The Heisenberg limit and early fault-tolerant quantum algorithms

Yu Tong
Institute for Quantum Information and Matter, Caltech

September, 2023

Practical quantum advantage in quantum chemistry

- Can we solve a practically useful problem on a quantum computer faster than on a classical computer?

[^0]
Practical quantum advantage in quantum chemistry

- Can we solve a practically useful problem on a quantum computer faster than on a classical computer?
- Quantum chemistry may be the right place to look.

[^1]
Practical quantum advantage in quantum chemistry

- Can we solve a practically useful problem on a quantum computer faster than on a classical computer?
- Quantum chemistry may be the right place to look.
- The basic problem: the ground state energy (lowest eigenvalue of H).

[^2]
Practical quantum advantage in quantum chemistry

- Can we solve a practically useful problem on a quantum computer faster than on a classical computer?
- Quantum chemistry may be the right place to look.
- The basic problem: the ground state energy (lowest eigenvalue of H).
- Compare with classical algorithms: need very high accuracy.
- Density functional theory can get to precision of 2-3 kcal•mol ${ }^{-1}$. ${ }^{1}$
- Chemical accuracy: $1 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$.
- We should care very much about how the cost of the quantum algorithm scales with precision.

[^3]
Example: from eigenstate to eigenvalue

- The precision scaling is usually more complicated in the quantum setting.

Example: from eigenstate to eigenvalue

- The precision scaling is usually more complicated in the quantum setting.
- For a Hamiltonian $H=\sum_{i=1}^{M} \alpha_{i} P_{i}$ (P_{i} is a Pauli operator), given an eigenstate $|\Psi\rangle$, how to get the eigenvalue λ ?

Example: from eigenstate to eigenvalue

- The precision scaling is usually more complicated in the quantum setting.
- For a Hamiltonian $H=\sum_{i=1}^{M} \alpha_{i} P_{i}$ (P_{i} is a Pauli operator), given an eigenstate $|\Psi\rangle$, how to get the eigenvalue λ ?
- Classical computer: $\lambda=\langle\Psi| H|\Psi\rangle$ (one matrix-vector multiplication, one inner product, machine precision).

Example: from eigenstate to eigenvalue

- The precision scaling is usually more complicated in the quantum setting.
- For a Hamiltonian $H=\sum_{i=1}^{M} \alpha_{i} P_{i}$ (P_{i} is a Pauli operator), given an eigenstate $|\Psi\rangle$, how to get the eigenvalue λ ?
- Classical computer: $\lambda=\langle\Psi| H|\Psi\rangle$ (one matrix-vector multiplication, one inner product, machine precision).
- Quantum computer: measure each Pauli operator, obtain $0 / 1$ outputs, take average to get $\langle\Psi| P_{i}|\Psi\rangle$, then add up all Pauli terms.
- Example: to measure $X \otimes X$, we can apply $\mathrm{Had} \otimes \mathrm{Had}$ to the quantum state, so that we can now measure in the computational basis $(Z \otimes Z)$:

$$
\langle\Psi| X \otimes X|\Psi\rangle=\langle\Psi|(\operatorname{Had} \otimes \operatorname{Had})(Z \otimes Z)(\operatorname{Had} \otimes \operatorname{Had})|\Psi\rangle .
$$

- Example: to measure $X \otimes X$, we can apply $\mathrm{Had} \otimes \mathrm{Had}$ to the quantum state, so that we can now measure in the computational basis $(Z \otimes Z)$:

$$
\langle\Psi| X \otimes X|\Psi\rangle=\langle\Psi|(\operatorname{Had} \otimes \operatorname{Had})(Z \otimes Z)(\operatorname{Had} \otimes \operatorname{Had})|\Psi\rangle .
$$

- We will get a random output $\hat{m} \in\{0,1\}$, such that

$$
\mathbb{E}\left[(-1)^{\hat{m}}\right]=\langle\Psi| X \otimes X|\Psi\rangle
$$

- Example: to measure $X \otimes X$, we can apply $\mathrm{Had} \otimes \mathrm{Had}$ to the quantum state, so that we can now measure in the computational basis $(Z \otimes Z)$:

$$
\langle\Psi| X \otimes X|\Psi\rangle=\langle\Psi|(\operatorname{Had} \otimes \operatorname{Had})(Z \otimes Z)(\operatorname{Had} \otimes \operatorname{Had})|\Psi\rangle
$$

- We will get a random output $\hat{m} \in\{0,1\}$, such that

$$
\mathbb{E}\left[(-1)^{\hat{m}}\right]=\langle\Psi| X \otimes X|\Psi\rangle
$$

- Taking average over N_{s} samples, the variance is $\mathcal{O}\left(1 / N_{s}\right)$.
- We need to do this for all terms. Can measure some of them simultaneously (e.g. for $X \otimes X$ and $Z \otimes Z$ because they commute), but this creates correlated error.
- We need to do this for all terms. Can measure some of them simultaneously (e.g. for $X \otimes X$ and $Z \otimes Z$ because they commute), but this creates correlated error.
- The total number of measurements to reach ϵ precision for H is

$$
\frac{(\text { some norm of } H)^{2}}{\epsilon^{2}} .
$$

And we require roughly this many copies of $|\Psi\rangle$ (measurement destroys the quantum state).

- We need to do this for all terms. Can measure some of them simultaneously (e.g. for $X \otimes X$ and $Z \otimes Z$ because they commute), but this creates correlated error.
- The total number of measurements to reach ϵ precision for H is

$$
\frac{(\text { some norm of } H)^{2}}{\epsilon^{2}} .
$$

And we require roughly this many copies of $|\Psi\rangle$ (measurement destroys the quantum state).

- Quantum phase estimation can do the same by evolving with H for $\mathcal{O}\left(\epsilon^{-1}\right)$ time (Heisenberg limit), with a single copy of $|\Psi\rangle$.

Algorithms for different development stages of QC

Algorithms for different development stages of QC

- NISQ: variational algorithms (VQE, QAOA) $\left(\epsilon^{-2}\right)$

Algorithms for different development stages of QC

- NISQ: variational algorithms (VQE, QAOA) $\left(\epsilon^{-2}\right)$

Algorithms for different development stages of QC

- NISQ: variational algorithms (VQE, QAOA) $\left(\epsilon^{-2}\right)$
- Fully fault-tolerant quantum algorithms $\left(\epsilon^{-1}\right)$
- Mainly consider the total runtime (dominated by non-Clifford gates), parallelization, energy consumption, etc.

Algorithms for different development stages of QC

- NISQ: variational algorithms (VQE, QAOA) $\left(\epsilon^{-2}\right)$
- Early fault-tolerant quantum algorithms
- Need to optimize the total runtime, circuit depth, and number of qubits.
- Fully fault-tolerant quantum algorithms $\left(\epsilon^{-1}\right)$
- Mainly consider the total runtime (dominated by non-Clifford gates), parallelization, energy consumption, etc.

The Heisenberg limit

- The quantum version of parameter estimation: estimate θ from parameterized quantum state $\rho(\theta),\left\|\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right\|_{1} \leq 1$ (here $\|\cdot\|_{1}$ is the trace norm).

The Heisenberg limit

- The quantum version of parameter estimation: estimate θ from parameterized quantum state $\rho(\theta),\left\|\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right\|_{1} \leq 1$ (here $\|\cdot\|_{1}$ is the trace norm).
- Information-theoretic lower bound: this requires $\Omega\left(\epsilon^{-2}\right)$ samples (the standard quantum limit, SQL).

The Heisenberg limit

- The quantum version of parameter estimation: estimate θ from parameterized quantum state $\rho(\theta),\left\|\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right\|_{1} \leq 1$ (here $\|\cdot\|_{1}$ is the trace norm).
- Information-theoretic lower bound: this requires $\Omega\left(\epsilon^{-2}\right)$ samples (the standard quantum limit, SQL).
- Beyond-SQL example: estimate eigenvalue to precision ϵ using QPE with exact eigenstate requires runtime $\mathcal{O}\left(\epsilon^{-1}\right)$.

The Heisenberg limit

- The quantum version of parameter estimation: estimate θ from parameterized quantum state $\rho(\theta),\left\|\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right\|_{1} \leq 1$ (here $\|\cdot\|_{1}$ is the trace norm).
- Information-theoretic lower bound: this requires $\Omega\left(\epsilon^{-2}\right)$ samples (the standard quantum limit, SQL).
- Beyond-SQL example: estimate eigenvalue to precision ϵ using QPE with exact eigenstate requires runtime $\mathcal{O}\left(\epsilon^{-1}\right)$.
- Information theoretic lower bound: this requires $\Omega\left(\epsilon^{-1}\right)$ total evolution time (how long we evolve with H). This is the Heisenberg limit.

Notations

- We have a target Hamiltonian H (Hermitian matrix of size $2^{N} \times 2^{N}, N$ is the number of qubits).

Notations

- We have a target Hamiltonian H (Hermitian matrix of size $2^{N} \times 2^{N}, N$ is the number of qubits).
- Its eigenvalues and corresponding eigenstates are λ_{k} and $\left|\Psi_{k}\right\rangle$ respectively.

Notations

- We have a target Hamiltonian H (Hermitian matrix of size $2^{N} \times 2^{N}, N$ is the number of qubits).
- Its eigenvalues and corresponding eigenstates are λ_{k} and $\left|\Psi_{k}\right\rangle$ respectively.
- $\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{0}$ is the ground state energy. $\left|\Psi_{0}\right\rangle$ is the ground state.

Notations

- We have a target Hamiltonian H (Hermitian matrix of size $2^{N} \times 2^{N}, N$ is the number of qubits).
- Its eigenvalues and corresponding eigenstates are λ_{k} and $\left|\Psi_{k}\right\rangle$ respectively.
- $\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{0}$ is the ground state energy. $\left|\Psi_{0}\right\rangle$ is the ground state.
- $|\Phi\rangle$ is an initial guess for the ground state.

