Quantum algorithms for Dynamics Simulation: Hamiltonian Simulation and Linear Differential Equations

Di Fang

Department of Mathematics
Duke Quantum Center
Duke University
IPAM Tutorial, 2023

Outline

(1) Hamiltonian Simulation Problem

- Motivations
- Expected cost

2 Hamiltonian Simulation Algorithms

- Trotterization
- Block-encoding, Truncated Taylor series, Optimal Ham Sim by QSVT

Part 1: Hamiltonian Simulation (time-independent case)

Different Levels of Physics

multiscale physics fig by Prof. Qin Li

Different Levels of Physics

Different Levels of Physics

"the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known."

Paul A. M. Dirac (1929)

Different Levels of Physics

"the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

Paul A. M. Dirac (1929)

Schrödinger equation for Molecular Dynamics

To describe its behaviour: (x : nuclei coordinates, y : electronic coordinates, M : mass of a nucleus, m : mass of an electron.)

$$
\begin{gathered}
\hat{H}_{\text {total }}=-\frac{\hbar^{2}}{2 M} \Delta_{x}-\frac{\hbar^{2}}{2 m} \Delta_{y}+V(x, y), x \in \mathbb{R}^{d}, y \in \mathbb{R}^{n} \\
i \hbar \partial_{t} \psi=\hat{H}_{\text {total }} \psi
\end{gathered}
$$

Quantum Computing 101

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman (1981)

Quantum Computing 101

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman (1981)

Hamiltonian Simulation Problem (original motivation for quantum computers): Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.

Quantum Computing 101

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman (1981)

Hamiltonian Simulation Problem (original motivation for quantum computers): Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.

$$
\mathrm{i} \partial_{t}|\psi(t)\rangle=H(t)|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle .
$$

To simulate $\mathcal{T} e^{-\mathrm{i}} \int_{0}^{t} H(s) d s$ for H of very high dimension!

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.

Time-independent: $H(t) \equiv H$ is a $2^{n} \times 2^{n}$ matrix

$$
\mathrm{i} \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle .
$$

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.

Time-independent: $H(t) \equiv H$ is a $2^{n} \times 2^{n}$ matrix

$$
\begin{aligned}
& \mathrm{i} \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle . \\
& \| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle \|
\end{aligned}
$$

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.
Time-independent: $H(t) \equiv H$ is a $2^{n} \times 2^{n}$ matrix

$$
\begin{gathered}
\mathrm{i} \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle . \\
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
\end{gathered}
$$

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.
Time-independent: $H(t) \equiv H$ is a $2^{n} \times 2^{n}$ matrix

$$
\begin{gathered}
\mathrm{i} \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle . \\
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
\end{gathered}
$$

Hamiltonian Simulation

Hamiltonian Simulation Problem: Given a description of the Hamiltonian $H(t)$, an evolution time t and an initial state $|\psi(0)\rangle$, to produce the final state $|\psi(t)\rangle$ within in some error tolerance ϵ.
Time-independent: $H(t) \equiv H$ is a $2^{n} \times 2^{n}$ matrix

$$
\begin{gathered}
\mathrm{i} \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle, \quad|\psi(0)\rangle=\left|\psi_{0}\right\rangle . \\
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
\end{gathered}
$$

Examples of H : many-body Hamiltonian

$$
H=\sum_{E \in S \subset\{I, X, Y, Z\}^{\otimes n}} \lambda_{E} E,
$$

k-local Hamiltonian (TFIM, Heisenberg models, etc), etc.

Error Metrics: Specific case v.s. Worst case

- Taking into account initial conditions: consider vector norm, instead of operator norm.

$$
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
$$

Error Metrics: Specific case v.s. Worst case

- Taking into account initial conditions: consider vector norm, instead of operator norm.

$$
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
$$

- Taking into account the observable: consider observable error bounds. $\|O\| \leq 1$

$$
\begin{aligned}
& \left\|\mathcal{U}_{\mathrm{app}}^{\dagger} O \mathcal{U}_{\mathrm{app}}-e^{i H t} O e^{-\mathrm{i} H t}\right\| \\
= & \left\|\mathcal{U}_{\mathrm{app}}^{\dagger} O \mathcal{U}_{\mathrm{app}}-\mathcal{U}_{\mathrm{app}}^{\dagger} O e^{-\mathrm{i} H t}+\mathcal{U}_{\mathrm{app}}^{\dagger} O e^{-\mathrm{i} H t}-e^{i H t} O e^{-\mathrm{i} H t}\right\| \\
\leq & 2\left\|\mathcal{U}_{\mathrm{app}}-e^{-\mathrm{i} H t}\right\| \leq \epsilon
\end{aligned}
$$

Error Metrics: Specific case v.s. Worst case

- Taking into account initial conditions: consider vector norm, instead of operator norm.

$$
\| \mathcal{U}_{\text {app }}\left|\psi_{0}\right\rangle-e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle\|\leq\| \mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t} \| \leq \epsilon .
$$

- Taking into account the observable: consider observable error bounds. $\|O\| \leq 1$

$$
\begin{aligned}
& \left\|\mathcal{U}_{\text {app }}^{\dagger} O \mathcal{U}_{\text {app }}-e^{i H t} O e^{-\mathrm{i} H t}\right\| \\
= & \left\|\mathcal{U}_{\text {app }}^{\dagger} O \mathcal{U}_{\text {app }}-\mathcal{U}_{\text {app }}^{\dagger} O e^{-\mathrm{i} H t}+\mathcal{U}_{\text {app }}^{\dagger} O e^{-\mathrm{i} H t}-e^{i H t} O e^{-\mathrm{i} H t}\right\| \\
\leq & 2\left\|\mathcal{U}_{\text {app }}-e^{-\mathrm{i} H t}\right\| \leq \epsilon
\end{aligned}
$$

