Introduction to quantum numerical linear algebra

Dong An
Joint Center for Quantum Information and Computer Science,
University of Maryland
dongan@umd.edu

September 12, 2023

Overview

Introduction

Basic linear algebra operations

Linear systems of equations

Eigenvalue problems

Matrix functions

Introduction

Quantum numerical linear algebra

- Numerical linear algebra: using matrix operations to design algorithms
- Operations: Matrix/vector addition, multiplication
- Tasks: solving linear systems of equations, matrix factorization, eigenvalue/singular value decomposition/transformation
- Quantum numerical linear algebra

Quantum numerical linear algebra: desired speedup

$$
\operatorname{poly}(N) \quad \text { vs } \quad \operatorname{poly} \log (N)
$$

- For N-dimensional system (suppose $N=2^{n}$), classical algorithms typically take cost at least linear in N
- Storing an N-dimensional vector takes $\sim N$ cost
- A single application of matrix-vector multiplication takes at least $\sim N$ computational cost
- For quantum algorithms, we expect computational cost to be $\mathcal{O}($ poly $\log (N))=\mathcal{O}($ poly $(n))$
- An n-qubit quantum state can be viewed as a 2^{n}-dimensional unit vector
- Matrix operations are implemented by quantum operations on these n qubits

Quantum numerical linear algebra: restrictions

- Vectors (quantum states) are normalized under 2-norm
- May lose some information
- Only a subset of operations are efficiently implementable: unitary matrices
- For general matrix operations, we will embed its rescaled version into a sub-block of unitary operations
- Will introduce extra computational cost
- No cloning theorem
- Iterative methods are not generally efficient for quantum

Quantum vs Classical

	Classical	Quantum
Space	2^{n}	n
Unitary		\checkmark
General matrix	\checkmark	
Copying	\checkmark	
Entry-wise information	\checkmark	

- Quantum numerical linear algebra: linear algebra algorithms with restrictions but possible speedup
- Speedup for certain tasks:
- Factorization
- Unstructured search
- Discrete Fourier transform
- Applied math: linear system, differential equation, optimization, machine learning,

Quantum algorithm zoo: https://quantumalgorithmzoo.org
Lecture notes by Lin Lin: [arXiv:2201.08309]

Today's talk

- Basic linear algebra operations
- Input models for vectors and matrices
- Matrix-vector multiplication
- Matrix/vector addition: linear combination of unitaries (LCU)
- Matrix multiplication
- Linear systems of equations
- General algorithms: HHL, LCU, adiabatic quantum computing
- Preconditioning
- Eigenvalue problems
- Matrix functions
- Functions of Hermitian matrices: quantum signal processing (QSP), qubitization
- Functions of general matrices: quantum singular value transformation (QSVT)
- LCU

Basic linear algebra operations

Input model: vectors

- Single-qubit state $\cong \mathbb{C}^{2} /\|\cdot\|_{2}$

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}, \quad \alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}
$$

- Measurement: we get 0 with probability $|\alpha|^{2}$, and 1 with probability $|\beta|^{2}$
- General n qubit space: tensor product of n multiple single qubit

$$
\left|i_{1} i_{2} \cdots i_{n}\right\rangle=\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{n}\right\rangle \in \mathbb{C}^{2^{n}} /\|\cdot\|_{2}
$$

- Common notations:
- We use $|j\rangle, 0 \leq j \leq 2^{n}-1$ to represent the orthonormal basis of the Hilbert space
- An element (a quantum state) in the n-qubit space:

$$
|v\rangle=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle=\left(\alpha_{0}, \cdots, \alpha_{2^{n}-1}\right)^{T}
$$

- Measurement: we get j with probability $\left|\alpha_{j}\right|^{2}$ (but destroy the superposition)

Input model: vectors

Input model: state preparation oracle

$$
O_{u}:|0\rangle \rightarrow|u\rangle=\sum_{j=0}^{2^{n}-1} u_{j}|j\rangle
$$

Constructing O_{u} is generally hard, but easy in special cases ${ }^{1}$

[^0]
Input model: matrices

Definition (Block-encoding)

Let A be a 2^{n}-by- 2^{n} matrix. A block-encoding of A is a 2^{n+a}-by- 2^{n+a} unitary U_{A} such that

$$
A \approx \alpha\left(\left\langle\left. 0\right|^{\otimes a} \otimes I\right) U_{A}\left(|0\rangle^{\otimes a} \otimes I\right),\right.
$$

or equivalently

$$
U_{A} \approx\left(\begin{array}{cc}
\frac{1}{\alpha} A & * \\
* & *
\end{array}\right)
$$

- α is called the block-encoding factor and should satisfy $\alpha \geq\|A\|$

Input model: matrices

$$
U_{A} \approx\left(\begin{array}{cc}
\frac{1}{\alpha} A & * \\
* & *
\end{array}\right)
$$

- For a arbitrarily given matrix A, constructing U_{A} is in general hard
- Special cases: unitary, sparse matrices, structured matrices, ... ${ }^{2}$

[^1]
Matrix-vector multiplication

Input:

Block-encoding of A :

$$
A \approx \alpha(\langle 0| \otimes I) U_{A}(|0\rangle \otimes I)
$$

<0| $\langle 1$
$U_{A} \approx\left(\begin{array}{cc}\frac{1}{\alpha} A & * \\ * & *\end{array}\right) \begin{aligned} & |0\rangle \\ & |1\rangle\end{aligned}$
or $\quad U_{A} \approx|0\rangle\langle 0| \otimes \frac{A}{\alpha}+|0\rangle\langle 1| \otimes *$ $+|1\rangle\langle 0| \otimes *+|1\rangle\langle 1| \otimes *$