Notations

- We have a target Hamiltonian H (Hermitian matrix of size $2^{N} \times 2^{N}, N$ is the number of qubits).
- Its eigenvalues and corresponding eigenstates are λ_{k} and $\left|\Psi_{k}\right\rangle$ respectively.
- $\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots, \lambda_{0}$ is the ground state energy. $\left|\Psi_{0}\right\rangle$ is the ground state.
- $|\Phi\rangle$ is an initial guess for the ground state.
- We can apply control $-e^{-i \tau H}$, where τ is a rescaling factor.

We will use the following asymptotic notations:

- $f(x)=\mathcal{O}(g(x))$ if there exists $C>0$ such that $f(x) \leq C g(x)$ (for x larger/smaller than some threshold).

We will use the following asymptotic notations:

- $f(x)=\mathcal{O}(g(x))$ if there exists $C>0$ such that $f(x) \leq C g(x)$ (for x larger/smaller than some threshold).
- $f(x)=\widetilde{\mathcal{O}}(g(x))$ if $f(x)=\mathcal{O}(g(x)$ polylog $(g(x)))$.

We will use the following asymptotic notations:

- $f(x)=\mathcal{O}(g(x))$ if there exists $C>0$ such that $f(x) \leq C g(x)$ (for x larger/smaller than some threshold).
- $f(x)=\widetilde{\mathcal{O}}(g(x))$ if $f(x)=\mathcal{O}(g(x)$ polylog $(g(x)))$.
- $f(x)=\Omega(g(x))$ if $g(x)=\mathcal{O}(f(x))$.

We will use the following asymptotic notations:

- $f(x)=\mathcal{O}(g(x))$ if there exists $C>0$ such that $f(x) \leq C g(x)$ (for x larger/smaller than some threshold).
- $f(x)=\widetilde{\mathcal{O}}(g(x))$ if $f(x)=\mathcal{O}(g(x)$ polylog $(g(x)))$.
- $f(x)=\Omega(g(x))$ if $g(x)=\mathcal{O}(f(x))$.
- $f(x)=\widetilde{\Omega}(g(x))$ if $f(x)=\Omega(g(x) / \operatorname{polylog}(g(x)))$.

Single-qubit quantum phase estimation

Figure: The Hadamard test circuit: from the measurement outcome \hat{m} we can compute the expectation value $\langle\Phi| e^{-i t H}|\Phi\rangle$. Real and imaginary parts are computed separately (corresponding to Had and $\operatorname{Had} S^{\dagger}$ respectively).

- For the real part, before measurement the quantum state undergoes the transformation

$$
|0\rangle|\Phi\rangle \mapsto|+\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle|\Phi\rangle+|1\rangle e^{-i t H}|\Phi\rangle\right)
$$

- For the real part, before measurement the quantum state undergoes the transformation

$$
\begin{aligned}
& |0\rangle|\Phi\rangle \mapsto|+\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle|\Phi\rangle+|1\rangle e^{-i t H}|\Phi\rangle\right) \\
& \mapsto \frac{1}{\sqrt{2}}\left(|+\rangle|\Phi\rangle+|-\rangle e^{-i t H}|\Phi\rangle\right)
\end{aligned}
$$

- For the real part, before measurement the quantum state undergoes the transformation

$$
\begin{aligned}
& |0\rangle|\Phi\rangle \mapsto|+\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle|\Phi\rangle+|1\rangle e^{-i t H}|\Phi\rangle\right) \\
& \mapsto \frac{1}{\sqrt{2}}\left(|+\rangle|\Phi\rangle+|-\rangle e^{-i t H}|\Phi\rangle\right) \\
& =\frac{1}{2}\left((|0\rangle+|1\rangle)|\Phi\rangle+(|0\rangle-|1\rangle) e^{-i t H}|\Phi\rangle\right)
\end{aligned}
$$

- For the real part, before measurement the quantum state undergoes the transformation

$$
\begin{aligned}
& |0\rangle|\Phi\rangle \mapsto|+\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle|\Phi\rangle+|1\rangle e^{-i t H}|\Phi\rangle\right) \\
& \mapsto \frac{1}{\sqrt{2}}\left(|+\rangle|\Phi\rangle+|-\rangle e^{-i t H}|\Phi\rangle\right) \\
& =\frac{1}{2}\left((|0\rangle+|1\rangle)|\Phi\rangle+(|0\rangle-|1\rangle) e^{-i t H}|\Phi\rangle\right) \\
& =\frac{1}{2}\left(|0\rangle\left(|\Phi\rangle+e^{-i t H}|\Phi\rangle\right)+|1\rangle\left(|\Phi\rangle-e^{-i t H}|\Phi\rangle\right)\right)
\end{aligned}
$$

- For the real part, before measurement the quantum state undergoes the transformation

$$
\begin{aligned}
& |0\rangle|\Phi\rangle \mapsto|+\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2}}\left(|0\rangle|\Phi\rangle+|1\rangle e^{-i t H}|\Phi\rangle\right) \\
& \mapsto \frac{1}{\sqrt{2}}\left(|+\rangle|\Phi\rangle+|-\rangle e^{-i t H}|\Phi\rangle\right) \\
& =\frac{1}{2}\left((|0\rangle+|1\rangle)|\Phi\rangle+(|0\rangle-|1\rangle) e^{-i t H}|\Phi\rangle\right) \\
& =\frac{1}{2}\left(|0\rangle\left(|\Phi\rangle+e^{-i t H}|\Phi\rangle\right)+|1\rangle\left(|\Phi\rangle-e^{-i t H}|\Phi\rangle\right)\right)
\end{aligned}
$$

- We then measure the first qubit to get $\hat{m} \in\{0,1\}$. The expectation value of $(-1)^{\hat{m}}$ is

$$
\mathbb{E}\left[(-1)^{\hat{m}}\right]=\frac{1}{4}\left(\||\Phi\rangle+e^{-i t H}|\Phi\rangle\left\|^{2}-\right\||\Phi\rangle-e^{-i t H}|\Phi\rangle \|^{2}\right)=\operatorname{Re}\langle\Phi| e^{-i t H}|\Phi\rangle
$$

- Similarly we can get the imaginary part.
- Similarly we can get the imaginary part.
- For any t, we estimate $\langle\Phi| e^{-i t H}|\Phi\rangle$ by

$$
S(t)=\langle\Phi| e^{-i t H}|\Phi\rangle+e(t)
$$

where $e(t)$ is statistical noise.

- Similarly we can get the imaginary part.
- For any t, we estimate $\langle\Phi| e^{-i t H}|\Phi\rangle$ by

$$
S(t)=\langle\Phi| e^{-i t H}|\Phi\rangle+e(t)
$$

where $e(t)$ is statistical noise.

- This signal contains eigenvalue information

$$
\langle\Phi| e^{-i t H}|\Phi\rangle=\sum_{k} e^{-i t \lambda_{k}}\left|\left\langle\Phi \mid \Psi_{k}\right\rangle\right|^{2}
$$

- Similarly we can get the imaginary part.
- For any t, we estimate $\langle\Phi| e^{-i t H}|\Phi\rangle$ by

$$
S(t)=\langle\Phi| e^{-i t H}|\Phi\rangle+e(t)
$$

where $e(t)$ is statistical noise.

- This signal contains eigenvalue information

$$
\langle\Phi| e^{-i t H}|\Phi\rangle=\sum_{k} e^{-i t \lambda_{k}}\left|\left\langle\Phi \mid \Psi_{k}\right\rangle\right|^{2}
$$

- Obtain eigenvalues of H by processing the signal and getting the target frequency.

Single frequency estimation

- We have seen that the Hadamard test circuit can be used to compute

$$
\langle\Phi| e^{-i t H}|\Phi\rangle=\sum_{k} e^{-i t \lambda_{k}}\left|\left\langle\Phi \mid \Psi_{k}\right\rangle\right|^{2}
$$

Single frequency estimation

- We have seen that the Hadamard test circuit can be used to compute

$$
\langle\Phi| e^{-i t H}|\Phi\rangle=\sum_{k} e^{-i t \lambda_{k}}\left|\left\langle\Phi \mid \Psi_{k}\right\rangle\right|^{2}
$$

- The simplest case: if $|\Phi\rangle=\left|\Psi_{0}\right\rangle$, then we can use this to get the ground state energy λ_{0}.

$$
S(t)=e^{-i \lambda_{0} t}+e(t)
$$

From the Hadamard test circuit we can generate $S(t), t \geq 0$

$$
S(t)=e^{-i \lambda_{0} t}+e(t)
$$

We want to estimate $\lambda_{0} \in(-1,1]$ (rescaling the Hamiltonian properly) to precision ϵ.

[^4]From the Hadamard test circuit we can generate $S(t), t \geq 0$

$$
S(t)=e^{-i \lambda_{0} t}+e(t)
$$

We want to estimate $\lambda_{0} \in(-1,1]$ (rescaling the Hamiltonian properly) to precision ϵ.

- We can let $t=\pi / 2$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.

[^5]From the Hadamard test circuit we can generate $S(t), t \geq 0$

$$
S(t)=e^{-i \lambda_{0} t}+e(t)
$$

We want to estimate $\lambda_{0} \in(-1,1]$ (rescaling the Hamiltonian properly) to precision ϵ.

- We can let $t=\pi / 2$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.
- I will outline a method that uses (ignoring the $\log \log$ factor) ${ }^{2}$

1. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ samples,
2. $\mathcal{O}\left(\epsilon^{-1}\right)$ total evolution time.
[^6]From the Hadamard test circuit we can generate $S(t), t \geq 0$

$$
S(t)=e^{-i \lambda_{0} t}+e(t)
$$

We want to estimate $\lambda_{0} \in(-1,1]$ (rescaling the Hamiltonian properly) to precision ϵ.

- We can let $t=\pi / 2$, average out the noise, and estimate θ with $\mathcal{O}\left(\epsilon^{-2}\right)$ samples.
- I will outline a method that uses (ignoring the $\log \log$ factor) ${ }^{2}$

1. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ samples,
2. $\mathcal{O}\left(\epsilon^{-1}\right)$ total evolution time.

- Suppose our samples are $S\left(t_{1}\right), S\left(t_{2}\right), \cdots, S\left(t_{N_{s}}\right)$, then the total evolution time is $t_{1}+t_{2}+\cdots+t_{N_{s}}$.