- Taking into account both and consider observable expectation $\left.\left|\left\langle\psi_{0}\right| \mathcal{U}_{\text {app }}^{\dagger} O \mathcal{U}_{\text {app }}\right| \psi_{0}\right\rangle-\left\langle\psi_{0}\right| e^{i H t} O e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle \mid$

Specific case v.s. Worst case: Take-away

"Spectrum" of various error measurements:

[^0]
Specific case v.s. Worst case: Take-away

"Spectrum" of various error measurements:

Specific case v.s. Worst case
Taking into account the specific instance, the error (and hence the cost) can be improved. ${ }^{1}$

In this lecture, we only focus on the worst case, i.e. error in the operator norm of unitaries.

[^1]
Expected Complexity?

[^2]
Expected Complexity?

No-fast-forwarding Theorem: (informal)
Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.
${ }^{2}$ [Feymann 1985]

Expected Complexity?

No-fast-forwarding Theorem: (informal)
Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.
Exponential Quantum Advantage (EQA)? (often this is also used to refer superpolynomial speedup)
Criteria to claim EQA:

[^3]
Expected Complexity?

No-fast-forwarding Theorem: (informal)
Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.
Exponential Quantum Advantage (EQA)? (often this is also used to refer superpolynomial speedup)
Criteria to claim EQA:

- There is a QA with quantum complexity \leq poly (n).

[^4]
Expected Complexity?

No-fast-forwarding Theorem: (informal) Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.

Exponential Quantum Advantage (EQA)? (often this is also used to refer superpolynomial speedup)
Criteria to claim EQA:

- There is a QA with quantum complexity $\leq \operatorname{poly}(n)$.
- Classical intractable (A) Best-known Classical Alg. has complexity $\geq e^{\text {poly (n) }}$

[^5]
Expected Complexity?

No-fast-forwarding Theorem: (informal) Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.

Exponential Quantum Advantage (EQA)? (often this is also used to refer superpolynomial speedup)
Criteria to claim EQA:

- There is a QA with quantum complexity $\leq \operatorname{poly}(n)$.
- Classical intractable
(A) Best-known Classical Alg. has complexity $\geq e^{\text {poly (n) }}$
(B) Show that the task is BQP-hard or BQP-complete
(Any Classical Alg. under reasonable complexity conjectures)

[^6]
Expected Complexity?

No-fast-forwarding Theorem: (informal) Simulating Hamiltonian dynamics for time t requires complexity $\Omega(t)$.

Exponential Quantum Advantage (EQA)? (often this is also used to refer superpolynomial speedup)
Criteria to claim EQA:

- There is a QA with quantum complexity $\leq \operatorname{poly}(n)$.
- Classical intractable
(A) Best-known Classical Alg. has complexity $\geq e^{\text {poly (n) }}$
(B) Show that the task is BQP-hard or BQP-complete
(Any Classical Alg. under reasonable complexity conjectures)
Hamiltonian Simulation is BQP-hard.
(Any quantum circuit can be efficiently implemented by the dynamics of a local Hamiltonian. ${ }^{2}$)

[^7]
Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity?

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity? error estimate and circuit implementation

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity? error estimate and circuit implementation

$$
e^{-\mathrm{i} H t}=\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}+\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / L\right)
$$

The number of Trotter steps $L=\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity? error estimate and circuit implementation

$$
e^{-\mathrm{i} H t}=\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}+\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / L\right)
$$

The number of Trotter steps $L=\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity? error estimate and circuit implementation

$$
e^{-\mathrm{i} H t}=\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}+\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / L\right)
$$

The number of Trotter steps $L=\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$

$\Rightarrow \mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$ queries to $e^{-\mathrm{i} H_{1} s}$ and $e^{-\mathrm{i} H_{2} s}$.

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

$$
e^{-\mathrm{i} H t} \approx\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}
$$

Cost/Complexity? error estimate and circuit implementation

$$
e^{-\mathrm{i} H t}=\left(e^{-\mathrm{i} H_{2} t / L} e^{-\mathrm{i} H_{1} t / L}\right)^{L}+\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / L\right)
$$

The number of Trotter steps $L=\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$

$\Rightarrow \mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / \epsilon\right)$ queries to $e^{-\mathrm{i} H_{1} s}$ and $e^{-\mathrm{i} H_{2} s}$.
High order (p-th): query complexity $\mathcal{O}\left(\alpha_{H} t^{1+1 / p} / \epsilon^{1 / p}\right)$. ${ }^{3}$

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

High order (p-th): query complexity $\mathcal{O}\left(\alpha_{H} t^{1+1 / p} / \epsilon^{1 / p}\right)$. ${ }^{3}$

- Everything is unitary! No ancilla needed.
- But it needs $e^{-\mathrm{i} H_{j} s}$ efficiently implementable.

Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

High order (p-th): query complexity $\mathcal{O}\left(\alpha_{H} t^{1+1 / p} / \epsilon^{1 / p}\right)$.