Quantum state:

$$
|u\rangle=\sum_{j=0}^{2^{n}-1} u_{j}|j\rangle
$$

'Algorithm': applying block-encoding

or

$$
U_{A}|0\rangle|u\rangle \approx \frac{1}{\alpha}|0\rangle A|u\rangle+c|1\rangle|*\rangle
$$

or

$$
\left(\begin{array}{cc}
\frac{1}{\alpha} A & * \\
* & *
\end{array}\right)\binom{u}{0}=\binom{\frac{1}{\alpha} A u}{*}
$$

Need to measure the first ancilla qubit
Success probability: $(\| A|u\rangle \| / \alpha)^{2}$
Number of repeats (after amplitude amplification): $\mathcal{O}(\alpha / \| A|u\rangle \|)$

Matrix addition: Linear combination of unitaries (LCU)

Task of LCU ${ }^{3}$: given a set of unitary operators U_{j} and coefficients c_{j}, compute

$$
\sum_{j} c_{j} U_{j}
$$

[^2]
Matrix addition: LCU

A toy example: computing $\frac{1}{2}\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle$

$$
\text { General: computing } \sum_{j} c_{j} U_{j}
$$

$$
\begin{gathered}
|0\rangle \\
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left|u_{0}\right\rangle \\
\frac{1}{\sqrt{2}}\left(|0\rangle U_{0}\left|u_{0}\right\rangle+|1\rangle U_{1}\left|u_{0}\right\rangle\right) \\
\left.\frac{1}{2}|0\rangle\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle+\frac{1}{2}|1\rangle\left(U_{0}-U_{1}\right)\left|u_{0}\right\rangle\right) \\
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \begin{array}{l}
|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
|1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{array}
\end{gathered}
$$

Prepare Oracle $O_{p}:|0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle$
Select Oracle $O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{j}$

Matrix addition: LCU

$$
\begin{aligned}
&|0\rangle\left|u_{0}\right\rangle \xrightarrow{O_{p}} \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle\left|u_{0}\right\rangle \\
& \xrightarrow{O_{s}} \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle U_{j}\left|u_{0}\right\rangle \\
& \xrightarrow{O_{p}^{\dagger}} \frac{1}{\|c\|_{1}}|0\rangle \sum_{j} c_{j} U_{j}\left|u_{0}\right\rangle+|\perp\rangle
\end{aligned}
$$

- Repeats: $\mathcal{O}\left(\|c\|_{1} / \| \sum c_{j} U_{j}\left|u_{0}\right\rangle \|\right)$
- Overall complexity depends on the cost of constructing O_{p} and O_{s}

General: computing $\sum_{j} c_{j} U_{j}$

Prepare Oracle $O_{p}:|0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle$
Select Oracle $O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{j}$

Matrix addition

- Goal: compute (block encode) $\sum_{j} c_{j} A_{j}$ for general matrices $\left\|A_{j}\right\| \leq 1$
- Algorithm: LCU where unitaries are block-encodings

$$
O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{A_{j}}, \quad U_{A_{j}}=\left(\begin{array}{cc}
A_{j} & * \\
* & *
\end{array}\right)
$$

Vector addition

- Goal: compute $\sum_{j} c_{j}\left|u_{j}\right\rangle$ for quantum states $\left|u_{j}\right\rangle$
- Algorithm: Implement $\sum_{j} c_{j} U_{j}$ on $|0\rangle$ where U_{j} 's are state preparation oracles

$$
U_{j}:|0\rangle \rightarrow\left|u_{j}\right\rangle, \quad \sum_{j} c_{j} U_{j}|0\rangle=\sum_{j} c_{j}\left|u_{j}\right\rangle
$$

Matrix multiplication

Let us start with two matrices

- Two unitaries $U_{1} U_{0}$

$$
\left|u_{0}\right\rangle-U_{0}-U_{1}
$$

- Two matrices: A_{0} and A_{1}, block-encodings $U_{A_{0}}$ and $U_{A_{1}}$. Can we try this?

- Does not work:

$$
\begin{gathered}
U_{A_{1}} U_{A_{0}}|0\rangle\left|u_{0}\right\rangle=U_{A_{1}}\left(|0\rangle A_{0}\left|u_{0}\right\rangle+|1\rangle|*\rangle\right) \\
\left(\begin{array}{cc}
A_{1} & * \\
* & *
\end{array}\right)\left(\begin{array}{cc}
A_{0} & * \\
* & *
\end{array}\right)\binom{u_{0}}{0}=\left(\begin{array}{cc}
A_{1} & * \\
* & *
\end{array}\right)\binom{A_{0} u_{0}}{*}
\end{gathered}
$$

Matrix multiplication

Method 1: duplicate ancilla qubits

$$
\begin{aligned}
|0\rangle_{1}|0\rangle_{0}\left|u_{0}\right\rangle & \xrightarrow{U_{A_{0}}}|0\rangle_{1}\left(|0\rangle_{0} A_{0}\left|u_{0}\right\rangle+|1\rangle_{0}|*\rangle\right) \\
& =|0\rangle_{0}|0\rangle_{1} A_{0}\left|u_{0}\right\rangle+|1\rangle_{0}|0\rangle_{1}|*\rangle \\
& \xrightarrow{U_{A_{1}}}|0\rangle_{0}\left(|0\rangle_{1} A_{1} A_{0}\left|u_{0}\right\rangle+|1\rangle_{1}|*\rangle\right)+|1\rangle_{0}|0\rangle_{1}|*\rangle+|1\rangle_{0}|1\rangle_{1}|*\rangle
\end{aligned}
$$