[^7]Suppose we know $a \leq-\lambda_{0} \leq b$. We want to determine

1. $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$,
2. or $\frac{2 a+b}{3} \leq-\lambda_{0} \leq b$.

Suppose we know $a \leq-\lambda_{0} \leq b$. We want to determine

1. $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$,
2. or $\frac{2 a+b}{3} \leq-\lambda_{0} \leq b$.

If we can do that then we can reduce the uncertainty by $1 / 3$ at each step. $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$ steps are needed for ϵ precision.

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}\left(-\lambda_{0}\right) \leq \frac{1}{2}$, then $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$;

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}},
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}\left(-\lambda_{0}\right) \leq \frac{1}{2}$, then $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$;
- If $f_{a, b}\left(-\lambda_{0}\right) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq-\lambda_{0} \leq b$.

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}}
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}\left(-\lambda_{0}\right) \leq \frac{1}{2}$, then $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$;
- If $f_{a, b}\left(-\lambda_{0}\right) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq-\lambda_{0} \leq b$.
- Evaluating $f_{a, b}\left(-\lambda_{0}\right)$ to precision $\frac{1}{2}$ is enough.

We look at the value of

$$
f_{a, b}\left(-\lambda_{0}\right)=\sin \left(\frac{\pi}{b-a}\left(-\lambda_{0}-\frac{a+b}{2}\right)\right)=\operatorname{Im}\left\langle S\left(t^{*}\right)\right\rangle e^{-i \frac{(a+b) \pi}{2(b-a)}}
$$

where $t^{*}=\frac{\pi}{b-a}$.

- If $f_{a, b}\left(-\lambda_{0}\right) \leq \frac{1}{2}$, then $a \leq-\lambda_{0} \leq \frac{a+2 b}{3}$;
- If $f_{a, b}\left(-\lambda_{0}\right) \geq-\frac{1}{2}$, then $\frac{2 a+b}{3} \leq-\lambda_{0} \leq b$.
- Evaluating $f_{a, b}\left(-\lambda_{0}\right)$ to precision $\frac{1}{2}$ is enough.
- Can get confidence level $1-\delta^{\prime}$ with $\mathcal{O}\left(\log \left(\delta^{\prime-1}\right)\right)$ samples.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

This achieves the Heisenberg-limited scaling.

- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

This achieves the Heisenberg-limited scaling.

- Need $\delta^{\prime}=\mathcal{O}\left(\delta / \log \left(\epsilon^{-1}\right)\right)$ to ensure that all steps are successful with probability $1-\delta$.
- At the last search step $b-a \approx(3 / 2) \epsilon$, and therefore $t^{*} \approx(2 / 3) \epsilon^{-1}$.
- The cost of the last step is $\mathcal{O}\left(t^{*} \log \left(\delta^{\prime-1}\right)\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)$.
- The total cost is

$$
\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right) \times\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)=\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{\prime-1}\right)\right)
$$

This achieves the Heisenberg-limited scaling.

- Need $\delta^{\prime}=\mathcal{O}\left(\delta / \log \left(\epsilon^{-1}\right)\right)$ to ensure that all steps are successful with probability $1-\delta$.
- Total evolution time is $\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{-1}\right)\right)$ and the number of samples is $\mathcal{O}\left(\log \left(\epsilon^{-1}\right)\right)$.
- Robust to noise ($|e(t)| \leq 1 / 2$ w.p. $2 / 3)$.

Summary: single qubit phase estimation

- A high-level statement: We can use the Hadamard test circuit to estimate the eigenvalue given the corresponding eigenstate with Heisenberg-limited scaling. It is also robust to constant amount of noise.

Summary: single qubit phase estimation

- A high-level statement: We can use the Hadamard test circuit to estimate the eigenvalue given the corresponding eigenstate with Heisenberg-limited scaling. It is also robust to constant amount of noise.
- A precise statement: we can do the above with $\mathcal{O}\left(\epsilon^{-1} \log \left(\delta^{-1}\right)\right)$ total evolution time to get confidence level $1-\delta$. We will still get correct estimate when $|e(t)| \leq 1 / 2$ w.p. $2 / 3$.

Quantum phase estimation

Figure: The quantum phase estimation circuit. Two registers: energy register (r qubits) and state register (N qubits). Measuring the energy register yields a bit string \hat{m}, which we convert to an energy measurement $\tau \hat{\lambda}=2 \pi \hat{m} / 2^{r}$.

- Initial state is $|00 \cdots 0\rangle|\Phi\rangle$.
- Initial state is $|00 \cdots 0\rangle|\Phi\rangle$.
- Apply Hadamard gates:

$$
|++\cdots+\rangle|\Phi\rangle=\frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{2^{r}-1}|j\rangle|\Phi\rangle
$$

- Initial state is $|00 \cdots 0\rangle|\Phi\rangle$.
- Apply Hadamard gates:

$$
|++\cdots+\rangle|\Phi\rangle=\frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{2^{r}-1}|j\rangle|\Phi\rangle
$$

- Controlled time evolution:

$$
\frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{2^{r}-1}|j\rangle|\Phi\rangle \mapsto \frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{2^{r}-1}|j\rangle e^{-i j \tau H}|\Phi\rangle
$$

- Eigenbasis expansion: let $|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle$

$$
\frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{r-1}|j\rangle e^{-i j \tau H}|\Phi\rangle=\sum_{k} c_{k} \frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{r-1}|j\rangle e^{-i j \tau \lambda_{k}}\left|\Psi_{k}\right\rangle
$$

- Eigenbasis expansion: let $|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle$

$$
\frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{r-1}|j\rangle e^{-i j \tau H}|\Phi\rangle=\sum_{k} c_{k} \frac{1}{\sqrt{2^{r}}} \sum_{j=0}^{r-1}|j\rangle e^{-i j \tau \lambda_{k}}\left|\Psi_{k}\right\rangle
$$

- Inverse QFT: $|j\rangle \mapsto \frac{1}{\sqrt{2^{r}}} \sum_{m=0}^{2^{r}-1} e^{i 2 \pi j m / 2^{r}}|m\rangle$.

$$
\sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \underbrace{\frac{1}{2^{r}} \sum_{j=0}^{2^{r}-1} e^{i 2 \pi j m / 2^{r}-i j \tau \lambda_{k}}}_{\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)}\left|\Psi_{k}\right\rangle
$$

- The reason why QPE works: $\Gamma(\theta)$ approximates the Dirac delta function.

$$
\begin{aligned}
& \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& \approx \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \delta\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& =\sum_{k} c_{k}\left|\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right\rangle\left|\Psi_{k}\right\rangle
\end{aligned}
$$

- The reason why QPE works: $\Gamma(\theta)$ approximates the Dirac delta function.

$$
\begin{aligned}
& \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& \approx \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \delta\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& =\sum_{k} c_{k}\left|\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right\rangle\left|\Psi_{k}\right\rangle
\end{aligned}
$$

- From the energy register we can directly read off $\frac{2^{r} \tau \lambda_{k}}{2 \pi}$ (binary representation of rescaled λ_{k}).
- The reason why QPE works: $\Gamma(\theta)$ approximates the Dirac delta function.

$$
\begin{aligned}
& \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& \approx \sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \delta\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle \\
& =\sum_{k} c_{k}\left|\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right\rangle\left|\Psi_{k}\right\rangle
\end{aligned}
$$

- From the energy register we can directly read off $\frac{2^{r} \tau \lambda_{k}}{2 \pi}$ (binary representation of rescaled λ_{k}).
- This is the idealized version of QPE. Next we will see what actually happens.
- The kernel function (resembling the Dirac delta function)

$$
\Gamma(\theta)=\frac{1}{2^{r}} \sum_{j=0}^{r-1} e^{i j \theta}=\frac{1}{2^{r}} \frac{1-e^{i 2^{r} \theta}}{1-e^{i \theta}}
$$

- The kernel function (resembling the Dirac delta function)

$$
\Gamma(\theta)=\frac{1}{2^{r}} \sum_{j=0}^{r-1} e^{i j \theta}=\frac{1}{2^{r}} \frac{1-e^{i 2^{r} \theta}}{1-e^{i \theta}}
$$

- Simplify the quantum state

$$
\sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle
$$

- The kernel function (resembling the Dirac delta function)

$$
\Gamma(\theta)=\frac{1}{2^{r}} \sum_{j=0}^{r-1} e^{i j \theta}=\frac{1}{2^{r}} \frac{1-e^{i 2^{r} \theta}}{1-e^{i \theta}}
$$

- Simplify the quantum state

$$
\sum_{k} c_{k} \sum_{m=0}^{2^{r}-1}|m\rangle \Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\left|\Psi_{k}\right\rangle
$$

- Measuring the energy register $|m\rangle$ yields m with probability

$$
\operatorname{Pr}[\hat{m}=m]=\sum_{k}\left|c_{k}\right|^{2}\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2}
$$

- Suppose we are given a hidden random variable \hat{k}, with

$$
\operatorname{Pr}[\hat{k}=k]=\left|c_{k}\right|^{2}
$$

Then

$$
\operatorname{Pr}[\hat{m}=m]=\sum_{k} \operatorname{Pr}[\hat{k}=k] \operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]
$$

where

$$
\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]=\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2} .
$$

- Suppose we are given a hidden random variable \hat{k}, with

$$
\operatorname{Pr}[\hat{k}=k]=\left|c_{k}\right|^{2}
$$

Then

$$
\operatorname{Pr}[\hat{m}=m]=\sum_{k} \operatorname{Pr}[\hat{k}=k] \operatorname{Pr}[\hat{m}=m \mid \hat{k}=k],
$$

where

$$
\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]=\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2} .
$$

- k is the index for the eigenstate. $\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]$ is the probability of getting energy measurement \hat{m} given an eigenstate $\left|\Psi_{k}\right\rangle$.
- Suppose we are given a hidden random variable \hat{k}, with

$$
\operatorname{Pr}[\hat{k}=k]=\left|c_{k}\right|^{2}
$$

Then

$$
\operatorname{Pr}[\hat{m}=m]=\sum_{k} \operatorname{Pr}[\hat{k}=k] \operatorname{Pr}[\hat{m}=m \mid \hat{k}=k],
$$

where

$$
\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]=\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2} .
$$

- k is the index for the eigenstate. $\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]$ is the probability of getting energy measurement \hat{m} given an eigenstate $\left|\Psi_{k}\right\rangle$.
- Need to show that $\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k]$ is concentrated around $\frac{2^{r} \tau \lambda_{k}}{2 \pi}$.

