2} & p^*(\lambda) \end{array}
ight)$$

if and only if $p(\lambda), q(\lambda)$ are complex-coefficient polynomials such that

- 1. $deg(p) \leq d$, $deg(q) \leq d 1$,
- 2. p has parity d mod 2 and q has parity $d 1 \mod 2$,
- 3. $|p(\lambda)|^2 + (1 \lambda^2)|q(\lambda)|^2 = 1$ for all $\lambda \in [-1, 1]$.

¹⁰Low-Chuang [arXiv:1606.02685]

QSP

Theorem (QSP for real polynomials) Let

$$U = \left(\begin{array}{cc} \lambda & \sqrt{1 - \lambda^2} \\ \sqrt{1 - \lambda^2} & -\lambda \end{array}\right).$$

Then there exist phase factors $(\phi_0, \phi_1, \cdots, \phi_d) \in \mathbb{R}^{d+1}$ such that

$$e^{i\phi_d Z} U e^{i\phi_{d-1} Z} \cdots U e^{i\phi_2 Z} U e^{i\phi_1 Z} U e^{i\phi_0 Z} = \left(egin{array}{cc} P(\lambda) & * \ & * \end{array}
ight)$$

if $Re(P(\lambda)) = p(\lambda)$ and

- 1. $deg(p) \leq d$,
- 2. p has parity d mod 2,
- 3. $|p(\lambda)| \leq 1$ for all $\lambda \in [-1, 1]$.
- The parity assumption can be further removed by p = p_{even} + p_{odd} and LCU, or Motlagh-Wiebe [arXiv:2308.01501]

$\ensuremath{\mathsf{QSP}}\xspace$, qubitization, and $\ensuremath{\mathsf{QSVT}}\xspace$

Through qubitization, for

1. any Hermitian matrix A with $||A|| \leq 1$ and its block-encoding U_A ,

2. any *d*-degree real polynomial $p(\lambda)$ with $|p(\lambda)| \le 1$ for all $\lambda \in [-1, 1]$, we can block encode p(A) with $\mathcal{O}(d)$ cost.

If A is not Hermitian, we are performing singular value transformation¹¹.

¹¹Gilyen Etal [arXiv:1806.01838]

Phase factors

Finding phase factors was a hard task at the time when QSP was proposed, but has been practically solved so far.

- Direct methods:
 - Remez exchange algorithm
 - roots of polynomials (Gilyen Etal [arXiv:1806.01838])
 - Capitalization (Chao Etal [arXiv:2003.02831])
 - Prony's method (Ying [arXiv:2202.02671])
- Iterative methods:
 - optimization based algorithm (Dong Etal [arXiv:2002.11649])
 - fixed point iteration (Dong Etal [arXiv:2209.10162])

QSP/QSVT vs LCU

- Both QSP/QSVT and LCU can implement matrix functions
- For Hermitian matrices, LCU has computational overhead due to 1-norm of the coefficients and require extra control logic
- For general matrices
 - QSVT: singular value transformation
 - LCU: eigenvalue transformation

$$f(A)=\frac{1}{2\pi i}\int_{\Gamma}f(z)(z-A)^{-1}dz.$$

Summary: matrix functions

- Qubitization for block-enccoding Chebyshev polynomials
- Quantum signal processing
- Quantum singular value transformation

Summary

Basic linear algebra operations

- Input models for vectors and matrices: quantum state and block-encoding
- Matrix-vector multiplication: applying block-encoding
- Matrix/vector addition: linear combination of unitaries (LCU)
- Matrix multiplication: compression gadget
- Linear systems of equations
 - General algorithms: HHL, LCU, AQC
 - Preconditioning
- Eigenvalue problems
- Matrix functions: Qubitization, QSP, QSVT