Multiplication of J matrices: using $\mathcal{O}(J)$ extra ancilla qubits

Matrix multiplication

Method 2: compression gadget (Low-Wiebe [arXiv:1805.00675], Fang-Lin-Tong [arXiv:2208.06941])

$$
\text { ADD : }|0\rangle \rightarrow|1\rangle \rightarrow|2\rangle \rightarrow \cdots \rightarrow|J\rangle \rightarrow|0\rangle
$$

Summary: basic linear algebra operations

- Input models: quantum state, block-encoding
- Matrix-vector multiplication: applying block-encoding
- Matrix/vector addition: LCU
- Matrix multiplication

Linear systems of equations

Quantum linear system problem (QLSP)

- Classical: given $A: N \times N$ Hermitian matrix, $b: N$-dimensional vector, compute

$$
x=A^{-1} b
$$

- Non-Hermitian: consider $\left(\begin{array}{cc}0 & A \\ A^{\dagger} & 0\end{array}\right)\binom{0}{x}=\binom{b}{0}$
- Quantum: find an ϵ-approximation of the quantum state

$$
|x\rangle=\frac{A^{-1}|b\rangle}{\| A^{-1}|b\rangle \|}
$$

- Assume $\|A\|=1$ and we have some black-box access to A and $|b\rangle$ (e.g., block-encoding and state preparation oracle)
- Important parameters: dimension N, tolerated error level ϵ, condition number $\kappa=\|A\|\left\|A^{-1}\right\|$

Harrow-Hassidim-Lloyd (HHL)

- ${ }^{4}$ The first quantum algorithm for solving QLSP
- Key equation: let $\left(\lambda_{j},\left|v_{j}\right\rangle\right)$ be the eigenvalues and eigenvectors of A, and $|b\rangle=\sum_{j=0}^{N-1} \beta_{j}\left|v_{j}\right\rangle$, then

$$
A^{-1}|b\rangle=\left(\sum_{j=0}^{N-1} \lambda_{j}^{-1}\left|v_{j}\right\rangle\left\langle v_{j}\right|\right)\left(\sum_{j=0}^{N-1} \beta_{j}\left|v_{j}\right\rangle\right)=\sum_{j=0}^{N-1} \frac{\beta_{j}}{\lambda_{j}}\left|v_{j}\right\rangle
$$

- Need to do:
- store the information (binary encoding) of λ_{j} 's in an ancilla register coherently
- multiply the factor λ_{j}^{-1} to each eigenvector $\left|v_{j}\right\rangle$

[^3]
HHL

- Need to do:
- store the information (binary encoding) of λ_{j} 's in an ancilla register coherently
- multiply the factor λ_{j}^{-1} to each eigenvector $\left|v_{j}\right\rangle$
- Useful subroutines:
- Quantum phase estimation (QPE): Let U be a unitary and $U|\psi\rangle=e^{2 \pi i \theta}|\psi\rangle$ for a real number $\theta \in[0,1]$. The (ideal) QPE algorithm is $U_{\text {QPE }}$ such that

$$
U_{\mathrm{QPE}}|\psi\rangle|0\rangle=|\psi\rangle|\theta\rangle .
$$

Here $|\theta\rangle=\left|\theta_{m-1}\right\rangle \cdots\left|\theta_{1}\right\rangle\left|\theta_{0}\right\rangle$ where $\theta=\left(. \theta_{0} \theta_{1} \cdots \theta_{m-1}\right)$ is its binary representation

- Controlled rotation: A unitary $U_{C R}$ such that

$$
U_{\mathrm{CR}}|\theta\rangle|0\rangle=|\theta\rangle\left(f(\theta)|0\rangle+\sqrt{1-|f(\theta)|^{2}}|1\rangle\right)
$$

$\sum_{j} \beta_{j}|0\rangle|0\rangle\left|v_{j}\right\rangle \quad$ QPE for $e^{2 \pi i A}$

HHL

- Complexity analysis: two sources
- The cost of a single run: mainly due to QPE

$$
\mathcal{O}(\kappa / \epsilon)
$$

- Number of repeats:

$$
\mathcal{O}\left(1 /\left(C \| A^{-1}|b\rangle \|\right)\right)=\mathcal{O}(\kappa)
$$

- Overall complexity:

$$
\mathcal{O}\left(\kappa^{2} / \epsilon\right)
$$

- Need two efficient subroutines:
- Hamiltonian simulation: implement $e^{2 \pi i A}$
- QPE

$$
\sum_{j} C|0\rangle|0\rangle\left(A^{-1}|b\rangle\right)+|\perp\rangle
$$

$$
\text { Output (here } C \sim 1 / \kappa \text {): }
$$

- Review of LCU:
- Output: $\frac{1}{\|c\|_{1}}|0\rangle \sum_{j} c_{j} U_{j}\left|u_{0}\right\rangle+|\perp\rangle$
- Cost of each run: depend on O_{s}
- Repeats: $\mathcal{O}\left(\|c\|_{1} / \| \sum c_{j} U_{j}\left|u_{0}\right\rangle \|\right)$
- Idea for QLSP: decompose A^{-1} as linear combination of unitaries

Prepare Oracle $O_{p}:|0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle$
Select Oracle $O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{j}$

[^4]
LCU: Fourier approach

- Key identity:

$$
\frac{1}{x}=\frac{i}{\sqrt{2 \pi}} \int_{0}^{\infty} d y \int_{-\infty}^{\infty} d z z e^{-z^{2} / 2} e^{-i x y z} .
$$

- For a Hermitian matrix A,

$$
\begin{aligned}
A^{-1} & =\frac{i}{\sqrt{2 \pi}} \int_{0}^{\infty} d y \int_{-\infty}^{\infty} d z z e^{-z^{2} / 2} e^{-i y z A} \\
& \approx \frac{i}{\sqrt{2 \pi}} \int_{0}^{Y} d y \int_{-z}^{z} d z z e^{-z^{2} / 2} e^{-i y z A} \\
& \approx \sum c_{j, j^{\prime}} e^{-i y_{j} z_{j} j^{\prime}}
\end{aligned}
$$