We let

$$
\Delta \theta=\underbrace{2 \pi m / 2^{r}}_{\text {energy measurement }}-\underbrace{\tau \lambda_{k}}_{\text {rescaled energy }},
$$

We let

$$
\Delta \theta=\underbrace{2 \pi m / 2^{r}}_{\text {energy measurement }}-\underbrace{\tau \lambda_{k}}_{\text {rescaled energy }},
$$

then

$$
\begin{aligned}
\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k] & =\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2} \\
& =\left|\frac{1}{2^{r}} \frac{1-e^{i 2^{r} \Delta \theta}}{1-e^{i \Delta \theta}}\right|^{2} \\
& =\frac{1}{4^{r}} \frac{\sin ^{2}\left(2^{r-1} \Delta \theta\right)}{\sin ^{2}(\Delta \theta / 2)} .
\end{aligned}
$$

We let

$$
\Delta \theta=\underbrace{2 \pi m / 2^{r}}_{\text {energy measurement }}-\underbrace{\tau \lambda_{k}}_{\text {rescaled energy }},
$$

then

$$
\begin{aligned}
\operatorname{Pr}[\hat{m}=m \mid \hat{k}=k] & =\left|\Gamma\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right|^{2} \\
& =\left|\frac{1}{2^{r}} \frac{1-e^{i 2^{r} \Delta \theta}}{1-e^{i \Delta \theta}}\right|^{2} \\
& =\frac{1}{4^{r}} \frac{\sin ^{2}\left(2^{r-1} \Delta \theta\right)}{\sin ^{2}(\Delta \theta / 2)} .
\end{aligned}
$$

Figure: $|\Gamma(\Delta \theta)|^{2}$ for $\Delta \theta \in[-\pi, \pi]$. The kernel is 2π-periodic.

- Define the energy measurement $\tau \hat{\lambda}=2 \pi \hat{m} / 2^{r}$ which we get from running the QPE circuit.
- Define the energy measurement $\tau \hat{\lambda}=2 \pi \hat{m} / 2^{r}$ which we get from running the QPE circuit.
- Define distance on torus $|x|_{a}=\min _{k \in \mathbb{Z}}|x-k a|$.
- Define the energy measurement $\tau \hat{\lambda}=2 \pi \hat{m} / 2^{r}$ which we get from running the QPE circuit.
- Define distance on torus $|x|_{a}=\min _{k \in \mathbb{Z}}|x-k a|$.
- The concentration of the kernel $\Gamma(\Delta \theta)$ guarantees that

$$
\operatorname{Pr}\left[\left|\tau \hat{\lambda}-\tau \lambda_{k}\right|_{2 \pi} \geq \epsilon \mid \hat{k}=k\right] \leq \mathcal{O}\left(\frac{1}{2^{r} \epsilon}\right)
$$

An operational understanding of QPE

- We first sample $\hat{k}=k$ w.p. $\left|c_{k}\right|^{2}$ (remember $|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle$).

An operational understanding of QPE

- We first sample $\hat{k}=k$ w.p. $\left|c_{k}\right|^{2}$ (remember $\left.|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle\right)$.
- We do not actually do this and we have no access to k.

An operational understanding of QPE

- We first sample $\hat{k}=k$ w.p. $\left|c_{k}\right|^{2}$ (remember $\left.|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle\right)$.
- We do not actually do this and we have no access to k.
- An energy estimate $\tau \hat{\lambda}$ is generated from running QPE that is ϵ-close to $\tau \lambda_{k}$ with probability at least $1-\mathcal{O}\left(\epsilon^{-1} 2^{-r}\right)$.

An operational understanding of QPE

- We first sample $\hat{k}=k$ w.p. $\left|c_{k}\right|^{2}$ (remember $\left.|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle\right)$.
- We do not actually do this and we have no access to k.
- An energy estimate $\tau \hat{\lambda}$ is generated from running QPE that is ϵ-close to $\tau \lambda_{k}$ with probability at least $1-\mathcal{O}\left(\epsilon^{-1} 2^{-r}\right)$.
- In this sense we are sampling from the spectrum of τH, and each sample is close to an (rescaled) eigenvalue with large probability (exact in the limit of $r \rightarrow \infty$).

An operational understanding of QPE

- We first sample $\hat{k}=k$ w.p. $\left|c_{k}\right|^{2}$ (remember $|\Phi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle$).
- We do not actually do this and we have no access to k.
- An energy estimate $\tau \hat{\lambda}$ is generated from running QPE that is ϵ-close to $\tau \lambda_{k}$ with probability at least $1-\mathcal{O}\left(\epsilon^{-1} 2^{-r}\right)$.
- In this sense we are sampling from the spectrum of τH, and each sample is close to an (rescaled) eigenvalue with large probability (exact in the limit of $r \rightarrow \infty$).
- The rescaled eigenvalues are determined modulo 2π. We need to choose τ appropriately to get λ_{k}.

Proof of the concentration inequality

- Want to prove $\operatorname{Pr}\left[\left|\tau \hat{\lambda}-\tau \lambda_{k}\right|_{2 \pi} \geq \epsilon \mid \hat{k}=k\right] \leq \mathcal{O}\left(\frac{1}{2^{r} \epsilon}\right)$.

Proof of the concentration inequality

- Want to prove $\operatorname{Pr}\left[\left|\tau \hat{\lambda}-\tau \lambda_{k}\right|_{2 \pi} \geq \epsilon \mid \hat{k}=k\right] \leq \mathcal{O}\left(\frac{1}{2^{\tau} \epsilon}\right)$.
- The probability of deviation larger than $\epsilon=2 \pi \ell / 2^{r}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left.\left|\frac{2 \pi \hat{m}}{2^{r}}-\tau \lambda_{k}\right|_{2 \pi} \geq \frac{2 \pi \ell}{2^{r}} \right\rvert\, \hat{k}=k\right] \\
& =\sum_{m: \left\lvert\, \begin{array}{c}
m-\left.\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right|_{2^{r}} \\
0 \leq m \leq 2^{r}-1
\end{array}\right.} \frac{1}{4^{r}} \frac{\sin ^{2}\left(2^{r-1}\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right)}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)}
\end{aligned}
$$

Proof of the concentration inequality

- Want to prove $\operatorname{Pr}\left[\left|\tau \hat{\lambda}-\tau \lambda_{k}\right|_{2 \pi} \geq \epsilon \mid \hat{k}=k\right] \leq \mathcal{O}\left(\frac{1}{2^{r} \epsilon}\right)$.
- The probability of deviation larger than $\epsilon=2 \pi \ell / 2^{r}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\left.\left|\frac{2 \pi \hat{m}}{2^{r}}-\tau \lambda_{k}\right|_{2 \pi} \geq \frac{2 \pi \ell}{2^{r}} \right\rvert\, \hat{k}=k\right] \\
& =\sum_{m: \left\lvert\, \begin{array}{c}
m-\left.\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right|_{2^{2}} \geq \leq m \leq 2^{r}-1 \\
0 \leq m
\end{array}\right.} \frac{1}{4^{r}} \frac{\sin ^{2}\left(2^{r-1}\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right)\right)}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)} \\
& \leq \sum_{\substack{m: \left\lvert\, \begin{array}{c}
m-\left.\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right|_{2^{r}} \\
0 \leq m \leq 2^{r}-1
\end{array}\right.}} \frac{1}{4^{r}} \frac{1}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)}
\end{aligned}
$$

We use the fact that $\left|\sin \left(\frac{x}{2}\right)\right| \geq \frac{|x|_{2 \pi}}{\pi}$.

We use the fact that $\left|\sin \left(\frac{x}{2}\right)\right| \geq \frac{|x|_{2 \pi}}{\pi}$.

$$
\sum_{\substack{m:\left|m \frac{2^{r} \tau \lambda_{k}}{2 \pi}\right|_{2^{r}} \geq \ell \\ 0 \leq m \leq 2^{r}-1}} \frac{1}{4^{r}} \frac{1}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)}
$$

We use the fact that $\left|\sin \left(\frac{x}{2}\right)\right| \geq \frac{|x|_{2 \pi}}{\pi}$.

$$
\begin{aligned}
& \sum_{\substack{m:\left|m-\frac{2^{r}+\lambda_{k}}{2 \pi}\right|_{2^{2}} \geq \\
0 \leq m \leq \sum^{r}-1}} \frac{1}{4^{r}} \frac{1}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)} \\
& \leq \sum_{\substack{m: \left\lvert\, m-\frac{2^{r} \tau \lambda_{k}}{2 \lambda^{r}} \\
0 \leq m \leq 2^{r}-1\right.}} \frac{1}{2_{2} \geq \ell}<\frac{1}{4\left|m-2^{r-1} \tau \lambda_{k} / \pi\right|_{2^{r}}^{2}}
\end{aligned}
$$

We use the fact that $\left|\sin \left(\frac{x}{2}\right)\right| \geq \frac{|x|_{2 \pi}}{\pi}$.

$$
\begin{aligned}
& m: \left\lvert\, \begin{array}{c}
m-\left.\frac{2^{r} \tau \lambda_{k}}{2 \pi}\right|_{2^{r}} \geq \ell \\
\leq m \leq 2^{r}-1 \\
\leq \\
\sum_{\substack{m: \left\lvert\, m-\frac{2^{r} \tau \lambda_{k}}{2^{r}} \\
0 \leq m \leq 2^{r}-1\right.}} \frac{1}{4^{r}} \frac{1}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)} \\
\leq 2 \times \frac{1}{4} \sum_{n=\ell}^{\infty} \frac{1}{n^{2}}
\end{array}\right. \\
& \leq m-2^{r-1} \tau \lambda_{k} /\left.\pi\right|_{2^{r}} ^{2}
\end{aligned}
$$

We use the fact that $\left|\sin \left(\frac{x}{2}\right)\right| \geq \frac{|x|_{2 \pi}}{\pi}$.

$$
\begin{aligned}
& m:\left|m-\frac{2^{r} \tau \lambda_{k}}{0 \leq m \leq 2^{r}-1}\right|_{2^{2}} \geq \ell \\
& \leq \sum_{\substack{m: \left\lvert\, m-\frac{2^{r} \tau \lambda_{k}}{2^{r}} \\
0 \leq m \leq 2^{r}-1\right.}} \frac{1}{4^{r}} \frac{1}{\sin ^{2}\left(\left(2 \pi m / 2^{r}-\tau \lambda_{k}\right) / 2\right)} \\
& \leq 2 \times \frac{1}{4} \sum_{n=\ell}^{\infty} \frac{1}{n^{2}} \\
& \leq \frac{1}{2(\ell-1)}=\mathcal{O}\left(\frac{1}{2^{r} \epsilon}\right)
\end{aligned}
$$

Summary: quantum phase estimation (textbook version) ${ }^{3}$

[^8]
Summary: quantum phase estimation (textbook version) ${ }^{3}$

- A high level statement: QPE returns an energy estimate that is close to a random eigenvalue of τH with large probability.

