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Introduction

3 / 64



Quantum numerical linear algebra

▶ Numerical linear algebra: using matrix operations to design algorithms
▶ Operations: Matrix/vector addition, multiplication
▶ Tasks: solving linear systems of equations, matrix factorization, eigenvalue/singular

value decomposition/transformation

▶ Quantum numerical linear algebra
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Quantum numerical linear algebra: desired speedup

poly(N) vs poly log(N)

▶ For N-dimensional system (suppose N = 2n), classical algorithms typically take
cost at least linear in N
▶ Storing an N-dimensional vector takes ∼ N cost
▶ A single application of matrix-vector multiplication takes at least ∼ N computational

cost

▶ For quantum algorithms, we expect computational cost to be
O(poly log(N)) = O(poly(n))
▶ An n-qubit quantum state can be viewed as a 2n-dimensional unit vector
▶ Matrix operations are implemented by quantum operations on these n qubits
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Quantum numerical linear algebra: restrictions

▶ Vectors (quantum states) are normalized under 2-norm
▶ May lose some information

▶ Only a subset of operations are efficiently implementable: unitary matrices
▶ For general matrix operations, we will embed its rescaled version into a sub-block of

unitary operations
▶ Will introduce extra computational cost

▶ No cloning theorem
▶ Iterative methods are not generally efficient for quantum
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Quantum vs Classical

Classical Quantum

Space 2n n

Unitary
General matrix

Copying
Entry-wise information

▶ Quantum numerical linear algebra: linear algebra algorithms with restrictions but
possible speedup

▶ Speedup for certain tasks:
▶ Factorization
▶ Unstructured search
▶ Discrete Fourier transform
▶ Applied math: linear system, differential equation, optimization, machine learning,

· · ·
Quantum algorithm zoo: https://quantumalgorithmzoo.org
Lecture notes by Lin Lin: [arXiv:2201.08309]
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Today’s talk

▶ Basic linear algebra operations
▶ Input models for vectors and matrices
▶ Matrix-vector multiplication
▶ Matrix/vector addition: linear combination of unitaries (LCU)
▶ Matrix multiplication

▶ Linear systems of equations
▶ General algorithms: HHL, LCU, adiabatic quantum computing
▶ Preconditioning

▶ Eigenvalue problems
▶ Matrix functions

▶ Functions of Hermitian matrices: quantum signal processing (QSP), qubitization
▶ Functions of general matrices: quantum singular value transformation (QSVT)
▶ LCU
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Basic linear algebra operations
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Input model: vectors

▶ Single-qubit state ∼= C2/∥ · ∥2

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, α |0⟩+ β |1⟩ =

(
α
β

)
▶ Measurement: we get 0 with probability |α|2, and 1 with probability |β|2

▶ General n qubit space: tensor product of n multiple single qubit

|i1i2 · · · in⟩ = |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |in⟩ ∈ C2n/∥ · ∥2

▶ Common notations:
▶ We use |j⟩ , 0 ≤ j ≤ 2n − 1 to represent the orthonormal basis of the Hilbert space
▶ An element (a quantum state) in the n-qubit space:

|v⟩ =
∑2n−1

j=0 αj |j⟩ = (α0, · · · , α2n−1)
T

▶ Measurement: we get j with probability |αj |2 (but destroy the superposition)
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Input model: vectors

Input model: state preparation oracle

Ou : |0⟩ → |u⟩ =
2n−1∑
j=0

uj |j⟩

Constructing Ou is generally hard, but easy in special cases1

1Grover-Rudolph [arXiv:quant-ph/0208112], Zhang-Li-Yuan [arXiv:2201.11495]
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Input model: matrices

Definition (Block-encoding)

Let A be a 2n-by-2n matrix. A block-encoding of A is a 2n+a-by-2n+a unitary UA such
that

A ≈ α
(
⟨0|⊗a ⊗ I

)
UA

(
|0⟩⊗a ⊗ I

)
,

or equivalently

UA ≈
(

1
αA ∗
∗ ∗

)
.

▶ α is called the block-encoding factor and should satisfy α ≥ ∥A∥
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Input model: matrices

UA ≈
(

1
αA ∗
∗ ∗

)
.

