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From computational neuroscience → 
computational psychiatry . . .
Psychiatry has fundamental problems in defining and diagnosing mental 
disorders/illness, partly due to obvious difficulties in measuring origins of symptoms 
(brain is largely inaccessible). 

In order to better understand, diagnose, and treat mental disorders, 
clinicians/scientists should leverage insights gained from the integrative 
methodologies used in computational and experimental neuroscience.

However, computational neuroscience is a complex field, taking years of training. . .

To allow computational neuroscience and psychiatry to make the largest impact, 
new computational/algorithmic tools are needed that integrate multiscale brain 
dynamics and behavior, and allow scientists to rapidly test their hypotheses on the 
neural origins of mental disorders.

(Images from Wikipedia)



Outline: modeling tools (solutions) & 
modeling case studies

1. Build open-source modeling tools (Human Neocortical Neurosolver: HNN) to 
help researchers understand circuit level origins of human brain dynamics 
(EEG/MEG) 

2. Use auditory thalamocortical models to link functionally relevant brain rhythms 
in non-human primate to human electrophysiological data

3. Use hippocampal network models to study schizophrenia
4. Use multi-scale models of primary motor cortex to study neocortical 

hyperexcitability and its pharmacological treatments
5. Use models of sensory/motor cortex to understand learning/behavior → 

beyond deep learning?



1. Problem in human neuroscience
●Question: How do we link human macroscopic, noninvasively measured 

MEG/EEG signals to their underlying cell/circuit-level generators?

●Data: Source localized human MEG/EEG current dipole signals

●Model: Biophysical circuit models of the thalamocortical system that 
generate current dipole signals directly comparable to experimental data

●Result: New open-source modeling tool allowing clinicians/researchers 
to import their data and use the model to simulate commonly observed 
patterns (event-related potentials, low frequency rhythms), enabling 
hypothesis testing of circuit-level generators of the observed patterns

Neymotin et al., eLife 2020



New open-source modeling tool: Human 
Neocortical Neurosolver (HNN)
●Use biophysical thalamocortical models to test hypotheses on cell/circuit-level origins of 

human neural dynamics in health & disease
●Imports Human MEG/EEG data for model comparison/fitting

●https://hnn.brown.edu includes background, tutorials, documentation, publications (eLife)
●HNN workshops/presentations at Computational Psychiatry 

(http://computationalpsychiatry.org/cp18/), Cutting EEG, and SFN meetings, ...

https://hnn.brown.edu
http://computationalpsychiatry.org/cp18/


The HNN model simulates the primary 
currents contributing to MEG/EEG

Cortical Column



HNN’s laminar neocortical 
microcircuit model

Layered cortical network of 
pyramidal neurons and interneurons 

Individual neurons are 
compartmental models using parallel 
conductance equations with 
standard Hodgkin-Huxley ion 
channels

Pyramidal neurons generate current 
dipole signal directly comparable to 
source-localized signals obtained 
from MEG/EEG experiments



Activating HNN’s microcircuit model
Proximal drive represents synaptic inputs from thalamic core 

Distal drive represents synaptic inputs from thalamic matrix and 
corticocortical feedback

Each type of drive pushes pyramidal neuron dendrite current flow in 
opposing directions

Local cell/circuit interactions also influence current flow within 
pyramidal neuron dendrites



HNN’s graphical user interface



Low-frequency alpha/beta rhythms widely observed 
in human MEG/EEG signals, altered in disease

Source-localized MEG signals from somatosensory cortex have transient alpha/beta 
events inversely correlated with attention/detection of tactile stimuli; alpha/beta events 
detectable in auditory/visual cortex, with similar function (i.e. inhibition of unattended 
modality: Lakatos et al., Nature Neurosci 2016 )

Low frequency oscillations (delta, theta, alpha, low gamma) are altered in schizophrenia 
(Lisman JAMA Psychiatry 2016; Lakatos et al., J Neurosci 2013; Kopell et al.)