[^9]Summary: quantum phase estimation (textbook version) ${ }^{3}$

- A high level statement: QPE returns an energy estimate that is close to a random eigenvalue of τH with large probability.
- A precise statement: QPE returns an energy estimate $\hat{\lambda}$ that is ϵ-close to a random $\tau \lambda_{\hat{k}}$ with probability at least $1-\mathcal{O}\left(\epsilon^{-1} 2^{-r}\right)$, where $\hat{k}=k$ with probability $\left|c_{k}\right|^{2}$.

[^10]Summary: quantum phase estimation (textbook version) ${ }^{3}$

- A high level statement: QPE returns an energy estimate that is close to a random eigenvalue of τH with large probability.
- A precise statement: QPE returns an energy estimate $\hat{\lambda}$ that is ϵ-close to a random $\tau \lambda_{\hat{k}}$ with probability at least $1-\mathcal{O}\left(\epsilon^{-1} 2^{-r}\right)$, where $\hat{k}=k$ with probability $\left|c_{k}\right|^{2}$.
- Runtime of the algorithm: apply control- $e^{-i \tau H} 2^{r}$ times. $2^{r}=\mathcal{O}\left(\epsilon^{-1}\right)$ for constant success probability.

[^11]
Use QPE for ground state energy

- Recall that the ground state energy is λ_{0}, the lowest eigenvalue of H.

Use QPE for ground state energy

- Recall that the ground state energy is λ_{0}, the lowest eigenvalue of H.
- We need to ensure that the energy we get correspond to the ground state rather than excited states (ensure $\hat{k}=0$): generate $\mathcal{O}\left(1 /\left|c_{0}\right|^{2}\right)$ samples for $\hat{\lambda}$ and take the minimum.

Use QPE for ground state energy

- Recall that the ground state energy is λ_{0}, the lowest eigenvalue of H.
- We need to ensure that the energy we get correspond to the ground state rather than excited states (ensure $\hat{k}=0$): generate $\mathcal{O}\left(1 /\left|c_{0}\right|^{2}\right)$ samples for $\hat{\lambda}$ and take the minimum.
- Make sure in all of these samples the energy estimate is close to some eigenvalue. This happens with probability

$$
\left(1-\mathcal{O}\left(\frac{1}{\epsilon 2^{r}}\right)\right)^{\mathcal{O}\left(1 /\left|c_{0}\right|^{2}\right)}=\Omega(1)
$$

Use QPE for ground state energy

- Recall that the ground state energy is λ_{0}, the lowest eigenvalue of H.
- We need to ensure that the energy we get correspond to the ground state rather than excited states (ensure $\hat{k}=0$): generate $\mathcal{O}\left(1 /\left|c_{0}\right|^{2}\right)$ samples for $\hat{\lambda}$ and take the minimum.
- Make sure in all of these samples the energy estimate is close to some eigenvalue. This happens with probability

$$
\left(1-\mathcal{O}\left(\frac{1}{\epsilon 2^{r}}\right)\right)^{\mathcal{O}\left(1 /\left|c_{0}\right|^{2}\right)}=\Omega(1)
$$

- We therefore need $\epsilon 2^{r}=\Omega\left(1 /\left|c_{0}\right|^{2}\right)$.
- Total cost (number of times to apply control- $-e^{-i \tau H}$) for getting the ground state energy is

$$
\underbrace{\frac{1}{\left|c_{0}\right|^{2}}}_{\# \text { runs }} \times \underbrace{\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{2}}\right)}_{\text {cost of single run }}=\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{4}}\right) .
$$

- Total cost (number of times to apply control $-e^{-i \tau H}$) for getting the ground state energy is

$$
\underbrace{\frac{1}{\left|c_{0}\right|^{2}}}_{\# \text { runs }} \times \underbrace{\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{2}}\right)}_{\text {cost of single run }}=\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{4}}\right) .
$$

- We do not need to know c_{0}, but assume $\left|c_{0}\right|^{2} \geq \eta$. Then the total cost is $\mathcal{O}\left(\epsilon^{-1} \eta^{-2}\right)$ (Heisenberg-limited scaling).
- Total cost (number of times to apply control $-e^{-i \tau H}$) for getting the ground state energy is

$$
\underbrace{\frac{1}{\left|c_{0}\right|^{2}}}_{\# \text { runs }} \times \underbrace{\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{2}}\right)}_{\text {cost of single run }}=\mathcal{O}\left(\frac{1}{\epsilon\left|c_{0}\right|^{4}}\right) .
$$

- We do not need to know c_{0}, but assume $\left|c_{0}\right|^{2} \geq \eta$. Then the total cost is $\mathcal{O}\left(\epsilon^{-1} \eta^{-2}\right)$ (Heisenberg-limited scaling).
- $2^{r}=\mathcal{O}\left(\epsilon^{-1} \eta^{-1}\right)$ is how deep the circuit is in each run. This is called the the circuit depth. $r=\mathcal{O}\left(\log \left(\epsilon^{-1} \eta^{-1}\right)\right)$ is the number of ancilla qubits.
- We have looked at two algorithms for finding the ground state energy.
- We have looked at two algorithms for finding the ground state energy.
- Textbook version QPE can estimate the ground state energy with an imperfect initial guess but requires many ancilla qubits.
- We have looked at two algorithms for finding the ground state energy.
- Textbook version QPE can estimate the ground state energy with an imperfect initial guess but requires many ancilla qubits.
- Hadamard test can estimate the ground state energy using a single ancilla qubit, but requires a perfect initial guess.
- We have looked at two algorithms for finding the ground state energy.
- Textbook version QPE can estimate the ground state energy with an imperfect initial guess but requires many ancilla qubits.
- Hadamard test can estimate the ground state energy using a single ancilla qubit, but requires a perfect initial guess.
- Both achieve the Heisenberg-limited scaling.
- Coming up next: can we have all the good features?

The spectral density

- The Hamiltonian H has eigenvalues $\lambda_{0}, \lambda_{1}, \cdots$. For simplicity we assume $\operatorname{spec}(H) \subset(-\pi / 4, \pi / 4)$.

The spectral density

- The Hamiltonian H has eigenvalues $\lambda_{0}, \lambda_{1}, \cdots$. For simplicity we assume $\operatorname{spec}(H) \subset(-\pi / 4, \pi / 4)$.
- An initial guess $|\Phi\rangle$ induces a probability distribution which we call the spectral density:

$$
\mu(x)=\sum_{k} p_{k} \delta\left(x-\lambda_{k}\right)
$$

where $p_{k}=\left|\left\langle\Psi_{k} \mid \Phi\right\rangle\right|^{2}$ and $\delta(\cdot)$ is the Dirac delta function.

The spectral density

- The Hamiltonian H has eigenvalues $\lambda_{0}, \lambda_{1}, \cdots$. For simplicity we assume $\operatorname{spec}(H) \subset(-\pi / 4, \pi / 4)$.
- An initial guess $|\Phi\rangle$ induces a probability distribution which we call the spectral density:

$$
\mu(x)=\sum_{k} p_{k} \delta\left(x-\lambda_{k}\right)
$$

where $p_{k}=\left|\left\langle\Psi_{k} \mid \Phi\right\rangle\right|^{2}$ and $\delta(\cdot)$ is the Dirac delta function.

- If $X \sim \mu(x)$ then $X=\lambda_{k}$ w.p. p_{k}. Note that $\sum_{k} p_{k}=1$.

The spectral density

- The Hamiltonian H has eigenvalues $\lambda_{0}, \lambda_{1}, \cdots$. For simplicity we assume $\operatorname{spec}(H) \subset(-\pi / 4, \pi / 4)$.
- An initial guess $|\Phi\rangle$ induces a probability distribution which we call the spectral density:

$$
\mu(x)=\sum_{k} p_{k} \delta\left(x-\lambda_{k}\right)
$$

where $p_{k}=\left|\left\langle\Psi_{k} \mid \Phi\right\rangle\right|^{2}$ and $\delta(\cdot)$ is the Dirac delta function.

- If $X \sim \mu(x)$ then $X=\lambda_{k}$ w.p. p_{k}. Note that $\sum_{k} p_{k}=1$.
- This distribution contains all the information about the spectrum.

Figure: The Hadamard test circuit.

Figure: The Hadamard test circuit.

- The Hadamard test circuit outputs the expectation value

$$
\begin{aligned}
\langle\Phi| e^{-i t H}|\Phi\rangle & =\sum_{k} p_{k} e^{-i t \lambda_{k}} \\
& =\int_{-\pi}^{\pi} e^{-i t x} \mu(x) \mathrm{d} x
\end{aligned}
$$

Figure: The Hadamard test circuit.

