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Practical quantum advantage in quantum chemistry

▶ Can we solve a practically useful problem on a quantum computer faster than on
a classical computer?

▶ Quantum chemistry may be the right place to look.

▶ The basic problem: the ground state energy (lowest eigenvalue of H).

▶ Compare with classical algorithms: need very high accuracy.

– Density functional theory can get to precision of 2-3 kcal·mol−1.1

– Chemical accuracy: 1 kcal·mol−1.

▶ We should care very much about how the cost of the quantum algorithm scales
with precision.

1Bogojesk et al., 2020, Quantum chemical accuracy from density functional approximations via machine learning.
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Example: from eigenstate to eigenvalue

▶ The precision scaling is usually more complicated in the quantum setting.

▶ For a Hamiltonian H =
∑M

i=1 αiPi (Pi is a Pauli operator), given an eigenstate
|Ψ⟩, how to get the eigenvalue λ?

▶ Classical computer: λ = ⟨Ψ|H|Ψ⟩ (one matrix-vector multiplication, one inner
product, machine precision).

▶ Quantum computer: measure each Pauli operator, obtain 0/1 outputs, take
average to get ⟨Ψ|Pi|Ψ⟩, then add up all Pauli terms.
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▶ Example: to measure X ⊗X, we can apply Had⊗Had to the quantum state, so
that we can now measure in the computational basis (Z ⊗ Z):

⟨Ψ|X ⊗X|Ψ⟩ = ⟨Ψ|(Had⊗Had)(Z ⊗ Z)(Had⊗Had)|Ψ⟩ .

▶ We will get a random output m̂ ∈ {0, 1}, such that

E[(−1)m̂] = ⟨Ψ|X ⊗X|Ψ⟩ .

▶ Taking average over Ns samples, the variance is O(1/Ns).
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▶ We need to do this for all terms. Can measure some of them simultaneously (e.g.
for X ⊗X and Z ⊗ Z because they commute), but this creates correlated error.

▶ The total number of measurements to reach ϵ precision for H is

(some norm of H)2

ϵ2
.

And we require roughly this many copies of |Ψ⟩ (measurement destroys the
quantum state).

▶ Quantum phase estimation can do the same by evolving with H for O(ϵ−1) time
(Heisenberg limit), with a single copy of |Ψ⟩.
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Algorithms for different development stages of QC

▶ NISQ: variational algorithms (VQE, QAOA) (ϵ−2)

Early fault-tolerant quantum algorithms

– Need to optimize the total runtime, circuit depth, and number of qubits.

▶ Fully fault-tolerant quantum algorithms (ϵ−1)

– Mainly consider the total runtime (dominated by non-Clifford gates), parallelization,
energy consumption, etc.
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The Heisenberg limit

▶ The quantum version of parameter estimation: estimate θ from parameterized
quantum state ρ(θ), ∥dρ

dθ∥1 ≤ 1 (here ∥ · ∥1 is the trace norm).

▶ Information-theoretic lower bound: this requires Ω(ϵ−2) samples (the standard
quantum limit, SQL).

▶ Beyond-SQL example: estimate eigenvalue to precision ϵ using QPE with exact
eigenstate requires runtime O(ϵ−1).

▶ Information theoretic lower bound: this requires Ω(ϵ−1) total evolution time (how
long we evolve with H). This is the Heisenberg limit.
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Notations

▶ We have a target Hamiltonian H (Hermitian matrix of size 2N × 2N , N is the
number of qubits).

▶ Its eigenvalues and corresponding eigenstates are λk and |Ψk⟩ respectively.

▶ λ0 < λ1 ≤ λ2 ≤ · · · , λ0 is the ground state energy. |Ψ0⟩ is the ground state.

▶ |Φ⟩ is an initial guess for the ground state.

▶ We can apply control-e−iτH , where τ is a rescaling factor.
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We will use the following asymptotic notations:

▶ f(x) = O(g(x)) if there exists C > 0 such that f(x) ≤ Cg(x) (for x
larger/smaller than some threshold).

▶ f(x) = Õ(g(x)) if f(x) = O(g(x) polylog(g(x))).

▶ f(x) = Ω(g(x)) if g(x) = O(f(x)).