- ϵ-approximation if $Y=\mathcal{O}(\kappa \sqrt{\log (\kappa / \epsilon)}), Z=\mathcal{O}(\sqrt{\log (\kappa / \epsilon)})$
- Cost of Hamiltonian simulation for $e^{-i H T}: \mathcal{O}(T$ poly $\log (1 / \epsilon))$
- Overall complexity

$$
\kappa \text { poly } \log (\kappa / \epsilon) \times \kappa \sqrt{\log (\kappa / \epsilon)}=\mathcal{O}\left(\kappa^{2} \text { poly } \log (\kappa / \epsilon)\right)
$$

LCU: Chebyshev approach

- Idea: expand $1 / x$ using Chebyshev polynomials
- Chebyshev polynomials:

$$
\begin{aligned}
& T_{n}(\cos (\theta))=\cos (n \theta) \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad T_{0}(x)=1, T_{1}(x)=x
\end{aligned}
$$

- Bounded by 1 on $[-1,1]$, minimize Runge's phenomenon, close to the best polynomial approximation
- Approach:

$$
\begin{array}{rlr}
\frac{1}{x} & \approx \frac{1-\left(1-x^{2}\right)^{d}}{x} & \left(d \sim \kappa^{2} \log (\kappa / \epsilon)\right) \\
& =4 \sum_{j=0}^{d-1}(-1)^{j}\left(2^{-2 d} \sum_{i=j+1}^{d}\binom{2 d}{d+i}\right) T_{2 j+1}(x) & \\
& \approx 4 \sum_{j=0}^{J}(-1)^{j}\left(2^{-2 d} \sum_{i=j+1}^{d}\binom{2 d}{d+i}\right) T_{2 j+1}(x) & (J \sim \sqrt{d \log (d / \epsilon)})
\end{array}
$$

LCU: Chebyshev approach

$$
A^{-1} \approx \sum_{j=0}^{\mathcal{O}(\kappa \text { poly } \log (\kappa / \epsilon))} c_{j} T_{2 j+1}(A)
$$

- $\left\|T_{2 j+1}(A)\right\| \leq 1$ but not unitary, so we need to construct its block-encoding
- The same overall complexity:

$$
\kappa \text { poly } \log (\kappa / \epsilon) \times \kappa \sqrt{\log (\kappa / \epsilon)}=\mathcal{O}\left(\kappa^{2} \text { poly } \log (\kappa / \epsilon)\right)
$$

Adiabatic Quantum Computing (AQC)

$$
\begin{aligned}
\imath \partial_{t}|\psi(t)\rangle & =H(t / T)|\psi(t)\rangle, \quad t \in[0, T] \\
H(0)|\psi(0)\rangle & =\lambda_{0}|\psi(0)\rangle
\end{aligned}
$$

- Starting from the (easily prepared) eigenvector of $H(0)$, the wavefunction at the final time will approximate the corresponding eigenvector of $H(1)$ if
- the Hamiltonian is slow enough (equivalently T is large enough)
- gap condition is satisfied
- Application: a quantum computing model to solve eigenvalue problem ${ }^{\text {a }}$

[^5]
AQC for QLSP

(Vanilla) AQC for QLSP algorithm:

$$
\begin{gathered}
H_{0}=\left(\begin{array}{cc}
0 & Q_{b} \\
Q_{b} & 0
\end{array}\right), \quad H_{1}=\left(\begin{array}{cc}
0 & A Q_{b} \\
Q_{b} A & 0
\end{array}\right), \\
Q_{b}=I-|b\rangle\langle b| \\
H(s)=(1-s) H_{0}+s H_{1}
\end{gathered}
$$

- Eigenpath corresponding to eigenvalue 0 is of interest, which connects $\left(b^{\top}, 0^{\top}\right)^{\top}$ and $\left(x^{\top}, 0^{\top}\right)^{\top} 5$

[^6]
Quantum Adiabatic Theorem

Theorem (Jansen-Ruskai-Seiler (arXiv:quant-ph/0603175))

Assume gap $\Delta(s)$, then the distance between the dynamics and the eigenvector can be bounded by

$$
\eta(s)=C\left\{\frac{\left\|H^{\prime}(0)\right\|_{2}}{T \Delta^{2}(0)}+\frac{\left\|H^{\prime}(s)\right\|_{2}}{T \Delta^{2}(s)}+\frac{1}{T} \int_{0}^{s}\left(\frac{\left\|H^{\prime \prime}(\tau)\right\|_{2}}{\Delta^{2}(\tau)}+\frac{\left\|H^{\prime}(\tau)\right\|_{2}^{2}}{\Delta^{3}(\tau)}\right) d \tau\right\} .
$$

- To bound the error by $\epsilon: T=\mathcal{O}\left(\Delta_{*}^{-3} \epsilon^{-1}\right)$
- Cubic dependence on the gap
- In QLSP, $\Delta_{*} \sim 1 / \kappa \Longrightarrow T=\mathcal{O}\left(\kappa^{3} \epsilon^{-1}\right)$

Time-optimal AQC

$$
\imath \partial_{t}|\psi(t)\rangle=H(t / T)|\psi(t)\rangle, \quad t \in[0, T]
$$

- Idea: generally interpolate $H(s)=(1-f(s)) H_{0}+f(s) H_{1}$, choose proper $f(s)$ to slow down the Hamiltonian when the gap is small
- $\mathrm{AQC}(\mathrm{p}): \dot{f}(s)=c \Delta^{p}(f(s))$

$$
\Longrightarrow T=\mathcal{O}(\kappa / \epsilon)
$$

[^7]
AQC(exp)