- The Hadamard test circuit outputs the expectation value

$$
\begin{aligned}
\langle\Phi| e^{-i t H}|\Phi\rangle & =\sum_{k} p_{k} e^{-i t \lambda_{k}} \\
& =\int_{-\pi}^{\pi} e^{-i t x} \mu(x) \mathrm{d} x
\end{aligned}
$$

- This is the Fourier transform (either on \mathbb{R} or on the torus) of the distribution $\mu(x)$.
- We can try recovering the spectrum density $\mu(x)$ through inverse Fourier transform. If we can then we will have the ground state energy.
- We can try recovering the spectrum density $\mu(x)$ through inverse Fourier transform. If we can then we will have the ground state energy.
- Problem: we can only run the Hadamard test for a finite number of times, and the cost grow with t.
- We can try recovering the spectrum density $\mu(x)$ through inverse Fourier transform. If we can then we will have the ground state energy.
- Problem: we can only run the Hadamard test for a finite number of times, and the cost grow with t.
- $\mu(x)$ is a linear combination of Dirac delta functions. The Fourier coefficients do not decay.
- We can instead compute a smeared spectral density:

$$
\widetilde{\mu}(x)=\mu * M(x)=\int \mu(y) M(x-y) \mathrm{d} y
$$

where $M(\cdot)$ is a kernel (mollifier).

- We can instead compute a smeared spectral density:

$$
\widetilde{\mu}(x)=\mu * M(x)=\int \mu(y) M(x-y) \mathrm{d} y
$$

where $M(\cdot)$ is a kernel (mollifier).

- The Fourier coefficients are

$$
\hat{\tilde{\mu}}_{k}=\hat{\mu}_{k} \hat{M}_{k},
$$

where $\hat{\mu}_{k}=\langle\Phi| e^{-i k H}|\Phi\rangle$ can be computed from the Hadamard test, and \hat{M}_{k} is computed from $M(x)$.

- We can instead compute a smeared spectral density:

$$
\widetilde{\mu}(x)=\mu * M(x)=\int \mu(y) M(x-y) \mathrm{d} y
$$

where $M(\cdot)$ is a kernel (mollifier).

- The Fourier coefficients are

$$
\hat{\tilde{\mu}}_{k}=\hat{\mu}_{k} \hat{M}_{k},
$$

where $\hat{\mu}_{k}=\langle\Phi| e^{-i k H}|\Phi\rangle$ can be computed from the Hadamard test, and \hat{M}_{k} is computed from $M(x)$.

- We want the kernel $M(x)$ to be 2π-periodic finite-degree trigonometric polynomial (the cost depend on the degree), and integrates to 1 .

An example of such a kernel ${ }^{a}$

$$
M(x)=\frac{1}{\mathcal{N}_{d, \delta}} T_{d}\left(1+2 \frac{\cos (x)-\cos (\delta)}{1+\cos (\delta)}\right)
$$

where T_{d} is the d th Chebyshev polynomial of the first kind, and
$\mathcal{N}_{d, \delta}=\int_{-\pi}^{\pi} T_{d}\left(1+2 \frac{\cos (x)-\cos (\delta)}{1+\cos (\delta)}\right) \mathrm{d} x$.

[^12]An example of such a kernel ${ }^{a}$

$$
M(x)=\frac{1}{\mathcal{N}_{d, \delta}} T_{d}\left(1+2 \frac{\cos (x)-\cos (\delta)}{1+\cos (\delta)}\right)
$$

where T_{d} is the d th Chebyshev polynomial of the first kind, and

$$
\mathcal{N}_{d, \delta}=\int_{-\pi}^{\pi} T_{d}\left(1+2 \frac{\cos (x)-\cos (\delta)}{1+\cos (\delta)}\right) \mathrm{d} x .
$$

[^13]

Figure: The kernel function $M(x)$. The degree is $\mathcal{O}\left(\delta^{-1} \log \left(\epsilon^{-1}\right)\right)$.

- The quantum eigenvalue estimation problem (QEEP) ${ }^{a}$
- With $\left|\left\langle\Phi \mid \Psi_{0}\right\rangle\right|^{2} \geq \eta$ and to estimate ground state energy to precision ϵ : total runtime $\mathcal{O}\left(\epsilon^{-4} \eta^{-2}\right)$, circuit depth $\mathcal{O}\left(\epsilon^{-1}\right)$, single ancilla, imperfect initial guess.
- The quantum eigenvalue estimation problem (QEEP) ${ }^{a}$
- With $\left|\left\langle\Phi \mid \Psi_{0}\right\rangle\right|^{2} \geq \eta$ and to estimate ground state energy to precision ϵ : total runtime $\mathcal{O}\left(\epsilon^{-4} \eta^{-2}\right)$, circuit depth $\mathcal{O}\left(\epsilon^{-1}\right)$, single ancilla, imperfect initial guess.
- ϵ^{-4} comes from
- Number of terms in the Fourier expansion $\mathcal{O}\left(\epsilon^{-1}\right)$.
- To evaluate their sum to precision $\mathcal{O}(\eta)$, we need $\mathcal{O}\left(\epsilon^{-2} \eta^{-2}\right)$ samples for each term.
- Average cost for each term is $\mathcal{O}\left(\epsilon^{-1}\right)$ (time needed for system to evolve).

[^14]- The quantum eigenvalue estimation problem (QEEP) ${ }^{a}$
- With $\left|\left\langle\Phi \mid \Psi_{0}\right\rangle\right|^{2} \geq \eta$ and to estimate ground state energy to precision ϵ : total runtime $\mathcal{O}\left(\epsilon^{-4} \eta^{-2}\right)$, circuit depth $\mathcal{O}\left(\epsilon^{-1}\right)$, single ancilla, imperfect initial guess.
- ϵ^{-4} comes from
- Number of terms in the Fourier expansion
 $\mathcal{O}\left(\epsilon^{-1}\right)$.
- To evaluate their sum to precision $\mathcal{O}(\eta)$, we need $\mathcal{O}\left(\epsilon^{-2} \eta^{-2}\right)$ samples for each term.
- Average cost for each term is $\mathcal{O}\left(\epsilon^{-1}\right)$ (time needed for system to evolve).

[^15]- The quantum eigenvalue estimation problem (QEEP) ${ }^{a}$
- With $\left|\left\langle\Phi \mid \Psi_{0}\right\rangle\right|^{2} \geq \eta$ and to estimate ground state energy to precision ϵ : total runtime $\mathcal{O}\left(\epsilon^{-4} \eta^{-2}\right)$, circuit depth $\mathcal{O}\left(\epsilon^{-1}\right)$, single ancilla, imperfect initial guess.
- ϵ^{-4} comes from
- Number of terms in the Fourier expansion $\mathcal{O}\left(\epsilon^{-1}\right)$.
- To evaluate their sum to precision $\mathcal{O}(\eta)$, we need $\mathcal{O}\left(\epsilon^{-2} \eta^{-2}\right)$ samples for each term.
- Average cost for each term is $\mathcal{O}\left(\epsilon^{-1}\right)$ (time needed for system to evolve).

Other relevant works:

- O'Brien et al., 2020, Error mitigation via verified phase estimation.
- Lu et al., 2020, Algorithms for Quantum Simulation at Finite Energies.
- Russo et al., 2020, Evaluating energy differences on a quantum computer with robust phase estimation.

[^16]
Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm

Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm
- It has the following nice features:

Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm
- It has the following nice features:
- It uses only one ancilla qubit.

Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm
- It has the following nice features:
- It uses only one ancilla qubit.
- The circuit depth is $\mathcal{O}\left(\epsilon^{-1}\right)$ rather than $\mathcal{O}\left(\epsilon^{-1} \eta^{-1}\right)$ (as in textbook QPE).

Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm
- It has the following nice features:
- It uses only one ancilla qubit.
- The circuit depth is $\mathcal{O}\left(\epsilon^{-1}\right)$ rather than $\mathcal{O}\left(\epsilon^{-1} \eta^{-1}\right)$ (as in textbook QPE).
- Some degree of noise-robustness.

Early fault-tolerant quantum algorithms

- We call such an algorithm an early fault-tolerant quantum algorithm
- It has the following nice features:
- It uses only one ancilla qubit.
- The circuit depth is $\mathcal{O}\left(\epsilon^{-1}\right)$ rather than $\mathcal{O}\left(\epsilon^{-1} \eta^{-1}\right)$ (as in textbook QPE).
- Some degree of noise-robustness.
- Early fault-tolerant quantum algorithms are the ones that take the above factors into account.

Can we do better?

Can we do better?

- It may not be the best strategy to compute a smeared spectral density: each peak corresponds to an eigenvalue, but we do not know if there are eigenvalues to the left.

Can we do better?

- It may not be the best strategy to compute a smeared spectral density: each peak corresponds to an eigenvalue, but we do not know if there are eigenvalues to the left.
- We should not evaluate each term and sum them up: $\mathcal{O}\left(\epsilon^{-1}\right)$ terms and $\mathcal{O}\left(\epsilon^{-1}\right)$ average time makes the cost at least $\mathcal{O}\left(\epsilon^{-2}\right)$.

Can we do better?

- It may not be the best strategy to compute a smeared spectral density: each peak corresponds to an eigenvalue, but we do not know if there are eigenvalues to the left.
- We should not evaluate each term and sum them up: $\mathcal{O}\left(\epsilon^{-1}\right)$ terms and $\mathcal{O}\left(\epsilon^{-1}\right)$ average time makes the cost at least $\mathcal{O}\left(\epsilon^{-2}\right)$.
- Not all terms are equally important.

The cumulative distribution function

- Define the cumulative distribution function (CDF):

$$
C(x)=\int_{-\pi}^{x} \mu(y) \mathrm{d} y=\sum_{k} p_{k} H\left(x-\lambda_{k}\right)=(H * \mu)(x)
$$

where $H(\cdot)$ is the Heaviside function.

The cumulative distribution function

- Define the cumulative distribution function (CDF):

$$
C(x)=\int_{-\pi}^{x} \mu(y) \mathrm{d} y=\sum_{k} p_{k} H\left(x-\lambda_{k}\right)=(H * \mu)(x)
$$

where $H(\cdot)$ is the Heaviside function.

- Every jump of this piecewise constant function correspond to an eigenvalue of H. In particular, the first jump correspond to the ground-state energy.

The cumulative distribution function

- Define the cumulative distribution function (CDF):

$$
C(x)=\int_{-\pi}^{x} \mu(y) \mathrm{d} y=\sum_{k} p_{k} H\left(x-\lambda_{k}\right)=(H * \mu)(x)
$$

where $H(\cdot)$ is the Heaviside function.