Using HNN to model alpha/beta rhythms
Stochastic 10 Hz rhythmic inputs to 
proximal/distal dendrites in phase 
(antiphase) produce beta (alpha) 
rhythms/events 

Model beta mechanism validated with 
invasive laminar electrode array recordings 
(Sherman et al., PNAS 2016)

Use the software to investigate origins of 
rhythms, how circuit alterations lead to 
reduced/enhanced ability to respond to 
stimuli in health and in disease

Next: use invasive laminar electrode array 
(LFP/CSD/MUA) data from nonhuman 
primates to optimize/validate models and 
investigate auditory/speech processing



2. Integrating electrophysiology in nonhuman primates 
(NHP) during auditory stimulus/speech processing with 
computer modeling
Question: How does thalamocortical circuitry generate 
and potentially use oscillations to support auditory & 
speech processing? Why does the circuitry fail to 
properly entrain to stimuli in neuropsychiatric 
disorders?

Data: Multi-area/multilaminar ephys data (thalamus, 
A1, V1) at multiple scales (single-unit, multi-unit, LFP, 
CSD, ECoG) from Lakatos lab @ NKI; human iEEG 
data from S. Bickel (Northwell)

Model: Detailed biophysical thalamocortical system 
circuits

Result: Model generates LFP/CSD comparable to 
experiment, allowing prediction on circuit generators, 
mechanisms, and neuromodulation targets



At rest: complex temporal pattern of oscillations

Using the data (Lakatos lab) to optimize 
the model



Integrating NHP electrophysiology during 
auditory processing with modeling

1. Determine mechanisms supporting flexible 
oscillations needed to track rhythmic auditory 
stimuli (speech). Model determines strengths of 
connectivity between cortex and thalamus, 
suggests ways to increase oscillation flexibility.

2. Determine thalamocortical mechanisms of 

oscillatory phase reset for aligning brain rhythms 
to stimuli, could be used to parse auditory objects. 
Model predicts in vivo neuromodulation strategies 
to improve this process.

3. Determine mechanisms supporting auditory object 
formation, hypothesized to occur through periodic 
inhibition. Model tests how different interneuron 
populations contribute to this process, providing 
additional in vivo neuromodulation strategies.

Different A1 L2/3 ensembles show phase 
synchronization for vowels (< 8 KHz; 
low-frequency tuned) or consonants (> 10 
KHz; high-frequency tuned), which tend to 
occur out-of-phase



Model: neuronal populations
Neurons: multi-compartment, conductance-based.

Excitatory neurons: intratelencephalic (IT), pyramidal tract (PT), spiny stellate (ITS), corticothalamic (CT) and 
MGB thalamocortical (TC).

Inhibitory neurons: somatostatin (SOM), parvalbumin (PV), neurogliaform (NGF), vasoactive intestinal peptide 
(VIP), and thalamic reticular nucleus (RT). 

Geometry: Simplified morphologies. Dendritic lengths sized to match the macaque cortex dimensions.

Model built with NetPyNE platform (https://netpyne.org  Dura-Bernal et al., eLife 2019)

https://netpyne.org


Model Development Challenge: pyramidal neurons 
have unknown spatial distribution of ion channels

●Full spatial channel distribution is unknown, but 
experimental literature indicates certain spatial 
constraints (e.g. HCN density increases distally)

●Requirement: develop detailed models with full 
dendrite reconstruction (~700 compartments) and 
simplified models (6 representative compartments) 
in order to produce accurate circuit dynamics

●Goal: optimize model channel densities (Na, K, Ca, 
HCN) in order to reproduce observed in vitro activity 
from current clamp recordings

●Solution: Use sequential optimization: 1. 
subthreshold fits; 2. firing property fits

Neymotin et al., J Neurophysiology 2016



Model neuron optimization

Cell types in each layer fitted to macaque or 
rodent electrophysiology data via 
multi-objective evolutionary optimization 
algorithm or via hand-tuning. 

Passive parameters (e.g. leak channel, HCN 
channel conductance, capacitance) were 
tuned to fit RMP and other features of 
subthreshold traces, including steady state 
voltage and sag. 

Active parameters (e.g. fast Na, K, Ca, BK 
channel density) were then tuned to fit 
features like firing rate curves, action 
potential shape, and adaptation.