- Everything is unitary! No ancilla needed.
- But it needs $e^{-\mathrm{i} H_{j} s}$ efficiently implementable.
- Post-Trotter, e.g., truncated Taylor series, quantum signal processing (QSP), quantum singular value transformation (QSVT) ${ }^{3}$, etc.

$$
e^{-\mathrm{i} H t} \approx \sum_{k=0}^{K} \frac{(-\mathrm{i} H t)^{k}}{k!}=\sum_{k=0}^{K} \sum_{\ell_{1}, \cdots, \ell_{k}} \frac{(-\mathrm{i} t)^{k}}{k!} H_{\ell_{1}} H_{\ell_{2}} \cdots H_{\ell_{k}}
$$

$$
\text { Upshot: } \Rightarrow \mathcal{O}(t \log (t / \epsilon))
$$

[^8]
Hamiltonian Simulation Algorithms

- Trotterization (= Product Formulae = Time/Operator Splitting) 1st-order Trotter formula (Lie-Trotter) for $H=H_{1}+H_{2}$

High order (p-th): query complexity $\mathcal{O}\left(\alpha_{H} t^{1+1 / p} / \epsilon^{1 / p}\right)$.

- Everything is unitary! No ancilla needed.
- But it needs $e^{-\mathrm{i} H_{j} s}$ efficiently implementable.
- Post-Trotter, e.g., truncated Taylor series, quantum signal processing (QSP), quantum singular value transformation (QSVT) ${ }^{3}$, etc.

$$
e^{-\mathrm{i} H t} \approx \sum_{k=0}^{K} \frac{(-\mathrm{i} H t)^{k}}{k!}=\sum_{k=0}^{K} \sum_{\ell_{1}, \cdots, \ell_{k}} \frac{(-\mathrm{i} t)^{k}}{k!} H_{\ell_{1}} H_{\ell_{2}} \cdots H_{\ell_{k}} .
$$

Upshot: $\Rightarrow \mathcal{O}(t \log (t / \epsilon)) \quad \Rightarrow$ Even better, say, $\mathcal{O}(t+\log (1 / \epsilon))$?

[^9]
Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix.
Idea:

$$
U_{A}=\left(\begin{array}{ll}
A & * \\
* & *
\end{array}\right) \quad \rightarrow \text { ancilla qubits }
$$

Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix. $\|A\| \leq \alpha$ Idea:

$$
U_{A}=\left(\begin{array}{cc}
\frac{A}{\alpha} & * \\
* & *
\end{array}\right) \quad \rightarrow \text { ancilla qubits }
$$

Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix. $\|A\| \leq \alpha$ Idea:

$$
U_{A}=\left(\begin{array}{cc}
\frac{\tilde{A}}{\alpha} & * \\
* & *
\end{array}\right) \quad \rightarrow m \text { ancilla qubits },
$$

Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix. $\|A\| \leq \alpha$ Idea:

$$
U_{A}=\left(\begin{array}{cc}
\frac{\tilde{A}}{\alpha} & * \\
* & *
\end{array}\right) \quad \rightarrow m \text { ancilla qubits }, ~\|\tilde{A}-A\| \leq \epsilon
$$

Definition (Block-encoding)

U_{A} is an (α, m, ϵ)-block-encoding of A, if

$$
\left\|A-\alpha\left(\left\langle 0^{m}\right| \otimes I_{n}\right) U_{A}\left(\left|0^{m}\right\rangle \otimes I_{n}\right)\right\| \leq \epsilon,
$$

for some $\alpha \geq\|A\|, m>0$ and $\epsilon>0$. Here α is called the subnormalization factor and m is the number of ancilla qubits, and n is the number of system qubits. When $\epsilon=0$, it is also called an (α, m)-block-encoding.

Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix. $\|A\| \leq \alpha$ Idea:

$$
U_{A}=\left(\begin{array}{cc}
\frac{\tilde{A}}{\alpha} & * \\
* & *
\end{array}\right) \quad \rightarrow m \text { ancilla qubits }, ~\|\tilde{A}-A\| \leq \epsilon
$$

Definition (Block-encoding)

U_{A} is an (α, m, ϵ)-block-encoding of A, if

$$
\left\|A-\alpha\left(\left\langle 0^{m}\right| \otimes I_{n}\right) U_{A}\left(\left|0^{m}\right\rangle \otimes I_{n}\right)\right\| \leq \epsilon,
$$

for some $\alpha \geq\|A\|, m>0$ and $\epsilon>0$. Here α is called the subnormalization factor and m is the number of ancilla qubits, and n is the number of system qubits. When $\epsilon=0$, it is also called an (α, m)-block-encoding.

Understanding: $U_{A}: 2^{m+n} \times 2^{m+n}$.

Block-Encoding - Definition

Let A be a general $2^{n} \times 2^{n}$ matrix. $\|A\| \leq \alpha$ Idea:

$$
U_{A}=\left(\begin{array}{cc}
\frac{\tilde{A}}{\alpha} & * \\
* & *
\end{array}\right) \quad \rightarrow m \text { ancilla qubits }, ~\|\tilde{A}-A\| \leq \epsilon
$$

Definition (Block-encoding)

U_{A} is an (α, m, ϵ)-block-encoding of A, if

$$
\left\|A-\alpha\left(\left\langle 0^{m}\right| \otimes I_{n}\right) U_{A}\left(\left|0^{m}\right\rangle \otimes I_{n}\right)\right\| \leq \epsilon,
$$

for some $\alpha \geq\|A\|, m>0$ and $\epsilon>0$.