- Every jump of this piecewise constant function correspond to an eigenvalue of H. In particular, the first jump correspond to the ground-state energy.
- $C(x)$ is a monotonously increasing function. We can therefore find the first jump by binary search.

The cumulative distribution function

- Define the cumulative distribution function (CDF):

$$
C(x)=\int_{-\pi}^{x} \mu(y) \mathrm{d} y=\sum_{k} p_{k} H\left(x-\lambda_{k}\right)=(H * \mu)(x)
$$

where $H(\cdot)$ is the Heaviside function.

- Every jump of this piecewise constant function correspond to an eigenvalue of H. In particular, the first jump correspond to the ground-state energy.
- $C(x)$ is a monotonously increasing function. We can therefore find the first jump by binary search.
- $C(x)$ can be approximated using Hadamard-test data.

Figure: Evaluating the CDF by sampling from the quantum circuit. Note that we do not need to re-sample for each point.

Figure: Zoom-in around the ground state energy

The approximate CDF

- We can approximate $C(x)$ with a smooth function

$$
\widetilde{C}(x)=(M * C)(x)=(M * H * \mu)(x)
$$

The approximate CDF

- We can approximate $C(x)$ with a smooth function

$$
\widetilde{C}(x)=(M * C)(x)=(M * H * \mu)(x)
$$

- The approximation is in the sense

$$
C(x-\delta)-\epsilon^{\prime} \leq \widetilde{C}(x) \leq C(x+\delta)+\epsilon^{\prime}
$$

which guarantees that we can find the first jump within error δ.

The approximate CDF

- We can approximate $C(x)$ with a smooth function

$$
\widetilde{C}(x)=(M * C)(x)=(M * H * \mu)(x)
$$

- The approximation is in the sense

$$
C(x-\delta)-\epsilon^{\prime} \leq \widetilde{C}(x) \leq C(x+\delta)+\epsilon^{\prime}
$$

which guarantees that we can find the first jump within error δ.

- We can evaluate $\widetilde{C}(x)$ through its Fourier transform

$$
\hat{\widetilde{C}}_{k}=\hat{M}_{k} \hat{H}_{k} \hat{\mu}_{k}
$$

$k=-d,-d+1, \cdots, d$, where \hat{M}_{k} and \hat{H}_{k} are known and $\hat{\mu}_{k}$ is computed from the Hadamard test.

Importance sampling

- If we want to evaluate $\widetilde{C}(x)$, then we need

$$
\widetilde{C}(x)=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{\widetilde{C}}_{k} e^{i k x}=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{M}_{k} \hat{H}_{k} \hat{\mu}_{k} e^{i k x}
$$

Importance sampling

- If we want to evaluate $\widetilde{C}(x)$, then we need

$$
\widetilde{C}(x)=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{\widetilde{C}}_{k} e^{i k x}=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{M}_{k} \hat{H}_{k} \hat{\mu}_{k} e^{i k x}
$$

- If we compute each $\hat{\mu}_{k}(k=-d,-d+1, \cdots, d)$ individually, then each will require evolution time $\mathcal{O}(|k|)$, which means the total evolution time is at least $\mathcal{O}\left(d^{2}\right)=\mathcal{O}\left(\epsilon_{\mathrm{gs}}^{-2}\right)$. Impossible to achieve the Heisenberg limit.

Importance sampling

- If we want to evaluate $\widetilde{C}(x)$, then we need

$$
\widetilde{C}(x)=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{\widetilde{C}}_{k} e^{i k x}=\frac{1}{2 \pi} \sum_{k=-d}^{d} \hat{M}_{k} \hat{H}_{k} \hat{\mu}_{k} e^{i k x}
$$

- If we compute each $\hat{\mu}_{k}(k=-d,-d+1, \cdots, d)$ individually, then each will require evolution time $\mathcal{O}(|k|)$, which means the total evolution time is at least $\mathcal{O}\left(d^{2}\right)=\mathcal{O}\left(\epsilon_{\mathrm{gs}}^{-2}\right)$. Impossible to achieve the Heisenberg limit.
- Notice that

$$
\sum_{k=-d}^{d}\left|\hat{M}_{k} \hat{H}_{k}\right| \leq 2 \pi \sum_{k=-d}^{d}\left|\hat{H}_{k}\right| \leq \sum_{k=-d}^{d} \frac{C}{1+|k|}=\mathcal{O}(\log (d))
$$

Many terms are unimportant. We can use importance sampling.

- Sample random variable K with distribution

$$
K=k \text { w.p. } \frac{\left|\hat{M}_{k} \hat{H}_{k}\right|}{\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|} .
$$

Then

$$
\widetilde{C}(x)=\left(\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|\right) \mathbb{E}\left[e^{i \theta_{K}} \hat{\mu}_{K}\right] .
$$

- Sample random variable K with distribution

$$
K=k \text { w.p. } \frac{\left|\hat{M}_{k} \hat{H}_{k}\right|}{\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|} .
$$

Then

$$
\widetilde{C}(x)=\left(\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|\right) \mathbb{E}\left[e^{i \theta_{K}} \hat{\mu}_{K}\right] .
$$

- We can therefore randomly sample $K=k_{1}, k_{2}, \cdots, k_{\mathrm{N}_{\mathrm{s}}}$, compute $e^{i \theta_{k_{l}}} \hat{\mu}_{k_{l}}$, take average, and then multiply by $\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|$.
- Sample random variable K with distribution

$$
K=k \text { w.p. } \frac{\left|\hat{M}_{k} \hat{H}_{k}\right|}{\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|} .
$$

Then

$$
\widetilde{C}(x)=\left(\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|\right) \mathbb{E}\left[e^{i \theta_{K}} \hat{\mu}_{K}\right] .
$$

- We can therefore randomly sample $K=k_{1}, k_{2}, \cdots, k_{\mathrm{N}_{\mathrm{s}}}$, compute $e^{i \theta_{k_{l}}} \hat{\mu}_{k_{l}}$, take average, and then multiply by $\sum_{k^{\prime}=-d}^{d}\left|\hat{M}_{k^{\prime}} \hat{H}_{k^{\prime}}\right|$.
- The variance is

$$
\frac{\mathcal{O}\left(\log (d)^{2}\right)}{N_{s}}
$$

- Locating the first jump only requires precision η (lower bound of the initial overlap $\left|\left\langle\Psi_{0} \mid \Phi\right\rangle\right|^{2}$). Therefore we need

$$
\frac{\mathcal{O}\left(\log (d)^{2}\right)}{N_{s}} \leq \eta^{2} \Longrightarrow N_{s}=\mathcal{O}\left(\log (d)^{2} \eta^{-2}\right)
$$

- Locating the first jump only requires precision η (lower bound of the initial overlap $\left|\left\langle\Psi_{0} \mid \Phi\right\rangle\right|^{2}$). Therefore we need

$$
\frac{\mathcal{O}\left(\log (d)^{2}\right)}{N_{s}} \leq \eta^{2} \Longrightarrow N_{s}=\mathcal{O}\left(\log (d)^{2} \eta^{-2}\right)
$$

- If we want to compute the ground-state energy to precision ϵ_{gs}, we need $d \sim \epsilon_{\mathrm{gs}}^{-1}$. Then the total evolution time is

$$
\mathcal{O}(d) \times N_{s}=\mathcal{O}\left(\epsilon_{\mathrm{gs}}^{-1} \eta^{-2}\right)
$$

Comparison with other ground-state energy algorithms:

	Runtime	Circ. depth	Ancilla qubits
QPE	$\epsilon^{-1} \eta^{-2}$	$\epsilon^{-1} \eta^{-1}$	$\log \left(\epsilon^{-1} \eta^{-1}\right)$
Modified QPE			
Binary search	$\epsilon^{-1} \eta^{-1}$	$\epsilon^{-1} \eta^{-1 / 2}$	ϵ^{-1}
QEEP	ϵ^{-1}	$\log \left(\epsilon^{-1}\right)$	
CDF-based 7	$\epsilon^{-1} \eta^{-2}$	ϵ^{-1}	ϵ^{-1}

[^17]Comparison with other ground-state energy algorithms:

	Runtime	Circ. depth	Ancilla qubits
QPE	$\epsilon^{-1} \eta^{-2}$	$\epsilon^{-1} \eta^{-1}$	$\log \left(\epsilon^{-1} \eta^{-1}\right)$
Modified QPE			
Binary search	$\epsilon^{-1} \eta^{-1}$	$\epsilon^{-1} \eta^{-1 / 2}$	ϵ^{-1}
QEEP	$\epsilon^{-4} \eta^{-2}$	ϵ^{-1}	$\log \left(\epsilon^{-1}\right)$
CDF-based 7	$\epsilon^{-1} \eta^{-2}$	ϵ^{-1}	1

This algorithm achieves Heisenberg-limit scaling, uses single ancilla qubit, and can use imperfect initial guess.

[^18]
Extensions

- Computing ground state observable expectation values using a modified circuit. ${ }^{8}$

[^19]
Extensions

- Computing ground state observable expectation values using a modified circuit. ${ }^{8}$
- Input model: $e^{-i \tau H}$ using Trotter \rightarrow unbiased implementation through sampling. ${ }^{9}$

[^20]
Extensions

- Computing ground state observable expectation values using a modified circuit. ${ }^{8}$
- Input model: $e^{-i \tau H}$ using Trotter \rightarrow unbiased implementation through sampling. ${ }^{9}$
- Lower circuit depth with large gap: $\epsilon^{-1} \rightarrow \Delta^{-1} .^{10}$

[^21]
Extensions

- Computing ground state observable expectation values using a modified circuit. ${ }^{8}$
- Input model: $e^{-i \tau H}$ using Trotter \rightarrow unbiased implementation through sampling. ${ }^{9}$
- Lower circuit depth with large gap: $\epsilon^{-1} \rightarrow \Delta^{-1} .^{10}$
- Adding Z-rotations (QSP-like) to get better runtime $\widetilde{\mathcal{O}}\left(\epsilon^{-1} \eta^{-1}\right) \cdot{ }^{11}$

[^22]- Using least-squares fitting to get the dominant frequency. Better circuit depth with large overlap. ${ }^{12}$

[^23]- Using least-squares fitting to get the dominant frequency. Better circuit depth with large overlap. ${ }^{12}$
- Robustness under simple noise models. ${ }^{13,14}$

[^24]
Robustness under simple noise

- In the Hadamard test circuit, consider the following noise model: each time we apply control- $-e^{-i H \tau}$, with probability $1-e^{-\alpha \tau}$ the system decoheres into the maximally mixed state (loses all information).