▶ f(x) = Ω̃(g(x)) if f(x) = Ω(g(x)/polylog(g(x))).
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Single-qubit quantum phase estimation

m̂

|0⟩ Had Had/HadS†

|Φ⟩ e−itH

Figure: The Hadamard test circuit: from the measurement outcome m̂ we can compute the
expectation value ⟨Φ|e−itH |Φ⟩. Real and imaginary parts are computed separately
(corresponding to Had and HadS† respectively).
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▶ For the real part, before measurement the quantum state undergoes the
transformation

|0⟩ |Φ⟩ 7→ |+⟩ |Φ⟩ 7→ 1√
2
(|0⟩ |Φ⟩+ |1⟩ e−itH |Φ⟩)

7→ 1√
2
(|+⟩ |Φ⟩+ |−⟩ e−itH |Φ⟩)

=
1

2
((|0⟩+ |1⟩) |Φ⟩+ (|0⟩ − |1⟩)e−itH |Φ⟩)

=
1

2
(|0⟩ (|Φ⟩+ e−itH |Φ⟩) + |1⟩ (|Φ⟩ − e−itH |Φ⟩))

▶ We then measure the first qubit to get m̂ ∈ {0, 1}. The expectation value of
(−1)m̂ is

E[(−1)m̂] =
1

4
(∥ |Φ⟩+ e−itH |Φ⟩ ∥2 − ∥ |Φ⟩ − e−itH |Φ⟩ ∥2) = Re ⟨Φ|e−itH |Φ⟩ .
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▶ Similarly we can get the imaginary part.

▶ For any t, we estimate ⟨Φ|e−itH |Φ⟩ by

S(t) = ⟨Φ|e−itH |Φ⟩+ e(t),

where e(t) is statistical noise.

▶ This signal contains eigenvalue information

⟨Φ|e−itH |Φ⟩ =
∑
k

e−itλk | ⟨Φ|Ψk⟩ |2.

▶ Obtain eigenvalues of H by processing the signal and getting the target frequency.
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Single frequency estimation

▶ We have seen that the Hadamard test circuit can be used to compute

⟨Φ|e−itH |Φ⟩ =
∑
k

e−itλk | ⟨Φ|Ψk⟩ |2.

▶ The simplest case: if |Φ⟩ = |Ψ0⟩, then we can use this to get the ground state
energy λ0.

S(t) = e−iλ0t + e(t).
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From the Hadamard test circuit we can generate S(t), t ≥ 0

S(t) = e−iλ0t + e(t).

We want to estimate λ0 ∈ (−1, 1] (rescaling the Hamiltonian properly) to precision ϵ.

▶ We can let t = π/2, average out the noise, and estimate θ with O(ϵ−2) samples.

▶ I will outline a method that uses (ignoring the log log factor)2

1. O(log(ϵ−1)) samples,

2. O(ϵ−1) total evolution time.

▶ Suppose our samples are S(t1), S(t2), · · · , S(tNs), then the total evolution time is
t1 + t2 + · · ·+ tNs .

2Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.
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▶ Suppose our samples are S(t1), S(t2), · · · , S(tNs), then the total evolution time is
t1 + t2 + · · ·+ tNs .

2Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.
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Suppose we know a ≤ −λ0 ≤ b. We want to determine

1. a ≤ −λ0 ≤ a+2b
3 ,

2. or 2a+b
3 ≤ −λ0 ≤ b.

If we can do that then we can reduce the uncertainty by 1/3 at each step.
O(log(ϵ−1)) steps are needed for ϵ precision.
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We look at the value of

fa,b(−λ0) = sin

(
π

b− a

(
−λ0 −

a+ b

2

))
= Im ⟨S(t∗)⟩ e−i

(a+b)π
2(b−a) ,

where t∗ = π
b−a .

▶ If fa,b(−λ0) ≤ 1
2 , then a ≤ −λ0 ≤ a+2b

3 ;

▶ If fa,b(−λ0) ≥ −1
2 , then

2a+b
3 ≤ −λ0 ≤ b.

▶ Evaluating fa,b(−λ0) to precision 1
2 is enough.

▶ Can get confidence level 1− δ′ with
O(log(δ′−1)) samples.
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▶ At the last search step b− a ≈ (3/2)ϵ, and therefore t∗ ≈ (2/3)ϵ−1.