▶ For a arbitrarily given matrix A, constructing UA is in general hard

▶ Special cases: unitary, sparse matrices, structured matrices, · · · 2

2Gilyen Etal [arXiv:1806.01838], Camps Etal [arXiv:2203.10236]
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Matrix-vector multiplication
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Matrix addition: Linear combination of unitaries (LCU)

Task of LCU3: given a set of unitary operators Uj and coefficients cj , compute∑
j

cjUj

3Childs-Wiebe [arXiv:1202.5822], Childs-Kothari-Somma [arXiv:1511.02306]
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Matrix addition: LCU
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Matrix addition: LCU

|0⟩ |u0⟩
Op−→ 1√

∥c∥1

∑
j

√
cj |j⟩ |u0⟩

Os−→ 1√
∥c∥1

∑
j

√
cj |j⟩Uj |u0⟩

O†
p−−→ 1

∥c∥1
|0⟩

∑
j

cjUj |u0⟩+ |⊥⟩

▶ Repeats: O(∥c∥1/∥
∑

cjUj |u0⟩ ∥)
▶ Overall complexity depends on the

cost of constructing Op and Os
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Matrix addition

▶ Goal: compute (block encode)
∑

j cjAj for general matrices ∥Aj∥ ≤ 1

▶ Algorithm: LCU where unitaries are block-encodings

Os =
∑
j

|j⟩ ⟨j | ⊗ UAj
, UAj

=

(
Aj ∗
∗ ∗

)

|0⟩ Op

Os

O†
p

|0⟩

|u0⟩
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Vector addition

▶ Goal: compute
∑

j cj |uj⟩ for quantum states |uj⟩
▶ Algorithm: Implement

∑
j cjUj on |0⟩ where Uj ’s are state preparation oracles

Uj : |0⟩ → |uj⟩ ,
∑
j

cjUj |0⟩ =
∑
j

cj |uj⟩

19 / 64



Matrix multiplication

Let us start with two matrices

▶ Two unitaries U1U0

|u0⟩ U0 U1

▶ Two matrices: A0 and A1, block-encodings UA0 and UA1 . Can we try this?

|0⟩
UA0 UA1

|u0⟩ ??

▶ Does not work:

UA1UA0 |0⟩ |u0⟩ = UA1 (|0⟩A0 |u0⟩+ |1⟩ |∗⟩)(
A1 ∗
∗ ∗

)(
A0 ∗
∗ ∗

)(
u0
0

)
=

(
A1 ∗
∗ ∗

)(
A0u0
∗

)
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Matrix multiplication

Method 1: duplicate ancilla qubits

|0⟩0
UA0

|u0⟩
UA1

|0⟩1

|0⟩1 |0⟩0 |u0⟩
UA0−−→|0⟩1 (|0⟩0 A0 |u0⟩+ |1⟩0 |∗⟩)
= |0⟩0 |0⟩1 A0 |u0⟩+ |1⟩0 |0⟩1 |∗⟩

UA1−−→|0⟩0 (|0⟩1 A1A0 |u0⟩+ |1⟩1 |∗⟩) + |1⟩0 |0⟩1 |∗⟩+ |1⟩0 |1⟩1 |∗⟩

Multiplication of J matrices: using O(J) extra ancilla qubits
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Matrix multiplication
Method 2: compression gadget (Low-Wiebe [arXiv:1805.00675], Fang-Lin-Tong
[arXiv:2208.06941])
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Summary: basic linear algebra operations

▶ Input models: quantum state, block-encoding

▶ Matrix-vector multiplication: applying block-encoding

▶ Matrix/vector addition: LCU

▶ Matrix multiplication
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Linear systems of equations
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Quantum linear system problem (QLSP)
▶ Classical: given A: N × N Hermitian matrix, b: N-dimensional vector, compute

x = A−1b

▶ Non-Hermitian: consider

(
0 A
A† 0

)(
0
x

)
=

(
b
0

)
▶ Quantum: find an ϵ-approximation of the quantum state

|x⟩ = A−1 |b⟩
∥A−1 |b⟩ ∥

▶ Assume ∥A∥ = 1 and we have some black-box access to A and |b⟩ (e.g.,
block-encoding and state preparation oracle)

▶ Important parameters: dimension N, tolerated error level ϵ, condition number
κ = ∥A∥∥A−1∥
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Harrow-Hassidim-Lloyd (HHL)