Neymotin et al., J Neurophysiology 2016
�



Model: data-driven circuit connectivity

Experimental circuit mapping data constrains 
model connectivity

E → E/I from mouse V1,S1,A1,M1 (Levy & 
Reyes 2012; Yoshi et al 2015; Billeh et al 
2019; Lefort et al 2009; Allen Brain Institute)

I → E/I from mouse V1,S1,A1,M1 (Sohn et al 
2016; Naka et al 2016; Tremblay et al 2016; 
Pi et al 2013; Pi et al 2013)



Model includes biophysically-detailed 
LFP → comparison with in vivo data

The A1 model 
simulates laminar 
local field potentials, 
and will be used to 
determine the origin 
of different oscillation 
patterns observed in 
the data



Providing auditory stimuli to the model
Pathway: sound wave → cochlea →  inferior colliculus (IC) → MGB → A1

Full pathway allows comparison of NHP and model data to determine circuit mechanisms 
supporting sound/speech processing

← UR Ear (Laurel Carney Lab)
�



Biophysical thalamocortical system model to 
predict origin of different oscillations

Model: thalamic core/matrix interconnected 
bidirectionally with neocortex → creates 
oscillations

Neocortical neurons (pyramidal neurons, 
stellate cells, PV/SOM/VIP/NGF 
interneurons) arranged in 6 cortical layers; 
thalamic neurons arranged in thalamic 
nuclei (reticular, relay)

Model simulates laminar LFP, CSD, MUA 
comparable to experimental data

Short/long inhibition produces the different 
oscillation frequencies observed; we will 
use the model to test origin of NHP data 
and provide neuromodulation predictions 
to enhance auditory processing

Next: using biophysical neural circuit 
models to investigate origins and 
treatments for neuropsychiatric disease



3. Hippocampal network model to
study neuropsychiatric disorders

Background: A mutation in the HCN1 gene (5p21) is near one of 108 loci implicated 
in schizophrenia (Schizophrenia Working Group, Nature 2014). Another mutation is in 
the GRIN2A gene (glutamate ionotropic NMDAR subunit 2A on 16p13), a subunit that 
forms part of the ionotropic NMDA-type glutamatergic receptor (NMDAR). The 
psychomimetic ketamine (NMDAR antagonist) is used to model the disorder. 

Question: NMDAR & HCN channel changes are implicated in schizophrenia. How do 
these alterations impact hippocampal dynamics & information processing? Can we 
use biophysical circuit models to predict effects of gene/circuit alterations contributing 
to the disorder, & match experimental observations?

Data: Hippocampal oscillations in mouse in vivo show less theta, more gamma after 
ketamine; human gamma/other oscillatory alterations in schizophrenia

Model: Hippocampal CA3 circuit; ketamine simulated by setting NMDA receptor 
conductance to zero (blockade); NMDA,HCN mutations via conductance change

Result: Model generates realistic oscillations, predicts ketamine’s site of action, 
disease mechanisms, and novel target for therapy.



In vivo: altered hippocampal oscillations 
after applying psychomimetic ketamine

Reduced 
theta

Increased 
gamma

Lazarewicz et al., J Cognitive Neurosci 2010



Hippocampal CA3 circuit model

Model: Circuit-level biophysical model of hippocampal CA3 containing 
interconnected pyramidal neurons, OLM interneurons, basket 
interneurons, medial septum (MS) inputs



CA3 model generates theta/gamma

�                                                             Adapted from J Neurosci 31(32):11733, Fig 2

Neymotin et al., J Neurosci 2011



CA3: looking for ketamine’s site of action

�Adapted from J Neurosci 31(32):11733, Fig 6

Neymotin et al., J Neurosci 2011



Simulated ketamine: reduced theta, 
increased gamma

�                                                                      Adapted from J Neurosci 31(32):11733, Fig 7



Simulated ketamine: reduced theta, 
increased gamma

�                                                                    J Neurosci 31(32):11733, Fig 8

Neymotin et al., J Neurosci 2011



Simulated ketamine: OLM NMDA receptor 
conductance regulates theta/gamma

OLM cell NMDA receptor conductance changes can account for lower 
theta & higher gamma amplitudes seen in schizophrenia (e.g. in ketamine 
models)
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Neymotin et al., Hippocampal Microcircuits, Springer 2018



Simulation predicts that higher HCN density in 
basket cells could also produce higher gamma 
power observed in schizophrenia models

Model HCN mutations by changing HCN 
conductance

Basket interneurons contribute to gamma 
rhythms through periodic inhibition of 
pyramidal neurons and other basket cells

Providing extra depolarization to the 
basket cells through higher HCN density, 
causes heightened basket activity and 
more prominent gamma activation

Basket HCN density does not impact 
theta rhythms

Neymotin et al., Hippocampal Microcircuits, Springer 2018



Treatment: restoring oscillations via 
current injection to OLM cells

Neymotin et al., J Neurosci 2011



Aberrant oscillations → altered function?