▶ The cost of the last step is O(t∗ log(δ′−1)) = O(ϵ−1 log(δ′−1)).

▶ The total cost is

O(ϵ−1 log(δ′−1))×

(
1 +

2

3
+

(
2

3

)2

+ · · ·

)
= O(ϵ−1 log(δ′−1)).

This achieves the Heisenberg-limited scaling.

▶ Need δ′ = O(δ/ log(ϵ−1)) to ensure that all steps are successful with probability
1− δ.

▶ Total evolution time is O(ϵ−1 log(δ−1)) and the number of samples is
O(log(ϵ−1)).

▶ Robust to noise (|e(t)| ≤ 1/2 w.p. 2/3).
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Summary: single qubit phase estimation

▶ A high-level statement: We can use the Hadamard test circuit to estimate the
eigenvalue given the corresponding eigenstate with Heisenberg-limited scaling. It
is also robust to constant amount of noise.

▶ A precise statement: we can do the above with O(ϵ−1 log(δ−1)) total evolution
time to get confidence level 1− δ. We will still get correct estimate when
|e(t)| ≤ 1/2 w.p. 2/3.
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Quantum phase estimation

. . .

. . .

. . .

. . .

|0⟩ Had

QFT†|0⟩ Had

|0⟩ Had

|Φ⟩ e−iτH e−2iτH e−2r−1iτH

Figure: The quantum phase estimation circuit. Two registers: energy register (r qubits) and
state register (N qubits). Measuring the energy register yields a bit string m̂, which we convert

to an energy measurement τ λ̂ = 2πm̂/2r.
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▶ Initial state is |00 · · · 0⟩ |Φ⟩.

▶ Apply Hadamard gates:

|++ · · ·+⟩ |Φ⟩ = 1√
2r

2r−1∑
j=0

|j⟩ |Φ⟩ .

▶ Controlled time evolution:

1√
2r

2r−1∑
j=0

|j⟩ |Φ⟩ 7→ 1√
2r

2r−1∑
j=0

|j⟩ e−ijτH |Φ⟩ .
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▶ Eigenbasis expansion: let |Φ⟩ =
∑

k ck |Ψk⟩

1√
2r

r−1∑
j=0

|j⟩ e−ijτH |Φ⟩ =
∑
k

ck
1√
2r

r−1∑
j=0

|j⟩ e−ijτλk |Ψk⟩ .

▶ Inverse QFT: |j⟩ 7→ 1√
2r

∑2r−1
m=0 e

i2πjm/2r |m⟩.

∑
k

ck

2r−1∑
m=0

|m⟩ 1

2r

2r−1∑
j=0

ei2πjm/2r−ijτλk

︸ ︷︷ ︸
Γ(2πm/2r−τλk)

|Ψk⟩
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▶ The reason why QPE works: Γ(θ) approximates the Dirac delta function.

∑
k

ck

2r−1∑
m=0

|m⟩Γ(2πm/2r − τλk) |Ψk⟩

≈
∑
k

ck

2r−1∑
m=0

|m⟩ δ(2πm/2r − τλk) |Ψk⟩

=
∑
k

ck

∣∣∣2rτλk

2π

〉
|Ψk⟩

▶ From the energy register we can directly read off 2rτλk
2π (binary representation of

rescaled λk).

▶ This is the idealized version of QPE. Next we will see what actually happens.
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▶ The kernel function (resembling the Dirac delta function)

Γ(θ) =
1

2r

r−1∑
j=0

eijθ =
1

2r
1− ei2

rθ

1− eiθ
.

▶ Simplify the quantum state

∑
k

ck

2r−1∑
m=0

|m⟩Γ(2πm/2r − τλk) |Ψk⟩ .

▶ Measuring the energy register |m⟩ yields m with probability

Pr[m̂ = m] =
∑
k

|ck|2|Γ(2πm/2r − τλk)|2.
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▶ Suppose we are given a hidden random variable k̂, with

Pr[k̂ = k] = |ck|2.

Then
Pr[m̂ = m] =

∑
k

Pr[k̂ = k] Pr[m̂ = m|k̂ = k],

where
Pr[m̂ = m|k̂ = k] = |Γ(2πm/2r − τλk)|2.