Block-Encoding - Definition cont'd

$$
\begin{aligned}
& \left|0^{m}\right\rangle-\frac{A|\psi\rangle}{\| A|\psi\rangle \|} \text { (upon getting } 0 \text { in measurement) } \\
& |\psi\rangle-\binom{|\psi\rangle}{ 0}, \quad U_{A}|0, \psi\rangle=\left(\begin{array}{cc}
\frac{\tilde{A}}{\alpha} & * \\
* & *
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{\tilde{A}|\psi\rangle}{ *} .
\end{aligned}
$$

Block-Encoding - Definition cont'd

$$
|0, \psi\rangle=|0\rangle \otimes|\psi\rangle=\binom{|\psi\rangle}{ 0}, \quad U_{A}|0, \psi\rangle=\left(\begin{array}{cc}
\tilde{A} & * \\
\alpha & * \\
* & *
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{\tilde{A}|\psi\rangle}{ *} .
$$

Question: Well-defined? Not an empty set?

Block-Encoding - Definition cont'd

Question: Well-defined? Not an empty set?

- Trivial example (unitary): U is a $(1,0,0)$-block-encoding of U.

Block-Encoding - Definition cont'd

$$
|0, \psi\rangle=|0\rangle \otimes|\psi\rangle=\binom{|\psi\rangle}{ 0}, \quad U_{A}|0, \psi\rangle=\left(\begin{array}{cc}
\tilde{A} & * \\
\alpha & *
\end{array}\right)\binom{|\psi\rangle}{ 0}=\binom{\tilde{A}|\psi\rangle}{ *} .
$$

Question: Well-defined? Not an empty set?

- Trivial example (unitary): U is a $(1,0,0)$-block-encoding of U.
- ($\alpha, 1$)-block-encoding is general. WLOG, assume $\|A\| \leq 1$.

Block-Encoding - Definition cont'd

Question: Well-defined? Not an empty set?

- Trivial example (unitary): U is a $(1,0,0)$-block-encoding of U.
- ($\alpha, 1$)-block-encoding is general. WLOG, assume $\|A\| \leq 1$. Proof: $A=W \Sigma V^{\dagger}$. All singular values $\in[0,1]$.

Block-Encoding - Definition cont'd

Question: Well-defined? Not an empty set?

- Trivial example (unitary): U is a $(1,0,0)$-block-encoding of U.
- ($\alpha, 1$)-block-encoding is general. WLOG, assume $\|A\| \leq 1$.

Proof: $A=W \Sigma V^{\dagger}$. All singular values $\in[0,1]$.

$$
\begin{aligned}
U_{A} & :=\left(\begin{array}{cc}
W & 0 \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
\Sigma & \sqrt{I_{n}-\Sigma^{2}} \\
\sqrt{I_{n}-\Sigma^{2}} & -\Sigma
\end{array}\right)\left(\begin{array}{cc}
V^{\dagger} & 0 \\
0 & I_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & W \sqrt{I_{n}-\Sigma^{2}} \\
\sqrt{I_{n}-\Sigma^{2}} V^{\dagger} & -\Sigma
\end{array}\right)
\end{aligned}
$$

References: Lecture notes by Lin Lin, QSVT [Gilyen-Su-Low-Wiebe 2018/2019], see also QSP [Low-Chuang 2017], qubitization [Low-Chuang 2016]

Sparse Input Model

Question: Efficient to construct?

[Gilyen-Su-Low-Wiebe 2018], see also [Berry-Childs 2012], [Low-Chuang 2017]

Sparse Input Model

Question: Efficient to construct?
Upshot: sparse matrix (Hamiltonian) is ok!

Sparse Input Model

Question: Efficient to construct?

Upshot: sparse matrix (Hamiltonian) is ok!
We assume that H is a s-sparse matrix with $\|H\|_{\max } \leq 1$. The information of H is given through the following oracles:

$$
\begin{align*}
& U_{\text {row }}|j, s\rangle=|j, \operatorname{row}(j, s)\rangle, \\
& U_{\text {col }}|j, s\rangle=|j, \operatorname{col}(j, s)\rangle \tag{1}\\
& U_{\text {val }}|j, k, z\rangle=\left|j, k, z \oplus H_{j k}(t)\right\rangle .
\end{align*}
$$

Here $\operatorname{row}(j, s)$ is the row index of the s th nonzero element in the j th column, $\operatorname{col}(j, s)$ is the column index of the s th nonzero element in the j th row.
A $(s, n+3, \epsilon)$-block-encoding of H can be constructed via $\mathcal{O}(1)$ queries to above oracles and $\mathcal{O}\left(n+\log ^{5 / 2}(s / \epsilon)\right.$ primitive gates.