- Quantum adiabatic theorem can be improved to error $\sim \mathcal{O}\left(T^{-k}\right)$ if we only care about the final state error ${ }^{7}$
- Requiring boundary cancellation condition, i.e., the support of $H^{\prime}(s)$ is in $(0,1)$

$$
\eta(s)=C\left\{\frac{\left\|H^{\prime}(0)\right\|_{2}}{T \Delta^{2}(0)}+\frac{\left\|H^{\prime}(s)\right\|_{2}}{T \Delta^{2}(s)}+\frac{1}{T} \int_{0}^{s}\left(\frac{\left\|H^{\prime \prime}(\tau)\right\|_{2}}{\Delta^{2}(\tau)}+\frac{\left\|H^{\prime}(\tau)\right\|_{2}^{2}}{\Delta^{3}(\tau)}\right) d \tau\right\}
$$

- Error $=$ Boundary $_{1}+\frac{1}{T} \int_{0}^{1}=$ Boundary $_{1}+$ Boundary $_{2}+\frac{1}{T^{2}} \int_{0}^{1}=$ Boundary $_{1}+$ Boundary $_{2}+$ Boundary $_{3}+\frac{1}{T^{3}} \int_{0}^{1}=\cdots$

[^8]
AQC(exp)

- AQC($\exp): f(s)=c^{-1} \int_{0}^{s} \exp \left[-u^{-1}(1-u)^{-1}\right] d u$, happens to be slow as well at the smallest gap

$$
\Longrightarrow T=\mathcal{O}(\kappa \text { poly } \log (\kappa / \epsilon))^{8}
$$

[^9]
Preconditioning

- QLSP algorithms with cost $\mathcal{O}(\kappa$ poly $\log (\kappa / \epsilon))$, can still be expensive if the system is ill-conditioned
- Classical solution: preconditioning

$$
A x=b \Longleftrightarrow M A x=M b
$$

- Effective if
- $\kappa(M A) \ll \kappa(A)$
- the matrix-vector multiplication $M y$ is easily accessible, and in particular its cost is independent of $\kappa(M)$
- Classical: diagonal matrix, incomplete factorization, sparse approximate inverse (SPAI), etc.
- Quantum:
- SPAI (Clader-Jacobs-Sprouse [arXiv:1301.2340])
- Circulant matrix (Shao-Xiang [arXiv:1807.04563])
- Diagonal matrix (Tong-An-Wiebe-Lin [arXiv:2008.13295])

Preconditioning

$$
(A+B)|x\rangle \sim|b\rangle
$$

- Assume A is easily invertible with very large $\|A\|$ and moderate $\|B\|,\left\|A^{-1}\right\|,\left\|(A+B)^{-1}\right\|$
- $\kappa(A+B) \sim \mathcal{O}(\|A\|)$
- An example: Poisson's equation $-\Delta u(r)+V(r) u(r)=b(r)$
- Preconditioner: A^{-1}
- $\kappa\left(I+A^{-1} B\right)=\mathcal{O}(1)$
- Algorithm:
$A^{-1} \rightarrow A^{-1} B \rightarrow I+A^{-1} B \rightarrow\left(I+A^{-1} B\right)^{-1} \rightarrow\left(I+A^{-1} B\right)^{-1} A^{-1}=(A+B)^{-1}$
- Need matrix addition and multiplication, and fast-inversion of a diagonal matrix

Summary: QLSP

- HHL algorithm:
- QPE and Hamiltonian simulation
- $\mathcal{O}\left(\kappa^{2} / \epsilon\right) \xrightarrow{\text { improvable }} \mathcal{O}\left(\kappa / \epsilon^{3}\right)$
- LCU:
- Polynomial approximation of $1 / x$
- $\mathcal{O}\left(\kappa^{2}\right.$ poly $\left.\log (\kappa / \epsilon)\right) \xrightarrow{\text { improvable }} \mathcal{O}(\kappa$ poly $\log (\kappa / \epsilon))$
- AQC:
- QLSP as an eigenvalue/eigenvector problem
- $\mathcal{O}(\kappa$ poly $\log (\kappa / \epsilon)) \xrightarrow{\text { improvable }} \mathcal{O}(\kappa \log (1 / \epsilon))$
- Lower bound ${ }^{9}: \Omega(\kappa \log (1 / \epsilon))$
- Preconditioning

[^10]Eigenvalue problems

Eigenvalue problems

- We discussed AQC approach, and "discussed" QPE
- Ground state/energy problem
- General optimization: variational quantum eigensolvers, a hybrid quantum-classical approach

Matrix functions

Matrix functions

- For Hermitian matrices: eigenvalue transformation

$$
A=V \operatorname{diag}\left(\lambda_{j}\right) V^{\dagger} \quad \xrightarrow{\text { or }} \quad f(A)=V \operatorname{diag}\left(f\left(\lambda_{j}\right)\right) V^{\dagger}
$$

- For general matrices: singular value transformation

$$
\begin{aligned}
A=W \operatorname{diag}\left(\sigma_{j}\right) V^{\dagger} & \rightarrow \quad f(A)=W \operatorname{diag}\left(f\left(\sigma_{j}\right)\right) V^{\dagger} \\
& \xrightarrow{\text { or }} \quad f(A)=V \operatorname{diag}\left(f\left(\sigma_{j}\right)\right) V^{\dagger} \\
& \xrightarrow{\text { or }} \quad f(A)=W \operatorname{diag}\left(f\left(\sigma_{j}\right)\right) W^{\dagger}
\end{aligned}
$$

Main result

Suppose that U_{A} is the block-encoding of a Hermitian matrix A with $\|A\| \leq 1$, and $p(x)$ is a real-coefficient polynomial such that

1. degree of $p(x)$ is d,
2. $|p(x)| \leq 1$ for all $x \in[-1,1]$.