▶ k is the index for the eigenstate. Pr[m̂ = m|k̂ = k] is the probability of getting
energy measurement m̂ given an eigenstate |Ψk⟩.

▶ Need to show that Pr[m̂ = m|k̂ = k] is concentrated around 2rτλk
2π .
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We let

∆θ = 2πm/2r︸ ︷︷ ︸
energy measurement

− τλk︸︷︷︸
rescaled energy

,

then

Pr[m̂ = m|k̂ = k] = |Γ(2πm/2r − τλk)|2

=

∣∣∣∣ 12r 1− ei2
r∆θ

1− ei∆θ

∣∣∣∣2
=

1

4r
sin2(2r−1∆θ)

sin2(∆θ/2)
.

Figure: |Γ(∆θ)|2 for ∆θ ∈ [−π, π].
The kernel is 2π-periodic.
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▶ Define the energy measurement τ λ̂ = 2πm̂/2r which we get from running the
QPE circuit.

▶ Define distance on torus |x|a = mink∈Z |x− ka|.

▶ The concentration of the kernel Γ(∆θ) guarantees that

Pr[|τ λ̂− τλk|2π ≥ ϵ|k̂ = k] ≤ O
(

1

2rϵ

)
.
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An operational understanding of QPE

▶ We first sample k̂ = k w.p. |ck|2 (remember |Φ⟩ =
∑

k ck |Ψk⟩).

▶ We do not actually do this and we have no access to k.

▶ An energy estimate τ λ̂ is generated from running QPE that is ϵ-close to τλk with
probability at least 1−O(ϵ−12−r).

▶ In this sense we are sampling from the spectrum of τH, and each sample is close
to an (rescaled) eigenvalue with large probability (exact in the limit of r → ∞).

▶ The rescaled eigenvalues are determined modulo 2π. We need to choose τ
appropriately to get λk.
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to an (rescaled) eigenvalue with large probability (exact in the limit of r → ∞).

▶ The rescaled eigenvalues are determined modulo 2π. We need to choose τ
appropriately to get λk.
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Proof of the concentration inequality

▶ Want to prove Pr[|τ λ̂− τλk|2π ≥ ϵ|k̂ = k] ≤ O
(

1
2rϵ

)
.

▶ The probability of deviation larger than ϵ = 2πℓ/2r

Pr

[∣∣∣∣2πm̂2r − τλk

∣∣∣∣
2π

≥ 2πℓ

2r

∣∣∣k̂ = k

]
=

∑
m:

∣∣∣m− 2rτλk
2π

∣∣∣
2r

≥ℓ

0≤m≤2r−1

1

4r
sin2(2r−1(2πm/2r − τλk))

sin2((2πm/2r − τλk)/2)

≤
∑

m:
∣∣∣m− 2rτλk

2π

∣∣∣
2r

≥ℓ

0≤m≤2r−1

1

4r
1

sin2((2πm/2r − τλk)/2)
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We use the fact that
∣∣sin (x2)∣∣ ≥ |x|2π

π .

∑
m:

∣∣∣m− 2rτλk
2π

∣∣∣
2r

≥ℓ

0≤m≤2r−1

1

4r
1

sin2((2πm/2r − τλk)/2)

≤
∑

m:
∣∣∣m− 2rτλk

2r

∣∣∣
2π

≥ℓ

0≤m≤2r−1

1

4|m− 2r−1τλk/π|22r

≤ 2× 1

4

∞∑
n=ℓ

1

n2

≤ 1

2(ℓ− 1)
= O

(
1

2rϵ

)
.
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Summary: quantum phase estimation (textbook version)3

▶ A high level statement: QPE returns an energy estimate that is close to a
random eigenvalue of τH with large probability.

▶ A precise statement: QPE returns an energy estimate λ̂ that is ϵ-close to a
random τλk̂ with probability at least 1−O(ϵ−12−r), where k̂ = k with probability
|ck|2.

▶ Runtime of the algorithm: apply control-e−iτH 2r times. 2r = O(ϵ−1) for
constant success probability.

3Nielsen and Chuang, Quantum Computation and Quantum Information.
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Use QPE for ground state energy

▶ Recall that the ground state energy is λ0, the lowest eigenvalue of H.

▶ We need to ensure that the energy we get correspond to the ground state rather
than excited states (ensure k̂ = 0): generate O(1/|c0|2) samples for λ̂ and take
the minimum.