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A$)

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B$)
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
((BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B$)
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.
Proof:

$$
\begin{aligned}
& \left\|A B-\alpha \beta\left(\left\langle\left. 0\right|^{\otimes a+b} \otimes I\right)\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)\left(|0\rangle^{\otimes a+b} \otimes I\right) \|\right.\right. \\
= & \|A B-\underbrace{\alpha\left(\left\langle\left. 0\right|^{\otimes a} \otimes I\right) U_{A}(|0\rangle\rangle^{\otimes a} \otimes I\right)}_{\tilde{A}} \underbrace{\beta\left(\left\langle\left. 0\right|^{\otimes b} \otimes I\right) U_{B}\left(|0\rangle^{\otimes b} \otimes I\right)\right.}_{\tilde{B}}\|
\end{aligned}
$$

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ)-BE of B
(2) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B$)
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.
Proof:

$$
\begin{aligned}
& \left\|A B-\alpha \beta\left(\left\langle\left. 0\right|^{\otimes a+b} \otimes I\right)\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)\left(|0\rangle^{\otimes a+b} \otimes I\right) \|\right.\right. \\
= & \|A B-\underbrace{\alpha\left(\left\langle\left. 0\right|^{\otimes a} \otimes I\right) U_{A}\left(|0\rangle^{\otimes a} \otimes I\right)\right.}_{\tilde{A}} \underbrace{\beta\left(\left\langle\left. 0\right|^{\otimes b} \otimes I\right) U_{B}\left(|0\rangle^{\otimes b} \otimes I\right)\right.}_{\tilde{B}}\| \\
= & \|A B-\tilde{A} B+\tilde{A} B-\tilde{A} \tilde{B}\|=\|(A-\tilde{A}) B+\tilde{A}(B-\tilde{B})\|
\end{aligned}
$$

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B$)
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.
Proof:

$$
\begin{aligned}
& \left\|A B-\alpha \beta\left(\left\langle\left. 0\right|^{\otimes a+b} \otimes I\right)\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)\left(|0\rangle^{\otimes a+b} \otimes I\right) \|\right.\right. \\
= & \|A B-\underbrace{\alpha\left(\left\langle\left. 0\right|^{\otimes a} \otimes I\right) U_{A}\left(|0\rangle^{\otimes a} \otimes I\right)\right.}_{\tilde{A}} \underbrace{\beta\left(\left\langle\left. 0\right|^{\otimes b} \otimes I\right) U_{B}\left(|0\rangle^{\otimes b} \otimes I\right)\right.}_{\tilde{B}}\| \\
= & \|A B-\tilde{A} B+\tilde{A} B-\tilde{A} \tilde{B}\|=\|(A-\tilde{A}) B+\tilde{A}(B-\tilde{B})\| \\
\leq & \alpha \delta+\beta \epsilon .
\end{aligned}
$$

Block-Encoding - Properties

Properties: Let U_{A} be an (α, a, ϵ) - BE of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B)$

$$
W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right) \text { is an }(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE} \text { of } A B .
$$

(3) (BE of $A+B$)

Block-Encoding - Properties

Properties: Let U_{A} be an (α, a, ϵ) - BE of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B)$
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.
(3) (BE of $A+B) U_{A}:(1, m, \epsilon)-\mathrm{BE}$ of $A ; U_{B}:(1, m, \delta)-\mathrm{BE}$ of B

Block-Encoding - Properties

Properties: Let U_{A} be an (α, a, ϵ) - BE of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B$)

$$
W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right) \text { is an }(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE} \text { of } A B .
$$

(3) (BE of $A+B) U_{A}:(1, m, \epsilon)$-BE of $A ; U_{B}:(1, m, \delta)$-BE of B The following circuit constructs a $(2, m, \delta+\epsilon)-\mathrm{BE}$ of $A+B$.

Block-Encoding - Properties

Properties: Let U_{A} be an $(\alpha, a, \epsilon)-\mathrm{BE}$ of $A ; U_{B}$ be a (β, b, δ) - BE of B
(1) (BE of $c A) U_{A}$ is an $(c \alpha, a, c \epsilon)-\mathrm{BE}$ of $c A$.
(2) (BE of $A B)$
$W=\left(I_{b} \otimes U_{A}\right)\left(I_{a} \otimes U_{B}\right)$ is an $(\alpha \beta, a+b, \alpha \delta+\beta \epsilon)-\mathrm{BE}$ of $A B$.
(3) (BE of $A+B) U_{A}:(1, m, \epsilon)$-BE of $A ; U_{B}:(1, m, \delta)-\mathrm{BE}$ of B The following circuit constructs a $(2, m, \delta+\epsilon)-\mathrm{BE}$ of $A+B$.

More generally, linear combination of block-encodings can be constructed via Linear Combination of Unitaries (LCU) Lemma.

LCU Lemma

LCU Lemma: $T=\sum_{j \in[L]} c_{j} U_{j}$ for unitaries $U_{j} .\|c\|_{1}=\sum_{j \in[L]}\left|c_{j}\right|$.

LCU Lemma

LCU Lemma: $T=\sum_{j \in[L]} c_{j} U_{j}$ for unitaries $U_{j} .\|c\|_{1}=\sum_{j \in[L]}\left|c_{j}\right|$.
One can get a $\left(\|c\|_{1},\left\lceil\log _{2} L\right\rceil\right)$-block-encoding by:

- SEL $:=\sum_{j \in[L]}|j\rangle\langle j| \otimes U_{j}$
$-\operatorname{PREP}|0\rangle=\frac{1}{\sqrt{\|c\|_{1}}} \sum_{j \in[L]} \sqrt{c_{j}}|j\rangle$.

LCU [Berry-Childs-Kothari 2015], General LCBE [Gilyen-Su-Low-Wiebe 2018]

LCU Lemma

LCU Lemma: $T=\sum_{j \in[L]} c_{j} U_{j}$ for unitaries $U_{j} .\|c\|_{1}=\sum_{j \in[L]}\left|c_{j}\right|$.
One can get a $\left(\|c\|_{1},\left\lceil\log _{2} L\right\rceil\right)$-block-encoding by:

- SEL $:=\sum_{j \in[L]}|j\rangle\langle j| \otimes U_{j}$
$-\operatorname{PREP}|0\rangle=\frac{1}{\sqrt{\|c\|_{1}}} \sum_{j \in[L]} \sqrt{c_{j}}|j\rangle$.