▶ 4The first quantum algorithm for solving QLSP

▶ Key equation: let (λj , |vj⟩) be the eigenvalues and eigenvectors of A, and

|b⟩ =
∑N−1

j=0 βj |vj⟩, then

A−1 |b⟩ =

N−1∑
j=0

λ−1
j |vj⟩ ⟨vj |

N−1∑
j=0

βj |vj⟩

 =
N−1∑
j=0

βj
λj

|vj⟩

▶ Need to do:
▶ store the information (binary encoding) of λj ’s in an ancilla register coherently
▶ multiply the factor λ−1

j to each eigenvector |vj⟩

4Harrow-Hassidim-Lloyd [arXiv:0811.3171]
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HHL

▶ Need to do:
▶ store the information (binary encoding) of λj ’s in an ancilla register coherently
▶ multiply the factor λ−1

j to each eigenvector |vj⟩
▶ Useful subroutines:

▶ Quantum phase estimation (QPE): Let U be a unitary and U |ψ⟩ = e2πiθ |ψ⟩ for a
real number θ ∈ [0, 1]. The (ideal) QPE algorithm is UQPE such that

UQPE |ψ⟩ |0⟩ = |ψ⟩ |θ⟩ .

Here |θ⟩ = |θm−1⟩ · · · |θ1⟩ |θ0⟩ where θ = (.θ0θ1 · · · θm−1) is its binary representation
▶ Controlled rotation: A unitary UCR such that

UCR |θ⟩ |0⟩ = |θ⟩
(
f (θ) |0⟩+

√
1− |f (θ)|2 |1⟩

)
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HHL
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HHL

▶ Complexity analysis: two sources
▶ The cost of a single run: mainly due to

QPE
O(κ/ϵ)

▶ Number of repeats:

O(1/(C∥A−1 |b⟩ ∥)) = O(κ)

▶ Overall complexity:

O(κ2/ϵ)

▶ Need two efficient subroutines:
▶ Hamiltonian simulation: implement e2πiA

▶ QPE

|0⟩
UCR

|0⟩
UQPE U†

QPE|b⟩

Output (here C ∼ 1/κ):∑
j

C |0⟩ |0⟩ (A−1 |b⟩) + |⊥⟩
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LCU

▶ Review of LCU:
▶ Output: 1

∥c∥1
|0⟩

∑
j cjUj |u0⟩+ |⊥⟩

▶ Cost of each run: depend on Os

▶ Repeats: O(∥c∥1/∥
∑

cjUj |u0⟩ ∥)
▶ Idea for QLSP: decompose A−1 as

linear combination of unitaries

4Childs-Kothari-Somma [arXiv:1511.02306]
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LCU: Fourier approach
▶ Key identity:

1

x
=

i√
2π

∫ ∞

0
dy

∫ ∞

−∞
dzze−z2/2e−ixyz .

▶ For a Hermitian matrix A,

A−1 =
i√
2π

∫ ∞

0
dy

∫ ∞

−∞
dzze−z2/2e−iyzA

≈ i√
2π

∫ Y

0
dy

∫ Z

−Z
dzze−z2/2e−iyzA

≈
∑

cj ,j ′e
−iyjzj′A

▶ ϵ-approximation if Y = O(κ
√
log(κ/ϵ)), Z = O(

√
log(κ/ϵ))

▶ Cost of Hamiltonian simulation for e−iHT : O(Tpoly log(1/ϵ))
▶ Overall complexity

κ poly log(κ/ϵ)× κ
√

log(κ/ϵ) = O(κ2poly log(κ/ϵ))
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LCU: Chebyshev approach
▶ Idea: expand 1/x using Chebyshev polynomials

▶ Chebyshev polynomials:

Tn(cos(θ)) = cos(nθ)

Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1,T1(x) = x

▶ Bounded by 1 on [−1, 1], minimize Runge’s phenomenon, close to the best
polynomial approximation

▶ Approach:
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LCU: Chebyshev approach

A−1 ≈
O(κ poly log(κ/ϵ))∑

j=0

cjT2j+1(A)

▶ ∥T2j+1(A)∥ ≤ 1 but not unitary, so we need to construct its block-encoding

▶ The same overall complexity:

κ poly log(κ/ϵ)× κ
√
log(κ/ϵ) = O(κ2poly log(κ/ϵ))
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Adiabatic Quantum Computing (AQC)

ı∂t |ψ(t)⟩ = H(t/T ) |ψ(t)⟩ , t ∈ [0,T ]