Then, $p(A)$ can be block-encoded with complexity

$$
\mathcal{O}(d)
$$

[^11]
Applications

- Solving linear systems of equations: $f(x)=\frac{1}{k x}$
- Hamiltonian simulation: $f(x)=e^{-i A t}$
- Filtering ${ }^{10}$
- Amplitude amplification:

$$
\begin{aligned}
& U|0\rangle|\psi\rangle=\frac{1}{q}|0\rangle A|\psi\rangle+|\perp\rangle \rightarrow \widetilde{U}|0\rangle|\psi\rangle=\frac{1}{2}|0\rangle A|\psi\rangle+|\perp\rangle \\
& f(x)=q x / 2, \quad x \in[-1 / q, 1 / q] \\
& f(x) \approx p(x) \quad \text { where } \quad \operatorname{deg}(p(x)) \sim q \log (1 / \epsilon)
\end{aligned}
$$

[^12]
Toy example: Chebyshev polynomials

Consider a 2-by-2 matrix

$$
O=\left(\begin{array}{cc}
\lambda & -\sqrt{1-\lambda^{2}} \\
\sqrt{1-\lambda^{2}} & \lambda
\end{array}\right)=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) .
$$

Then

$$
O^{k}=\left(\begin{array}{cc}
\cos (k \theta) & -\sin (k \theta) \\
\sin (k \theta) & \cos (k \theta)
\end{array}\right)=\left(\begin{array}{cc}
T_{n}(\lambda) & * \\
* & *
\end{array}\right)
$$

where $T_{k}=\cos (k \theta)$ is the Chebyshev polynomial.

- For Hermitian matrix case $T_{k}(A)=V T_{k}(\Lambda) V^{\dagger}$: for each eigenvalue, find its corresponding 2-dimensional subspace and perform this O^{k}

Qubitization

Suppose $A=\sum \lambda_{j}\left|v_{j}\right\rangle\left\langle v_{j}\right|$ and U_{A} is its Hermitian block-encoding $\left(U_{A}=U_{A}^{\dagger}\right)$.

$$
U_{A}|0\rangle\left|v_{j}\right\rangle=|0\rangle A\left|v_{j}\right\rangle+*=\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}\right\rangle
$$

where $\Pi\left|\perp_{j}\right\rangle=0, \Pi=|0\rangle\langle 0| \otimes I$.
Apply U_{A} again yields

$$
\begin{aligned}
U_{A}^{2}|0\rangle\left|v_{j}\right\rangle & =\lambda_{j}\left(\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}\right\rangle\right)+U_{A} \sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}\right\rangle \\
U_{A}\left|\perp_{j}\right\rangle & =\sqrt{1-\lambda^{2}}|0\rangle\left|v_{j}\right\rangle-\lambda_{j}\left|\perp_{j}\right\rangle
\end{aligned}
$$

Invariant space: $\mathcal{H}_{j}=\operatorname{span}\left\{|0\rangle\left|v_{j}\right\rangle,\left|\perp_{j}\right\rangle\right\}$. We may write

$$
\left[U_{A}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right), \quad[\Pi]_{\mathcal{H}_{j}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

[^13]
Qubitization

$$
\left[U_{A}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right), \quad[\Pi]_{\mathcal{H}_{j}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Let

$$
Z_{\Pi}=2 \Pi-1, \quad\left[Z_{\Pi}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then

$$
O=U_{A} Z_{\Pi}, \quad[O]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & -\sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & \lambda_{j}
\end{array}\right),
$$

and thus

$$
\left[O^{k}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
T_{k}\left(\lambda_{j}\right) & * \\
* & *
\end{array}\right), \quad O^{k}=\left(\begin{array}{cc}
T_{k}(A) & * \\
* & *
\end{array}\right)
$$

Qubitization

$$
\begin{gathered}
U_{A}=\left(\begin{array}{cc}
A & * \\
* & *
\end{array}\right), \quad U_{A}=U_{A}^{\dagger}, \quad \Pi=|0\rangle\langle 0| \otimes I, \quad Z_{\Pi}=2 \Pi-1 \\
\left(U_{A} Z_{\Pi}\right)^{k}=\left(\begin{array}{cc}
T_{k}(A) & * \\
* & *
\end{array}\right) \\
|10\rangle|0\rangle-|1\rangle|\perp\rangle \\
|10\rangle|0\rangle+|1\rangle|\perp\rangle \\
|1\rangle\rangle
\end{gathered}
$$

Qubitization

So far we have assumed Hermitian block-encoding for Hermitian matrices (i.e., $U_{A}=U_{A}^{\dagger}$), now we relax this assumption

$$
U_{A}|0\rangle\left|v_{j}\right\rangle=\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}^{\prime}\right\rangle
$$

where $\Pi\left|\perp_{j}^{\prime}\right\rangle=0, \Pi=|0\rangle\langle 0| \otimes I$.
Notice that since A is Hermitian,

$$
U_{A}^{\dagger}=\left(\begin{array}{cc}
A & * \\
* & *
\end{array}\right), \quad U_{A}^{\dagger}|0\rangle\left|v_{j}\right\rangle=\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}\right\rangle
$$

where $\Pi\left|\perp_{j}\right\rangle=0$. Apply U_{A}, then we have

$$
\begin{aligned}
|0\rangle\left|v_{j}\right\rangle & =\lambda_{j}\left(\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}^{\prime}\right\rangle\right)+\sqrt{1-\lambda_{j}^{2}} U_{A}\left|\perp_{j}\right\rangle \\
U_{A}\left|\perp_{j}\right\rangle & =\sqrt{1-\lambda_{j}^{2}}|0\rangle\left|v_{j}\right\rangle-\lambda_{j}\left|\perp_{j}^{\prime}\right\rangle
\end{aligned}
$$