General LCBE: $\max _{j} m_{j}+\left\lceil\log _{2} L\right\rceil$ ancillas

LCU [Berry-Childs-Kothari 2015], General LCBE [Gilyen-Su-Low-Wiebe 2018]

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can BE poly (A)

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can $\operatorname{BE} \operatorname{poly}(A)$
\Rightarrow We can BE $f(A)$. Super Powerful!!!

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can BE poly (A)
\Rightarrow We can BE $f(A)$. Super Powerful!!!
e.g., $e^{-i H t}$ Hamiltonian Simulation, $e^{-\beta H}$ Gibbs distribution, A^{-1} matrix inversion, etc.

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can $\operatorname{BE} \operatorname{poly}(A)$
\Rightarrow We can BE $f(A)$. Super Powerful!!!
e.g., $e^{-i H t}$ Hamiltonian Simulation, $e^{-\beta H}$ Gibbs distribution, A^{-1} matrix inversion, etc.
Truncated Taylor Series $\|H\| \leq \alpha$.

$$
e^{-\mathrm{i} H \Delta t} \approx \sum_{k=0}^{K} \frac{(-\mathrm{i} H \Delta t)^{k}}{k!}=\sum_{k=0}^{K} \sum_{\ell_{1}, \cdots, \ell_{k}} \frac{(-\mathrm{i} \Delta t)^{k}}{k!} H_{\ell_{1}} H_{\ell_{2}} \cdots H_{\ell_{k}} .
$$

Number of time steps $L=t / \Delta t=\mathcal{O}(\alpha t) ; K=\mathcal{O}\left(\frac{\log (t / \epsilon)}{\log \log (t / \epsilon)}\right)$
\Rightarrow Query Complexity: $\mathcal{O}\left(\alpha t \frac{\log (t / \epsilon)}{\log \log (t / \epsilon)}\right)$.

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can $\operatorname{BE} \operatorname{poly}(A)$
\Rightarrow We can BE $f(A)$. Super Powerful!!!
e.g., $e^{-i H t}$ Hamiltonian Simulation, $e^{-\beta H}$ Gibbs distribution, A^{-1} matrix inversion, etc.
Truncated Taylor Series $\|H\| \leq \alpha$.

$$
e^{-\mathrm{i} H \Delta t} \approx \sum_{k=0}^{K} \frac{(-\mathrm{i} H \Delta t)^{k}}{k!}=\sum_{k=0}^{K} \sum_{\ell_{1}, \cdots, \ell_{k}} \frac{(-\mathrm{i} \Delta t)^{k}}{k!} H_{\ell_{1}} H_{\ell_{2}} \cdots H_{\ell_{k}} .
$$

Number of time steps $L=t / \Delta t=\mathcal{O}(\alpha t) ; K=\mathcal{O}\left(\frac{\log (t / \epsilon)}{\log \log (t / \epsilon)}\right)$
\Rightarrow Query Complexity: $\mathcal{O}\left(\alpha t \frac{\log (t / \epsilon)}{\log \log (t / \epsilon)}\right)$.
But $A+A^{2}+\cdots+A^{d}$
Number of ancillas: $m ; 2 m ; \cdots ; d m \Rightarrow d m+\log (d)$ HUGE!
Question: Can we do better?

Matrix Function and Truncated Taylor series

We can " + " and " \times " \Rightarrow we can BE poly (A)
\Rightarrow We can BE $f(A)$. Super Powerful!!!
e.g., $e^{-i H t}$ Hamiltonian Simulation, $e^{-\beta H}$ Gibbs distribution, A^{-1} matrix inversion, etc.

But $A+A^{2}+\cdots+A^{d}$
Number of ancillas: $m ; 2 m ; \cdots ; d m \Rightarrow d m+\log (d)$ HUGE!
Question: Can we do better? Yes! 1 additional ancilla is sufficient!
Quantum Singular Value Transformation (QSVT) / Quantum Signal Processing (QSP)

QSVT

$$
A=W \Sigma V^{\dagger} \quad f^{\diamond}(A):=W f(\Sigma) V^{\dagger} \text { Generalized Matrix Function }
$$

QSVT

$A=W \Sigma V^{\dagger} \quad f^{\diamond}(A):=W f(\Sigma) V^{\dagger}$ Generalized Matrix Function
Theorem (QSVT with odd real polynomial)
Let U_{A} be a $(1, m)$-block-encoding of $A \in \mathbb{C}^{2^{n} \times 2^{n}}$. Given an odd polynomial $P_{\Re}(x) \in \mathbb{R}[x]$ of odd degree d satisfying

$$
\left|P_{\Re}(x)\right| \leqslant 1, \forall x \in[-1,1] .
$$

We can find a sequence of phase factors $\Phi \in \mathbb{R}^{d+1}$ and construct a $(1, m+1)$-block-encoding of $P_{\Re}^{\diamond}(A)$ that uses U_{A}, U_{A}^{\dagger}, m-qubit controlled NOT, and single qubit rotation gates for $\mathcal{O}(d)$ times.