H(0) |ψ(0)⟩ = λ0 |ψ(0)⟩

▶ Starting from the (easily prepared) eigenvector of
H(0), the wavefunction at the final time will
approximate the corresponding eigenvector of H(1) if
▶ the Hamiltonian is slow enough (equivalently T is

large enough)
▶ gap condition is satisfied

▶ Application: a quantum computing model to solve
eigenvalue problema

aAlbash-Lidar [arXiv:1611.04471]
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AQC for QLSP

(Vanilla) AQC for QLSP algorithm:

H0 =

(
0 Qb

Qb 0

)
, H1 =

(
0 AQb

QbA 0

)
,

Qb = I − |b⟩ ⟨b|

H(s) = (1− s)H0 + sH1,
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)

▶ Eigenpath corresponding to eigenvalue 0 is of interest, which connects (b⊤, 0⊤)⊤

and (x⊤, 0⊤)⊤ 5

5Subasi-Somma-Orsucci [arXiv:1805.10549]
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Quantum Adiabatic Theorem

Theorem (Jansen-Ruskai-Seiler (arXiv:quant-ph/0603175))

Assume gap ∆(s), then the distance between the dynamics and the eigenvector can be
bounded by

η(s) = C
{∥H ′(0)∥2
T∆2(0)

+
∥H ′(s)∥2
T∆2(s)

+
1

T

∫ s

0

(
∥H ′′(τ)∥2
∆2(τ)

+
∥H ′(τ)∥22
∆3(τ)

)
dτ

}
.

▶ To bound the error by ϵ: T = O(∆−3
∗ ϵ−1)

▶ Cubic dependence on the gap

▶ In QLSP, ∆∗ ∼ 1/κ =⇒ T = O(κ3ϵ−1)
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Time-optimal AQC

ı∂t |ψ(t)⟩ = H(t/T ) |ψ(t)⟩ , t ∈ [0,T ]

▶ Idea: generally interpolate H(s) = (1− f (s))H0 + f (s)H1, choose proper f (s) to
slow down the Hamiltonian when the gap is small

▶ AQC(p): ḟ (s) = c∆p(f (s))

=⇒ T = O (κ/ϵ) 6
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Vanilla AQC

AQC(p=1)

AQC(p=1.5)

AQC(p=2)

6An-Lin [arXiv:1909.05500] 37 / 64



AQC(exp)

▶ Quantum adiabatic theorem can be improved to error ∼ O(T−k) if we only care
about the final state error7

▶ Requiring boundary cancellation condition, i.e., the support of H ′(s) is in (0, 1)

η(s) = C
{∥H ′(0)∥2
T∆2(0)

+
∥H ′(s)∥2
T∆2(s)

+
1

T

∫ s

0

(
∥H ′′(τ)∥2
∆2(τ)

+
∥H ′(τ)∥22
∆3(τ)

)
dτ

}
.

▶ Error = Boundary1 +
1
T

∫ 1
0 = Boundary1 + Boundary2 +

1
T 2

∫ 1
0 =

Boundary1 + Boundary2 + Boundary3 +
1
T 3

∫ 1
0 = · · ·

7Nenciu(1993)
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AQC(exp)

▶ AQC(exp): f (s) = c−1
∫ s
0 exp[−u−1(1− u)−1]du, happens to be slow as well at

the smallest gap

=⇒ T = O (κ poly log(κ/ϵ)) 8
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8An-Lin [arXiv:1909.05500]
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Preconditioning
▶ QLSP algorithms with cost O(κ poly log(κ/ϵ)), can still be expensive if the

system is ill-conditioned

▶ Classical solution: preconditioning

Ax = b ⇐⇒ MAx = Mb

▶ Effective if
▶ κ(MA) ≪ κ(A)
▶ the matrix-vector multiplication My is easily accessible, and in particular its cost is

independent of κ(M)

▶ Classical: diagonal matrix, incomplete factorization, sparse approximate inverse
(SPAI), etc.