Qubitization

$$
\begin{aligned}
U_{A}|0\rangle\left|v_{j}\right\rangle & =\lambda_{j}|0\rangle\left|v_{j}\right\rangle+\sqrt{1-\lambda_{j}^{2}}\left|\perp_{j}^{\prime}\right\rangle \\
U_{A}\left|\perp_{j}\right\rangle & =\sqrt{1-\lambda_{j}^{2}}|0\rangle\left|v_{j}\right\rangle-\lambda_{j}\left|\perp_{j}^{\prime}\right\rangle
\end{aligned}
$$

So U_{A} maps $\mathcal{H}_{j}=\operatorname{span}\left\{|0\rangle\left|v_{j}\right\rangle,\left|\perp_{j}\right\rangle\right\}$ to $\mathcal{H}_{j}^{\prime}=\operatorname{span}\left\{|0\rangle\left|v_{j}\right\rangle,\left|\perp_{j}^{\prime}\right\rangle\right\}$, we can also verify that U_{A}^{\dagger} maps \mathcal{H}_{j}^{\prime} to \mathcal{H}_{j},

$$
\left[U_{A}\right]_{\mathcal{H}_{j} \rightarrow \mathcal{H}_{j}^{\prime}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right), \quad\left[U_{A}^{\dagger}\right]_{\mathcal{H}_{j}^{\prime} \rightarrow \mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right)
$$

For the projector $\Pi=|0\rangle\langle 0| \otimes I, Z_{\Pi}=2 \Pi-1$,

$$
\left[Z_{\Pi}\right]_{\mathcal{H}_{j}}=\left[Z_{\Pi}\right]_{\mathcal{H}_{j}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Qubitization

Let $\mathcal{H}_{j}=\operatorname{span}\left\{|0\rangle\left|v_{j}\right\rangle,\left|\perp_{j}\right\rangle\right\}, \mathcal{H}_{j}^{\prime}=\operatorname{span}\left\{|0\rangle\left|v_{j}\right\rangle,\left|\perp_{j}^{\prime}\right\rangle\right\}$,

$$
\left[U_{A}\right]_{\mathcal{H}_{j} \rightarrow \mathcal{H}_{j}^{\prime}}=\left[U_{A}^{\dagger}\right]_{\mathcal{H}_{j}^{\prime} \rightarrow \mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right), \quad\left[Z_{\Pi}\right]_{\mathcal{H}_{j}}=\left[Z_{\Pi}\right]_{\mathcal{H}_{j}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then

$$
\left[U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
\lambda_{j} & \sqrt{1-\lambda_{j}^{2}} \\
\sqrt{1-\lambda_{j}^{2}} & -\lambda_{j}
\end{array}\right)^{2}, \quad\left[\left(U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right)^{k}\right]_{\mathcal{H}_{j}}=\left(\begin{array}{cc}
T_{2 k}\left(\lambda_{j}\right) & * \\
* & *
\end{array}\right) .
$$

Therefore $\left(U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right)^{k}$ block encodes $T_{2 k}(A)$. For odd polynomials, notice that \mathcal{H}_{j} and \mathcal{H}_{j}^{\prime} share common $|0\rangle\left|v_{j}\right\rangle$,

$$
\begin{aligned}
{\left[U_{A} Z_{\Pi}\left(U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right)^{k}\right]_{\mathcal{H}_{j} \rightarrow \mathcal{H}_{j}^{\prime}} } & =\left(\begin{array}{cc}
T_{2 k+1}\left(\lambda_{j}\right) & * \\
* & *
\end{array}\right), \\
U_{A} Z_{\Pi}\left(U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right)^{k} & =\left(\begin{array}{cc}
T_{2 k+1}(A) & * \\
* & *
\end{array}\right)
\end{aligned}
$$

Qubitization

$$
\left(U_{A}^{\dagger} Z_{\Pi} U_{A} Z_{\Pi}\right)^{k}
$$

Now we can implement any polynomial by LCU, but may introduce extra overhead and control logic

Quantum signal processing (QSP)

Let us start with the 2-by-2 matrix again

$$
U=\left(\begin{array}{cc}
\lambda & \sqrt{1-\lambda^{2}} \\
\sqrt{1-\lambda^{2}} & -\lambda
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

we have shown that

$$
(U Z)^{k}=\left(\begin{array}{cc}
T_{k}(\lambda) & * \\
* & *
\end{array}\right) .
$$

Notice that

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-i\left(\begin{array}{cc}
e^{i \frac{\pi}{2}} & 0 \\
0 & e^{-i \frac{\pi}{2}}
\end{array}\right)=-i e^{i \frac{\pi}{2} Z}
$$

What if we consider a more general

$$
e^{i \phi_{d} Z} U e^{i \phi_{d-1} Z} \ldots U e^{i \phi_{2} Z} U e^{i \phi_{1} Z} U e^{i \phi_{0} Z}
$$

where $\left(\phi_{0}, \phi_{1}, \cdots, \phi_{d}\right) \in \mathbb{R}^{d+1}$.