[^25]
Robustness under simple noise

- In the Hadamard test circuit, consider the following noise model: each time we apply control- $-e^{-i H \tau}$, with probability $1-e^{-\alpha \tau}$ the system decoheres into the maximally mixed state (loses all information).
- This is a reasonable model in random circuit. ${ }^{15}$

[^26]
Robustness under simple noise

- In the Hadamard test circuit, consider the following noise model: each time we apply control- $-e^{-i H \tau}$, with probability $1-e^{-\alpha \tau}$ the system decoheres into the maximally mixed state (loses all information).
- This is a reasonable model in random circuit. ${ }^{15}$
- Then the output \hat{m} (when measuring the ancilla qubit) will satisfy

$$
\mathbb{E}\left[(-1)^{\hat{m}}\right]=e^{-\alpha t}\langle\Phi| e^{-i H t}|\Phi\rangle
$$

[^27]
Robustness under simple noise

- In the Hadamard test circuit, consider the following noise model: each time we apply control- $-e^{-i H \tau}$, with probability $1-e^{-\alpha \tau}$ the system decoheres into the maximally mixed state (loses all information).
- This is a reasonable model in random circuit. ${ }^{15}$
- Then the output \hat{m} (when measuring the ancilla qubit) will satisfy

$$
\mathbb{E}\left[(-1)^{\hat{m}}\right]=e^{-\alpha t}\langle\Phi| e^{-i H t}|\Phi\rangle .
$$

- It is therefore possible to mitigate the error by multiplying $e^{\alpha t}$ (acceptable overhead if α not too large).

[^28]- What happens to the textbook QPE under the same noise model?
- What happens to the textbook QPE under the same noise model?
- Maximally mixed state is invariant under any unitary operation. Therefore the ancilla register has $1-e^{-\alpha 2^{r} \tau}$ probability of returning an uniformly random bit string.

$$
\operatorname{Pr}\left[E_{\text {meas,noisy }}=2 \pi m / 2^{r}\right]=\operatorname{Pr}\left[E_{\text {meas }}=2 \pi m / 2^{r}\right] e^{-\alpha 2^{r} \tau}+\frac{1-e^{-\alpha 2^{r} \tau}}{2^{r}}
$$

- What happens to the textbook QPE under the same noise model?
- Maximally mixed state is invariant under any unitary operation. Therefore the ancilla register has $1-e^{-\alpha 2^{r} \tau}$ probability of returning an uniformly random bit string.

$$
\operatorname{Pr}\left[E_{\text {meas,noisy }}=2 \pi m / 2^{r}\right]=\operatorname{Pr}\left[E_{\text {meas }}=2 \pi m / 2^{r}\right] e^{-\alpha 2^{r} \tau}+\frac{1-e^{-\alpha 2^{r} \tau}}{2^{r}}
$$

- Disastrous when taking the minimum (it is possible for any bit string to show up).

Experimental implementation

- A modified version of this algorithm is implemented using superconducting qubits. ${ }^{a}$
- Active space with up to 4 spatial orbitals, 0.1 mHa
- Variational compilation, better Fourier coefficients, ${ }^{b}$ error mitigation.
${ }^{\text {a }}$ Blunt, Caune, Izsák, Campbell, Holzmann, 2023, Statistical phase estimation and error mitigation on a superconducting quantum processor.
${ }^{\text {b }}$ Wan, Berta, and Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.

Compare with Kitaev's iterative phase estimation algorithm.

Figure: O'Malley et al., 2016, Scalable Quantum Simulation of Molecular Energies.

Conclusions

- For early fault-tolerant quantum computers, we may need to optimize for a number of metrics (circuit depth, number of qubits, error robustness) rather than just the runtime.

Conclusions

- For early fault-tolerant quantum computers, we may need to optimize for a number of metrics (circuit depth, number of qubits, error robustness) rather than just the runtime.
- It is possible to optimize for these metrics while keeping the Heisenberg-limited precision scaling.

Conclusions

- For early fault-tolerant quantum computers, we may need to optimize for a number of metrics (circuit depth, number of qubits, error robustness) rather than just the runtime.
- It is possible to optimize for these metrics while keeping the Heisenberg-limited precision scaling.
- We do not know what the first fault-tolerant quantum computer will be like, but the framework of early FTQC algorithms may be flexible enough to be useful.

[^0]: ${ }^{1}$ Bogojesk et al., 2020, Quantum chemical accuracy from density functional approximations via machine learning.

[^1]: ${ }^{1}$ Bogojesk et al., 2020, Quantum chemical accuracy from density functional approximations via machine learning.

[^2]: ${ }^{1}$ Bogojesk et al., 2020, Quantum chemical accuracy from density functional approximations via machine learning.

[^3]: ${ }^{1}$ Bogojesk et al., 2020, Quantum chemical accuracy from density functional approximations via machine learning.

[^4]: ${ }^{2}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^5]: ${ }^{2}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^6]: ${ }^{2}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^7]: ${ }^{2}$ Kimmel, Low, Yoder, 2015, Robust Calibration of a Universal Single-Qubit Gate-Set via Robust Phase Estimation.

[^8]: ${ }^{3}$ Nielsen and Chuang, Quantum Computation and Quantum Information.

[^9]: ${ }^{3}$ Nielsen and Chuang, Quantum Computation and Quantum Information.

[^10]: ${ }^{3}$ Nielsen and Chuang, Quantum Computation and Quantum Information.

[^11]: ${ }^{3}$ Nielsen and Chuang, Quantum Computation and Quantum Information.

[^12]: ${ }^{a}$ Lin, Tong, 2020, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers.

[^13]: ${ }^{a}$ Lin, Tong, 2020, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers.

[^14]: ${ }^{\text {a }}$ Somma, 2019, Quantum eigenvalue estimation via time series analysis.

[^15]: ${ }^{\text {a }}$ Somma, 2019, Quantum eigenvalue estimation via time series analysis.

[^16]: ${ }^{\text {a }}$ Somma, 2019, Quantum eigenvalue estimation via time series analysis.

[^17]: ${ }^{4}$ Knill, Ortiz, Somma, 2006, Optimal quantum measurements of expectation values of observables.
 ${ }^{5}$ Berry, Su, Gyurik, et al., 2022, Quantifying quantum advantage in topological data analysis.
 ${ }^{6}$ Lin, Tong, 2020, Near-optimal ground state preparation.
 ${ }^{7}$ Lin, Tong, 2020, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers.

[^18]: ${ }^{4}$ Knill, Ortiz, Somma, 2006, Optimal quantum measurements of expectation values of observables.
 ${ }^{5}$ Berry, Su, Gyurik, et al., 2022, Quantifying quantum advantage in topological data analysis.
 ${ }^{6}$ Lin, Tong, 2020, Near-optimal ground state preparation.
 ${ }^{7}$ Lin, Tong, 2020, Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers.

[^19]: ${ }^{8}$ Zhang, Wang, Johnson, 2021, Computing ground state properties with early fault-tolerant quantum computers.
 ${ }^{9}$ Wan, Berta, Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.
 ${ }^{10}$ Wang, Stilck-França, Zhang, Zhu, and Johnson, 2022, Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision.
 ${ }^{11}$ Dong, Lin, Tong, 2022, Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices.

[^20]: ${ }^{8}$ Zhang, Wang, Johnson, 2021, Computing ground state properties with early fault-tolerant quantum computers.
 ${ }^{9}$ Wan, Berta, Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.
 ${ }^{10}$ Wang, Stilck-França, Zhang, Zhu, and Johnson, 2022, Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision.
 ${ }^{11}$ Dong, Lin, Tong, 2022, Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices.

[^21]: ${ }^{8}$ Zhang, Wang, Johnson, 2021, Computing ground state properties with early fault-tolerant quantum computers.
 ${ }^{9}$ Wan, Berta, Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.
 ${ }^{10}$ Wang, Stilck-França, Zhang, Zhu, and Johnson, 2022, Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision.
 ${ }^{11}$ Dong, Lin, Tong, 2022, Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices.

[^22]: ${ }^{8}$ Zhang, Wang, Johnson, 2021, Computing ground state properties with early fault-tolerant quantum computers.
 ${ }^{9}$ Wan, Berta, Campbell, 2021, Randomized quantum algorithm for statistical phase estimation.
 ${ }^{10}$ Wang, Stilck-França, Zhang, Zhu, and Johnson, 2022, Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision.
 ${ }^{11}$ Dong, Lin, Tong, 2022, Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices.

[^23]: ${ }^{12}$ Ding, Lin, 2022, Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation.
 ${ }^{13}$ Kshirsagar, Katabarwa, Johnson, 2022, On proving the robustness of algorithms for early fault-tolerant quantum computers.
 ${ }^{14}$ Ding, Dong, Tong, Lin, 2023, Robust ground-state energy estimation under depolarizing noise.

[^24]: ${ }^{12}$ Ding, Lin, 2022, Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation.
 ${ }^{13}$ Kshirsagar, Katabarwa, Johnson, 2022, On proving the robustness of algorithms for early fault-tolerant quantum computers.
 ${ }^{14}$ Ding, Dong, Tong, Lin, 2023, Robust ground-state energy estimation under depolarizing noise.

[^25]: ${ }^{15}$ Dalzall, Hunter-Jones, Brandao, 2021, Random quantum circuits transform local noise into global white noise.

[^26]: ${ }^{15}$ Dalzall, Hunter-Jones, Brandao, 2021, Random quantum circuits transform local noise into global white noise.

[^27]: ${ }^{15}$ Dalzall, Hunter-Jones, Brandao, 2021, Random quantum circuits transform local noise into global white noise.

[^28]: ${ }^{15}$ Dalzall, Hunter-Jones, Brandao, 2021, Random quantum circuits transform local noise into global white noise.