▶ Quantum:
▶ SPAI (Clader-Jacobs-Sprouse [arXiv:1301.2340])
▶ Circulant matrix (Shao-Xiang [arXiv:1807.04563])
▶ Diagonal matrix (Tong-An-Wiebe-Lin [arXiv:2008.13295])
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Preconditioning

(A+ B) |x⟩ ∼ |b⟩

▶ Assume A is easily invertible with very large ∥A∥ and moderate
∥B∥, ∥A−1∥, ∥(A+ B)−1∥

▶ κ(A+ B) ∼ O(∥A∥)
▶ An example: Poisson’s equation −∆u(r) + V (r)u(r) = b(r)
▶ Preconditioner: A−1

▶ κ(I + A−1B) = O(1)

▶ Algorithm:
A−1 → A−1B → I + A−1B → (I + A−1B)−1 → (I + A−1B)−1A−1 = (A+ B)−1

▶ Need matrix addition and multiplication, and fast-inversion of a diagonal matrix

41 / 64



Summary: QLSP

▶ HHL algorithm:
▶ QPE and Hamiltonian simulation

▶ O(κ2/ϵ)
improvable−−−−−−→ O(κ/ϵ3)

▶ LCU:
▶ Polynomial approximation of 1/x

▶ O(κ2 poly log(κ/ϵ))
improvable−−−−−−→ O(κ poly log(κ/ϵ))

▶ AQC:
▶ QLSP as an eigenvalue/eigenvector problem

▶ O(κ poly log(κ/ϵ))
improvable−−−−−−→ O(κ log(1/ϵ))

▶ Lower bound9: Ω(κ log(1/ϵ))

▶ Preconditioning

9Harrow-Kothari (in preparation)
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Eigenvalue problems
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Eigenvalue problems

▶ We discussed AQC approach, and “discussed” QPE

▶ Ground state/energy problem

▶ General optimization: variational quantum eigensolvers, a hybrid
quantum-classical approach
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Matrix functions
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Matrix functions

▶ For Hermitian matrices: eigenvalue transformation

A = V diag(λj)V
† or−→ f (A) = V diag(f (λj))V

†

▶ For general matrices: singular value transformation

A = W diag(σj)V
† −→ f (A) = W diag(f (σj))V

†

or−→ f (A) = V diag(f (σj))V
†

or−→ f (A) = W diag(f (σj))W
†
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Main result

Suppose that UA is the block-encoding of a Hermitian matrix A with ∥A∥ ≤ 1, and
p(x) is a real-coefficient polynomial such that

1. degree of p(x) is d ,

2. |p(x)| ≤ 1 for all x ∈ [−1, 1].

Then, p(A) can be block-encoded with complexity

O(d)

9Gilyen Etal [arXiv:1806.01838]
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Applications

▶ Solving linear systems of equations: f (x) = 1
κx

▶ Hamiltonian simulation: f (x) = e−iAt

▶ Filtering10

▶ Amplitude amplification:

U |0⟩ |ψ⟩ = 1

q
|0⟩A |ψ⟩+ |⊥⟩ → Ũ |0⟩ |ψ⟩ = 1

2
|0⟩A |ψ⟩+ |⊥⟩

f (x) = qx/2, x ∈ [−1/q, 1/q]

f (x) ≈ p(x) where deg(p(x)) ∼ q log(1/ϵ)

▶ · · · · · ·

10Lin-Tong [arXiv:1910.14596]
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Toy example: Chebyshev polynomials

Consider a 2-by-2 matrix

O =

(
λ −

√
1− λ2√

1− λ2 λ

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Then

Ok =

(
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

)
=

(
Tn(λ) ∗

∗ ∗

)
where Tk = cos(kθ) is the Chebyshev polynomial.

▶ For Hermitian matrix case Tk(A) = VTk(Λ)V
†: for each eigenvalue, find its

corresponding 2-dimensional subspace and perform this Ok
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Qubitization
Suppose A =

∑
λj |vj⟩ ⟨vj | and UA is its Hermitian block-encoding (UA = U†

A).

UA |0⟩ |vj⟩ = |0⟩A |vj⟩+ ∗ = λj |0⟩ |vj⟩+
√
1− λ2j |⊥j⟩

where Π |⊥j⟩ = 0, Π = |0⟩ ⟨0| ⊗ I .
Apply UA again yields

U2
A |0⟩ |vj⟩ = λj(λj |0⟩ |vj⟩+

√
1− λ2j |⊥j⟩) + UA

√
1− λ2j |⊥j⟩

UA |⊥j⟩ =
√
1− λ2 |0⟩ |vj⟩ − λj |⊥j⟩ .

Invariant space: Hj = span {|0⟩ |vj⟩ , |⊥j⟩}. We may write

[UA]Hj
=

 λj
√

1− λ2j√
1− λ2j −λj

 , [Π]Hj
=

(
1 0
0 0

)
.