▶ Make sure in all of these samples the energy estimate is close to some eigenvalue.
This happens with probability(

1−O
(

1

ϵ2r

))O(1/|c0|2)
= Ω(1).

▶ We therefore need ϵ2r = Ω(1/|c0|2).
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▶ Total cost (number of times to apply control-e−iτH) for getting the ground state
energy is

1

|c0|2︸ ︷︷ ︸
# runs

× O
(

1

ϵ|c0|2

)
︸ ︷︷ ︸
cost of single run

= O
(

1

ϵ|c0|4

)
.

▶ We do not need to know c0, but assume |c0|2 ≥ η. Then the total cost is
O(ϵ−1η−2) (Heisenberg-limited scaling).

▶ 2r = O(ϵ−1η−1) is how deep the circuit is in each run. This is called the the
circuit depth. r = O(log(ϵ−1η−1)) is the number of ancilla qubits.
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▶ We have looked at two algorithms for finding the ground state energy.

▶ Textbook version QPE can estimate the ground state energy with an imperfect
initial guess but requires many ancilla qubits.

▶ Hadamard test can estimate the ground state energy using a single ancilla qubit, but
requires a perfect initial guess.

▶ Both achieve the Heisenberg-limited scaling.

▶ Coming up next: can we have all the good features?
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The spectral density

▶ The Hamiltonian H has eigenvalues λ0, λ1, · · · . For simplicity we assume
spec(H) ⊂ (−π/4, π/4).

▶ An initial guess |Φ⟩ induces a probability distribution which we call the spectral
density:

µ(x) =
∑
k

pkδ(x− λk),

where pk = | ⟨Ψk|Φ⟩ |2 and δ(·) is the Dirac delta function.

▶ If X ∼ µ(x) then X = λk w.p. pk. Note that
∑

k pk = 1.

▶ This distribution contains all the information about the spectrum.
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m̂

|0⟩ Had Had/HadS†

|Φ⟩ e−itH

Figure: The Hadamard test circuit.

▶ The Hadamard test circuit outputs the expectation value

⟨Φ|e−itH |Φ⟩ =
∑
k

pke
−itλk

=

∫ π

−π
e−itxµ(x)dx.

▶ This is the Fourier transform (either on R or on the torus) of the distribution µ(x).
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▶ We can try recovering the spectrum density µ(x) through inverse Fourier
transform. If we can then we will have the ground state energy.

▶ Problem: we can only run the Hadamard test for a finite number of times, and
the cost grow with t.

▶ µ(x) is a linear combination of Dirac delta functions. The Fourier coefficients do
not decay.
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▶ We can instead compute a smeared spectral density:

µ̃(x) = µ ∗M(x) =

∫
µ(y)M(x− y)dy,

where M(·) is a kernel (mollifier).

▶ The Fourier coefficients are
ˆ̃µk = µ̂kM̂k,

where µ̂k = ⟨Φ|e−ikH |Φ⟩ can be computed from the Hadamard test, and M̂k is
computed from M(x).

▶ We want the kernel M(x) to be 2π-periodic finite-degree trigonometric
polynomial (the cost depend on the degree), and integrates to 1.
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An example of such a kernela

M(x) =
1

Nd,δ
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
,

where Td is the dth Chebyshev polynomial
of the first kind, and

Nd,δ =

∫ π

−π
Td

(
1 + 2

cos(x)− cos(δ)

1 + cos(δ)

)
dx.

aLin, Tong, 2020, Heisenberg-limited ground-state energy estimation
for early fault-tolerant quantum computers.

Figure: The kernel function M(x). The degree
is O(δ−1 log(ϵ−1)).
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▶ The quantum eigenvalue estimation
problem (QEEP)a

▶ With | ⟨Φ|Ψ0⟩ |2 ≥ η and to estimate
ground state energy to precision ϵ: total
runtime O(ϵ−4η−2), circuit depth O(ϵ−1),
single ancilla, imperfect initial guess.

▶ ϵ−4 comes from

– Number of terms in the Fourier expansion
O(ϵ−1).

– To evaluate their sum to precision O(η),
we need O(ϵ−2η−2) samples for each
term.