Quantum signal processing (QSP)

Theorem (QSP)

Let

$$
U=\left(\begin{array}{cc}
\lambda & \sqrt{1-\lambda^{2}} \\
\sqrt{1-\lambda^{2}} & -\lambda
\end{array}\right)
$$

Then there exist phase factors $\left(\phi_{0}, \phi_{1}, \cdots, \phi_{d}\right) \in \mathbb{R}^{d+1}$ such that

$$
e^{i \phi_{d} Z} U e^{i \phi_{d-1} Z} \ldots U e^{i \phi_{2} Z} U e^{i \phi_{1} Z} U e^{i \phi_{0} Z}=\left(\begin{array}{cc}
p(\lambda) & -q(\lambda) \sqrt{1-\lambda^{2}} \\
q^{*}(\lambda) \sqrt{1-\lambda^{2}} & p^{*}(\lambda)
\end{array}\right)
$$

if and only if $p(\lambda), q(\lambda)$ are complex-coefficient polynomials such that

1. $\operatorname{deg}(p) \leq d, \operatorname{deg}(q) \leq d-1$,
2. p has parity $d \bmod 2$ and q has parity $d-1 \bmod 2$,
3. $|p(\lambda)|^{2}+\left(1-\lambda^{2}\right)|q(\lambda)|^{2}=1$ for all $\lambda \in[-1,1]$.
[^14]
QSP

Theorem (QSP for real polynomials)

Let

$$
U=\left(\begin{array}{cc}
\lambda & \sqrt{1-\lambda^{2}} \\
\sqrt{1-\lambda^{2}} & -\lambda
\end{array}\right)
$$

Then there exist phase factors $\left(\phi_{0}, \phi_{1}, \cdots, \phi_{d}\right) \in \mathbb{R}^{d+1}$ such that

$$
e^{i \phi_{d} Z} U e^{i \phi_{d-1} Z} \ldots U e^{i \phi_{2} Z} U e^{i \phi_{1} Z} U e^{i \phi_{0} Z}=\left(\begin{array}{cc}
P(\lambda) & * \\
* & *
\end{array}\right)
$$

if $\operatorname{Re}(P(\lambda))=p(\lambda)$ and

1. $\operatorname{deg}(p) \leq d$,
2. p has parity $d \bmod 2$,
3. $|p(\lambda)| \leq 1$ for all $\lambda \in[-1,1]$.

- The parity assumption can be further removed by $p=p_{\text {even }}+p_{\text {odd }}$ and LCU, or Motlagh-Wiebe [arXiv:2308.01501]

QSP, qubitization, and QSVT

Through qubitization, for

1. any Hermitian matrix A with $\|A\| \leq 1$ and its block-encoding U_{A},
2. any d-degree real polynomial $p(\lambda)$ with $|p(\lambda)| \leq 1$ for all $\lambda \in[-1,1]$, we can block encode $p(A)$ with $\mathcal{O}(d)$ cost.

If A is not Hermitian, we are performing singular value transformation ${ }^{11}$.

[^15]
Phase factors

Finding phase factors was a hard task at the time when QSP was proposed, but has been practically solved so far.

- Direct methods:
- Remez exchange algorithm
- roots of polynomials (Gilyen Etal [arXiv:1806.01838])
- Capitalization (Chao Etal [arXiv:2003.02831])
- Prony's method (Ying [arXiv:2202.02671])
- Iterative methods:
- optimization based algorithm (Dong Etal [arXiv:2002.11649])
- fixed point iteration (Dong Etal [arXiv:2209.10162])

QSP/QSVT vs LCU

- Both QSP/QSVT and LCU can implement matrix functions
- For Hermitian matrices, LCU has computational overhead due to 1-norm of the coefficients and require extra control logic
- For general matrices
- QSVT: singular value transformation
- LCU: eigenvalue transformation

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z-A)^{-1} d z
$$

LCU:

QSP:

Summary: matrix functions

- Qubitization for block-enccoding Chebyshev polynomials
- Quantum signal processing
- Quantum singular value transformation

Summary

- Basic linear algebra operations
- Input models for vectors and matrices: quantum state and block-encoding
- Matrix-vector multiplication: applying block-encoding
- Matrix/vector addition: linear combination of unitaries (LCU)
- Matrix multiplication: compression gadget
- Linear systems of equations
- General algorithms: HHL, LCU, AQC
- Preconditioning
- Eigenvalue problems
- Matrix functions: Qubitization, QSP, QSVT

[^0]: ${ }^{1}$ Grover-Rudolph [arXiv:quant-ph/0208112], Zhang-Li-Yuan [arXiv:2201.11495]

[^1]: ${ }^{2}$ Gilyen Etal [arXiv:1806.01838], Camps Etal [arXiv:2203.10236]

[^2]: ${ }^{3}$ Childs-Wiebe [arXiv:1202.5822], Childs-Kothari-Somma [arXiv:1511.02306]

[^3]: ${ }^{4}$ Harrow-Hassidim-Lloyd [arXiv:0811.3171]

[^4]: ${ }^{4}$ Childs-Kothari-Somma [arXiv:1511.02306]

[^5]: ${ }^{a}$ Albash-Lidar [arXiv:1611.04471]

[^6]: ${ }^{5}$ Subasi-Somma-Orsucci [arXiv:1805.10549]

[^7]: ${ }^{6}$ An-Lin [arXiv:1909.05500]

[^8]: ${ }^{7}$ Nenciu(1993)

[^9]: ${ }^{8}$ An-Lin [arXiv:1909.05500]

[^10]: ${ }^{9}$ Harrow-Kothari (in preparation)

[^11]: ${ }^{9}$ Gilyen Etal [arXiv:1806.01838]

[^12]: ${ }^{10}$ Lin-Tong [arXiv:1910.14596]

[^13]: ${ }^{10}$ Low-Chuang [arXiv:1610.06546]

[^14]: ${ }^{10}$ Low-Chuang [arXiv:1606.02685]

[^15]: ${ }^{11}$ Gilyen Etal [arXiv:1806.01838]