10Low-Chuang [arXiv:1610.06546]
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Qubitization

[UA]Hj
=

 λj
√
1− λ2j√

1− λ2j −λj

 , [Π]Hj
=

(
1 0
0 0

)
.

Let

ZΠ = 2Π− 1, [ZΠ]Hj
=

(
1 0
0 −1

)
.

Then

O = UAZΠ, [O]Hj
=

 λj −
√

1− λ2j√
1− λ2j λj

 ,

and thus

[Ok ]Hj
=

(
Tk(λj) ∗

∗ ∗

)
, Ok =

(
Tk(A) ∗

∗ ∗

)
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Qubitization

UA =

(
A ∗
∗ ∗

)
, UA = U†

A, Π = |0⟩ ⟨0| ⊗ I , ZΠ = 2Π− 1

(UAZΠ)
k =

(
Tk(A) ∗

∗ ∗

)

52 / 64



Qubitization
So far we have assumed Hermitian block-encoding for Hermitian matrices (i.e.,

UA = U†
A), now we relax this assumption

UA |0⟩ |vj⟩ = λj |0⟩ |vj⟩+
√

1− λ2j |⊥
′
j⟩

where Π |⊥′
j⟩ = 0, Π = |0⟩ ⟨0| ⊗ I .

Notice that since A is Hermitian,

U†
A =

(
A ∗
∗ ∗

)
, U†

A |0⟩ |vj⟩ = λj |0⟩ |vj⟩+
√

1− λ2j |⊥j⟩

where Π |⊥j⟩ = 0. Apply UA, then we have

|0⟩ |vj⟩ = λj(λj |0⟩ |vj⟩+
√
1− λ2j |⊥

′
j⟩) +

√
1− λ2j UA |⊥j⟩

UA |⊥j⟩ =
√
1− λ2j |0⟩ |vj⟩ − λj |⊥′

j⟩
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Qubitization

UA |0⟩ |vj⟩ = λj |0⟩ |vj⟩+
√

1− λ2j |⊥
′
j⟩

UA |⊥j⟩ =
√

1− λ2j |0⟩ |vj⟩ − λj |⊥′
j⟩

So UA maps Hj = span {|0⟩ |vj⟩ , |⊥j⟩} to H′
j = span

{
|0⟩ |vj⟩ , |⊥′

j⟩
}
, we can also

verify that U†
A maps H′

j to Hj ,

[UA]Hj→H′
j
=

 λj
√
1− λ2j√

1− λ2j −λj

 , [U†
A]H′

j→Hj
=

 λj
√
1− λ2j√

1− λ2j −λj


For the projector Π = |0⟩ ⟨0| ⊗ I , ZΠ = 2Π− 1,

[ZΠ]Hj
= [ZΠ]H′

j
=

(
1 0
0 −1

)
.

54 / 64



Qubitization
Let Hj = span {|0⟩ |vj⟩ , |⊥j⟩}, H′

j = span
{
|0⟩ |vj⟩ , |⊥′

j⟩
}
,

[UA]Hj→H′
j
= [U†

A]H′
j→Hj

=

 λj
√
1− λ2j√

1− λ2j −λj

 , [ZΠ]Hj
= [ZΠ]H′

j
=

(
1 0
0 −1

)
.

Then

[U†
AZΠUAZΠ]Hj

=

 λj
√

1− λ2j√
1− λ2j −λj

2

, [(U†
AZΠUAZΠ)

k ]Hj
=

(
T2k(λj) ∗

∗ ∗

)
.

Therefore (U†
AZΠUAZΠ)

k block encodes T2k(A). For odd polynomials, notice that Hj

and H′
j share common |0⟩ |vj⟩,

[UAZΠ(U
†
AZΠUAZΠ)

k ]Hj→H′
j
=

(
T2k+1(λj) ∗

∗ ∗

)
,

UAZΠ(U
†
AZΠUAZΠ)

k =

(
T2k+1(A) ∗

∗ ∗

)
55 / 64



Qubitization

(U†
AZΠUAZΠ)

k

|1⟩ Z Z · · ·

|0⟩
UA U†

A

· · ·

|u⟩ · · ·

Now we can implement any polynomial by LCU, but may introduce extra overhead and
control logic
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Quantum signal processing (QSP)
Let us start with the 2-by-2 matrix again

U =

(
λ

√
1− λ2√

1− λ2 −λ

)
, Z =

(
1 0
0 −1

)
,

we have shown that

(UZ )k =

(
Tk(λ) ∗

∗ ∗

)
.