– Average cost for each term is O(ϵ−1)
(time needed for system to evolve).

aSomma, 2019, Quantum eigenvalue estimation via time series analysis.

Other relevant works:

– O’Brien et al., 2020, Error mitigation via verified phase
estimation.

– Lu et al., 2020, Algorithms for Quantum Simulation at
Finite Energies.

– Russo et al., 2020, Evaluating energy differences on a
quantum computer with robust phase estimation.
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Early fault-tolerant quantum algorithms

▶ We call such an algorithm an early fault-tolerant quantum algorithm

▶ It has the following nice features:

▶ It uses only one ancilla qubit.

▶ The circuit depth is O(ϵ−1) rather than O(ϵ−1η−1) (as in textbook QPE).

▶ Some degree of noise-robustness.

▶ Early fault-tolerant quantum algorithms are the ones that take the above factors
into account.
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Can we do better?

▶ It may not be the best strategy to compute a smeared spectral density: each peak
corresponds to an eigenvalue, but we do not know if there are eigenvalues to the
left.

▶ We should not evaluate each term and sum them up: O(ϵ−1) terms and O(ϵ−1)
average time makes the cost at least O(ϵ−2).

▶ Not all terms are equally important.
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The cumulative distribution function

▶ Define the cumulative distribution function (CDF):

C(x) =

∫ x

−π
µ(y)dy =

∑
k

pkH(x− λk) = (H ∗ µ)(x),

where H(·) is the Heaviside function.

▶ Every jump of this piecewise constant function correspond to an eigenvalue of H.
In particular, the first jump correspond to the ground-state energy.

▶ C(x) is a monotonously increasing function. We can therefore find the first jump
by binary search.

▶ C(x) can be approximated using Hadamard-test data.
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Figure: Evaluating the CDF by sampling from the quantum circuit. Note that we do not need
to re-sample for each point.
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Figure: Zoom-in around the ground state energy
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The approximate CDF

▶ We can approximate C(x) with a smooth function

C̃(x) = (M ∗ C)(x) = (M ∗H ∗ µ)(x).

▶ The approximation is in the sense

C(x− δ)− ϵ′ ≤ C̃(x) ≤ C(x+ δ) + ϵ′,

which guarantees that we can find the first jump within error δ.

▶ We can evaluate C̃(x) through its Fourier transform

ˆ̃
Ck = M̂kĤkµ̂k,

k = −d,−d+ 1, · · · , d, where M̂k and Ĥk are known and µ̂k is computed from
the Hadamard test.
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Importance sampling

▶ If we want to evaluate C̃(x), then we need

C̃(x) =
1

2π

d∑
k=−d

ˆ̃
Cke

ikx =
1

2π

d∑
k=−d

M̂kĤkµ̂ke
ikx.

▶ If we compute each µ̂k (k = −d,−d+ 1, · · · , d) individually, then each will
require evolution time O(|k|), which means the total evolution time is at least
O(d2) = O(ϵ−2

gs ). Impossible to achieve the Heisenberg limit.

▶ Notice that

d∑
k=−d

|M̂kĤk| ≤ 2π

d∑
k=−d

|Ĥk| ≤
d∑

k=−d

C

1 + |k|
= O(log(d)).

Many terms are unimportant. We can use importance sampling.
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|M̂kĤk| ≤ 2π

d∑
k=−d
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▶ Sample random variable K with distribution

K = k w.p.
|M̂kĤk|∑d

k′=−d |M̂k′Ĥk′ |
.

Then

C̃(x) =

(
d∑

k′=−d

|M̂k′Ĥk′ |

)
E[eiθK µ̂K ].

▶ We can therefore randomly sample K = k1, k2, · · · , kNs , compute eiθkl µ̂kl , take

average, and then multiply by
∑d

k′=−d |M̂k′Ĥk′ |.

▶ The variance is
O(log(d)2)

Ns
.
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▶ Locating the first jump only requires precision η (lower bound of the initial overlap
| ⟨Ψ0|Φ⟩ |2). Therefore we need

O(log(d)2)

Ns
≤ η2 =⇒ Ns = O(log(d)2η−2).

▶ If we want to compute the ground-state energy to precision ϵgs, we need d ∼ ϵ−1
gs .