QSVT

$$
A=W \Sigma V^{\dagger} \quad f^{\diamond}(A):=W f(\Sigma) V^{\dagger} \text { Generalized Matrix Function }
$$

Theorem (QSVT with odd real polynomial)
Let U_{A} be a $(1, m)$-block-encoding of $A \in \mathbb{C}^{2^{n} \times 2^{n}}$. Given an odd polynomial $P_{\Re}(x) \in \mathbb{R}[x]$ of odd degree d satisfying

$$
\left|P_{\Re}(x)\right| \leqslant 1, \forall x \in[-1,1] .
$$

We can find a sequence of phase factors $\Phi \in \mathbb{R}^{d+1}$ and construct a $(1, m+1)$-block-encoding of $P_{\Re}^{\diamond}(A)$ that uses U_{A}, U_{A}^{\dagger}, m-qubit controlled NOT, and single qubit rotation gates for $\mathcal{O}(d)$ times.

QSVT (Hermitian matrix + arbitary parity)

Theorem (QSVT for Polynomial eigenvalue transformation)
Let U_{A} be a (α, m, ϵ)-block-encoding of a Hermitian matrix $A \in \mathbb{C}^{2^{n} \times 2^{n}}$. Given a d-degree polynomial $P_{\Re}(x) \in \mathbb{R}[x]$ satisfying

$$
\left|P_{\Re}(x)\right| \leqslant 1 / 2, \forall x \in[-1,1] .
$$

Then for $\delta \geq 0$, there is a quantum circuit that constructs a $(1, m+2,4 d \sqrt{\epsilon / \alpha}+\delta)$-block-encoding of $P_{\Re}^{\diamond}(A / \alpha)$ that uses a single application of controlled- U_{A}, and d applications of U_{A}, U_{A}^{\dagger}, and $\mathcal{O}((m+1) d)$ other one- and two-qubit gates.

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- $e^{i H t}=e^{i \frac{H}{\alpha} \alpha t}$. WLOG, assume $\alpha=1$.

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- $e^{i H t}=e^{i \frac{H}{\alpha} \alpha t}$. WLOG, assume $\alpha=1$. $e^{i t x}=\cos (t x)+i \sin (t x)$

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- $e^{i H t}=e^{i \frac{H}{\alpha} \alpha t}$. WLOG, assume $\alpha=1$. $e^{i t x}=\cos (t x)+i \sin (t x)$
- Jacobi-Anger expansion on $[-1,1]$:

$$
\begin{aligned}
& \cos (t x)=J_{0}(t)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(t) T_{2 k}(x), \\
& \sin (t x)=2 \sum_{k=0}^{\infty}(-1)^{k} J_{2 k+1}(t) T_{2 k+1}(x) .
\end{aligned}
$$

$J_{\nu}(t)$ denotes Bessel functions of the first kind.

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- $e^{i H t}=e^{i \frac{H}{\alpha} \alpha t}$. WLOG, assume $\alpha=1$. $e^{i t x}=\cos (t x)+i \sin (t x)$
- Jacobi-Anger expansion on $[-1,1]$:

$$
\begin{aligned}
& \cos (t x)=J_{0}(t)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(t) T_{2 k}(x), \\
& \sin (t x)=2 \sum_{k=0}^{\infty}(-1)^{k} J_{2 k+1}(t) T_{2 k+1}(x) .
\end{aligned}
$$

- This series converges rapidly. Truncating it with

$$
r=\Theta\left(t+\frac{\log (1 / \epsilon)}{\log (e+\log (1 / \epsilon) / t)}\right)
$$

terms gives a polynomial approximation (with precision ϵ and degree $2 r+1$) of $\cos (t x)+i \sin (t x)=e^{i t x}$.

Optimal Hamiltonian Simulation by QSVT

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- $e^{i H t}=e^{i \frac{H}{\alpha} \alpha t}$. WLOG, assume $\alpha=1$. $e^{i t x}=\cos (t x)+i \sin (t x)$

Query Complexity: $(\alpha \geq\|H\|$.)

$$
\mathcal{O}\left(\alpha t+\frac{\log (1 / \epsilon)}{\log (e+\log (1 / \epsilon) /(\alpha t))}\right) .
$$

Optimal Hamiltonian Simulation by QSVT cont'd

Given U_{H} : an ($\alpha, m, 0$)-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- We now have block-encodings of both $\cos (t H)$ and $i \sin (t H)$ and use LCU.

[^10]
Optimal Hamiltonian Simulation by QSVT cont'd

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- We now have block-encodings of both $\cos (t H)$ and $i \sin (t H)$ and use LCU. Or equivalently, directly use QSVT for polynomial eigenvalue transformation with arbitrary parity. We have a $(1, m+2, \epsilon / 6)$ of $e^{i t H} / 2$.

[^11]
Optimal Hamiltonian Simulation by QSVT cont'd

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- We now have block-encodings of both $\cos (t H)$ and $i \sin (t H)$ and use LCU. Or equivalently, directly use QSVT for polynomial eigenvalue transformation with arbitrary parity. We have a $(1, m+2, \epsilon / 6)$ of $e^{i t H} / 2$.
- Last step: We want to turn $e^{i t H} / 2$ to $e^{i t H}$.