Notice that

Z =

(
1 0
0 −1

)
= −i

(
e i

π
2 0

0 e−i π
2

)
= −ie i

π
2
Z

What if we consider a more general

e iϕdZUe iϕd−1Z · · ·Ue iϕ2ZUe iϕ1ZUe iϕ0Z

where (ϕ0, ϕ1, · · · , ϕd) ∈ Rd+1.
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Quantum signal processing (QSP)

Theorem (QSP)

Let

U =

(
λ

√
1− λ2√

1− λ2 −λ

)
.

Then there exist phase factors (ϕ0, ϕ1, · · · , ϕd) ∈ Rd+1 such that

e iϕdZUe iϕd−1Z · · ·Ue iϕ2ZUe iϕ1ZUe iϕ0Z =

(
p(λ) −q(λ)

√
1− λ2

q∗(λ)
√
1− λ2 p∗(λ)

)
if and only if p(λ), q(λ) are complex-coefficient polynomials such that

1. deg(p) ≤ d , deg(q) ≤ d − 1,

2. p has parity d mod 2 and q has parity d − 1 mod 2,

3. |p(λ)|2 + (1− λ2)|q(λ)|2 = 1 for all λ ∈ [−1, 1].

10Low-Chuang [arXiv:1606.02685]
58 / 64



QSP

Theorem (QSP for real polynomials)

Let

U =

(
λ

√
1− λ2√

1− λ2 −λ

)
.

Then there exist phase factors (ϕ0, ϕ1, · · · , ϕd) ∈ Rd+1 such that

e iϕdZUe iϕd−1Z · · ·Ue iϕ2ZUe iϕ1ZUe iϕ0Z =

(
P(λ) ∗
∗ ∗

)
if Re(P(λ)) = p(λ) and

1. deg(p) ≤ d ,

2. p has parity d mod 2,

3. |p(λ)| ≤ 1 for all λ ∈ [−1, 1].

▶ The parity assumption can be further removed by p = peven + podd and LCU, or
Motlagh-Wiebe [arXiv:2308.01501] 59 / 64



QSP, qubitization, and QSVT

Through qubitization, for

1. any Hermitian matrix A with ∥A∥ ≤ 1 and its block-encoding UA,

2. any d-degree real polynomial p(λ) with |p(λ)| ≤ 1 for all λ ∈ [−1, 1],

we can block encode p(A) with O(d) cost.

|1⟩ e iϕ0Z e iϕ1Z · · ·

|0⟩
UA U†

A

· · ·

|u⟩ · · ·

If A is not Hermitian, we are performing singular value transformation11.

11Gilyen Etal [arXiv:1806.01838]
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Phase factors

Finding phase factors was a hard task at the time when QSP was proposed, but has
been practically solved so far.
▶ Direct methods:

▶ Remez exchange algorithm
▶ roots of polynomials (Gilyen Etal [arXiv:1806.01838])
▶ Capitalization (Chao Etal [arXiv:2003.02831])
▶ Prony’s method (Ying [arXiv:2202.02671])

▶ Iterative methods:
▶ optimization based algorithm (Dong Etal [arXiv:2002.11649])
▶ fixed point iteration (Dong Etal [arXiv:2209.10162])
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QSP/QSVT vs LCU

▶ Both QSP/QSVT and LCU can
implement matrix functions

▶ For Hermitian matrices, LCU has
computational overhead due to
1-norm of the coefficients and require
extra control logic

▶ For general matrices
▶ QSVT: singular value transformation
▶ LCU: eigenvalue transformation

f (A) =
1

2πi

∫
Γ
f (z)(z − A)−1dz .
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Summary: matrix functions

▶ Qubitization for block-enccoding Chebyshev polynomials

▶ Quantum signal processing

▶ Quantum singular value transformation
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Summary

▶ Basic linear algebra operations
▶ Input models for vectors and matrices: quantum state and block-encoding
▶ Matrix-vector multiplication: applying block-encoding
▶ Matrix/vector addition: linear combination of unitaries (LCU)
▶ Matrix multiplication: compression gadget

▶ Linear systems of equations
▶ General algorithms: HHL, LCU, AQC
▶ Preconditioning

▶ Eigenvalue problems

▶ Matrix functions: Qubitization, QSP, QSVT
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