Then the total evolution time is

O(d)×Ns = O(ϵ−1
gs η

−2).
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Comparison with other ground-state energy algorithms:

Runtime Circ. depth Ancilla qubits

QPE ϵ−1η−2 ϵ−1η−1 log(ϵ−1η−1)
Modified QPE4,5 ϵ−1η−1 ϵ−1 log(ϵ−1)

Binary search6 ϵ−1η−1/2 ϵ−1 log(η−1)

QEEP ϵ−4η−2 ϵ−1 1
CDF-based7 ϵ−1η−2 ϵ−1 1

This algorithm achieves Heisenberg-limit scaling, uses single ancilla qubit, and can
use imperfect initial guess.

4Knill, Ortiz, Somma, 2006, Optimal quantum measurements of expectation values of observables.
5Berry, Su, Gyurik, et al., 2022, Quantifying quantum advantage in topological data analysis.
6Lin, Tong, 2020, Near-optimal ground state preparation.
7Lin, Tong, 2020, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers.
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Extensions

▶ Computing ground state observable expectation values using a modified circuit.8

▶ Input model: e−iτH using Trotter → unbiased implementation through sampling.9

▶ Lower circuit depth with large gap: ϵ−1 → ∆−1.10

▶ Adding Z-rotations (QSP-like) to get better runtime Õ(ϵ−1η−1).11

8Zhang, Wang, Johnson, 2021, Computing ground state properties with early fault-tolerant quantum computers.
9Wan, Berta, Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.

10Wang, Stilck-França, Zhang, Zhu, and Johnson, 2022, Quantum algorithm for ground state energy estimation using circuit depth with
exponentially improved dependence on precision.

11Dong, Lin, Tong, 2022, Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue
transformation of unitary matrices.
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▶ Using least-squares fitting to get the dominant frequency. Better circuit depth
with large overlap.12

▶ Robustness under simple noise models.13,14

12Ding, Lin, 2022, Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state
energy estimation.

13Kshirsagar, Katabarwa, Johnson, 2022, On proving the robustness of algorithms for early fault-tolerant quantum computers.
14Ding, Dong, Tong, Lin, 2023, Robust ground-state energy estimation under depolarizing noise.
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Robustness under simple noise

▶ In the Hadamard test circuit, consider the following noise model: each time we
apply control-e−iHτ , with probability 1− e−ατ the system decoheres into the
maximally mixed state (loses all information).

▶ This is a reasonable model in random circuit.15

▶ Then the output m̂ (when measuring the ancilla qubit) will satisfy

E[(−1)m̂] = e−αt ⟨Φ|e−iHt|Φ⟩ .

▶ It is therefore possible to mitigate the error by multiplying eαt (acceptable
overhead if α not too large).

15Dalzall, Hunter-Jones, Brandao, 2021, Random quantum circuits transform local noise into global white noise.
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▶ What happens to the textbook QPE under the same noise model?

▶ Maximally mixed state is invariant under any unitary operation. Therefore the
ancilla register has 1− e−α2rτ probability of returning an uniformly random bit
string.

Pr[Emeas,noisy = 2πm/2r] = Pr[Emeas = 2πm/2r]e−α2rτ +
1− e−α2rτ

2r
.

▶ Disastrous when taking the minimum (it is possible for any bit string to show up).
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Experimental implementation

▶ A modified version of this algorithm is
implemented using superconducting
qubits.a

▶ Active space with up to 4 spatial
orbitals, 0.1 mHa

▶ Variational compilation, better Fourier
coefficients,b error mitigation.

aBlunt, Caune, Izsák, Campbell, Holzmann, 2023, Statistical phase
estimation and error mitigation on a superconducting quantum processor.

bWan, Berta, and Campbell, 2021, Randomized quantum algorithm for
statistical phase estimation.
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Compare with Kitaev’s iterative phase estimation algorithm.

Figure: O’Malley et al., 2016, Scalable Quantum Simulation of Molecular Energies.
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Conclusions

▶ For early fault-tolerant quantum computers, we may need to optimize for a
number of metrics (circuit depth, number of qubits, error robustness) rather than
just the runtime.

▶ It is possible to optimize for these metrics while keeping the Heisenberg-limited
precision scaling.

▶ We do not know what the first fault-tolerant quantum computer will be like, but
the framework of early FTQC algorithms may be flexible enough to be useful.
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