[^12]
Optimal Hamiltonian Simulation by QSVT cont'd

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- We now have block-encodings of both $\cos (t H)$ and $i \sin (t H)$ and use LCU. Or equivalently, directly use QSVT for polynomial eigenvalue transformation with arbitrary parity. We have a $(1, m+2, \epsilon / 6)$ of $e^{i t H} / 2$.
- Last step: We want to turn $e^{i t H} / 2$ to $e^{i t H}$. Notice this can be done by QSVT with $P(x)=3 x-4 x^{3}$.

[^13]
Optimal Hamiltonian Simulation by QSVT cont'd

Given U_{H} : an $(\alpha, m, 0)$-block-encoding of H.
Goal: an algorithm that makes $\mathcal{O}(t+\log (1 / \epsilon))$ queries to U_{H}.

- We now have block-encodings of both $\cos (t H)$ and $i \sin (t H)$ and use LCU. Or equivalently, directly use QSVT for polynomial eigenvalue transformation with arbitrary parity. We have a $(1, m+2, \epsilon / 6)$ of $e^{i t H} / 2$.
- Last step: We want to turn $e^{i t H} / 2$ to $e^{i t H}$. Notice this can be done by QSVT with $P(x)=3 x-4 x^{3}$.
Oblivious Amplitude Amplification (OAA) ${ }^{4}$
Given a block-encoding U_{A} of A (and A is close to unitary):
$A=\alpha\left(\left\langle\left. 0\right|_{m} \otimes I_{n}\right) U_{A}\left(|0\rangle_{s} \otimes I_{n}\right)\right.$. Define $R:=I_{m}-2|0\rangle_{m}\left\langle\left. 0\right|_{m}\right.$ and

$$
W=-U_{A}\left(R \otimes I_{n}\right) U_{A}^{\dagger}\left(R \otimes I_{n}\right) U_{A}
$$

$$
\left(\left\langle\left. 0\right|_{m} \otimes I_{n}\right) W\left(|0\rangle_{m} \otimes I_{n}\right)=\frac{3}{\alpha} A-\frac{4}{\alpha^{3}} A A^{\dagger} A \approx\left(\frac{3}{\alpha}-\frac{4}{\alpha^{3}}\right) A .\right.
$$

[^14]
Summary of Hamiltonian Simulation

- Hamiltonian simulation: motivation; set-up
- Expected cost: No-fast-forwarding theorem and BQP-hardness
- Algorithms
- Trotterization
- Revisit of Block-encoding; truncated Taylor series
- Optimal Hamiltonian Simulation via QSVT

Summary of time-independent Ham Sim cont'd

- Trotterization:

1st-order Trotter formula

$$
e^{-\mathrm{i} H t}=\left(e^{-\mathrm{i} H_{1} t / L} e^{-\mathrm{i} H_{2} t / L}\right)^{L}+\mathcal{O}\left(\left\|\left[H_{1}, H_{2}\right]\right\| t^{2} / L\right)
$$

High order $\left(p\right.$-th): $\mathcal{O}\left(\|\right.$ Comm $\left.\|^{1 / p} \frac{t^{1+1 / p}}{\epsilon^{1 / p}}\right)$
Randomized product formula, e.g., qDRIFT: $\mathcal{O}\left(\alpha^{2} t^{2} / \epsilon\right)$.
(weak convergence wrt the diamond norm of Quantum channels)

- LCU, e.g. Truncated Taylor series:

$$
\mathcal{O}\left(\alpha t \frac{\log (t / \epsilon)}{\log \log (t / \epsilon)}\right)
$$

- QSP/QSVT: $\mathcal{O}\left(\alpha t+\frac{\log (1 / \epsilon)}{\log (e+\log (1 / \epsilon) /(\alpha t))}\right)$

Helpful References

- Lecture notes on Quantum Algorithms for Scientific Computations by Lin Lin (UC Berkeley) [arXiv:2201.08309]
- Lecture notes on Quantum Algorithms by Andrew Childs (U Maryland)
- A. Gilyen, Y. Su, G.H. Low, N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, [arXiv 1806.01838]

Thank you for your attention!

[^0]: ${ }^{1}$ The cost can be improved for product formulas.

[^1]: ${ }^{1}$ The cost can be improved for product formulas.

[^2]: ${ }^{2}$ [Feymann 1985]

[^3]: ${ }^{2}$ [Feymann 1985]

[^4]: ${ }^{2}$ [Feymann 1985]

[^5]: ${ }^{2}$ [Feymann 1985]

[^6]: ${ }^{2}$ [Feymann 1985]

[^7]: ${ }^{2}$ [Feymann 1985]

[^8]: $3_{\text {truncated Taylor [Berry-Childs-Cleve-Kothari-Somma 2015], QSP/QSVT [Low-Chuang } 2016 \text { and 2017], [Gilyen-Su-Low-Wiebe 2019] }}$

[^9]: $3_{\text {truncated Taylor [Berry-Childs-Cleve-Kothari-Somma 2015], QSP/QSVT [Low-Chuang } 2016 \text { and 2017], [Gilyen-Su-Low-Wiebe 2019] }}$

[^10]: 4 [Berry-Childs-Cleve-Kothari-Somma 2014/2015]

[^11]: 4 [Berry-Childs-Cleve-Kothari-Somma 2014/2015]

[^12]: 4 [Berry-Childs-Cleve-Kothari-Somma 2014/2015]

[^13]: 4 [Berry-Childs-Cleve-Kothari-Somma 2014/2015]

[^14]: ${ }^{4}$ [Berry-Childs-Cleve-Kothari-Somma 2014/2015]