�Use transfer entropy to link dynamics/oscillations and function by 
measuring information transferred through the simulated hippocampal 
network

Neymotin et al., J Comp Neurosci 2011; Neymotin et al., J 
Neurosci 2011; Neymotin et al., Hippocampal Microcircuits, 
Springer 2018; Sherif et al., NJP Schizophrenia (under review)



Ketamine: increased gamma reduces network 
responsiveness to outside “world”

Oscillatory power is linked with the level of information processing in the network: 
overly high gamma power produces more stereotyped firing patterns and suggests 
mechanism for hallucinations (loss of responsiveness to external information (outside 
world) and over-reliance on internal information)

Neymotin et al., J Comp Neurosci 2011; Neymotin et al., J Neurosci 2011; 
Neymotin et al., Hippocampal Microcircuits, Springer 2018

decreasing OLM NMDA 
conductance 
(increasing ketamine)



More generally: intermediate excitability and 
synchrony/gamma support optimal information 
throughput

Synchrony/gamma displays 
inverted-U relationship with 
information transfer

Overly weak 
synchrony/gamma associated 
with sparse firing and low 
information throughput (L1)

Overly high synchrony/gamma 
associated with stereotyped 
firing and low information 
throughput (L2)

Intermediate 
synchrony/gamma supports 
optimal throughput (H1,H2)

Sherif et al., NJP Schizophrenia (under review)



Excitability and synchrony impact response 
to driving input and information flow
Low excitability: driving input insufficient to reach threshold and trigger firing, reducing 
information flow from driving input. 

Moderate excitability: pyramidal neurons close to firing threshold → driving input is enough to 
push cells into firing, 

High excitability: pyramidal neurons pushed back-and-forth between synchronized firing with 
little driving input influence relative to internal drive, and synchronized inhibition with little 
input influence due to distance from threshold. 

Sherif et al., NJP Schizophrenia (under review)



Neymotin et al., Frontiers in Pharmacology 2016

4. Multiscale simulations for pharmacological 
treatments of neocortical hyperexcitability 

Question: Can we use multiscale 
models to assist development of 
novel multitarget therapies for 
complex neurological/psychiatric 
disorders?

Data: Mouse primary motor cortex 
(M1) circuit-mapping data; current 
clamp recordings for L5 pyramidals

Model: Multiscale model of M1

Result: Combining model with 
machine learning approach was 
successful in predicting 
pharmacological targets to treat 
hyperexcitability disorders



Family of motor cortex models 
shows three types of dynamics

Model ion channel densities randomly perturbed, creating a family of 
models showing three clusters of distinct dynamics → 1. normal (low 
synchrony), 2. seizure/latch-up (high intermittent synchrony), 3. dystonia 
(high sustained synchrony)

Neymotin et al., Frontiers in Pharmacology 2016



Dystonia & seizure have strong oscillations.
In seizure, many cells are in depolarization blockade.

Neymotin et al., Frontiers in Pharmacology 2016



“Average” treatments won’t work (failure of averaging; blue 
physiological, red pathological)

Average parameters from each class do not produce simulations representative of the class.

The multiple, distinct manifestations of pathology, demonstrate utility of personalized medicine.

Neymotin et al., Drug Discovery Today: Disease Models 2016



Use machine learning + modeling to
determine multitarget polypharmacy

Machine learning approach 
predicts that targeting 
combinations of several 
receptors is a more effective 
treatment option than a 
single target.

The most important 
determinants of 
hyper-excitability were Na, 
K, and Ca channel densities.

Neymotin et al., Frontiers in Pharmacology 2016



5. Sensorimotor learning in 
detailed circuit models

●Questions: Can we model the circuit mechanisms, dynamics, and 
learning that support sensory integration relevant for purposeful 
behavior? How well do realistic biophysical circuit models with 
biologically plausible learning rules perform against commonly used deep 
reinforcement learning algorithms? Can we use the more detailed circuit 
models to better understand in vivo learning mechanisms?

●Data: Electrophysiology, fMRI recorded during sensorimotor learning and 
decision-making experiments

●Model: Spiking neuronal networks of sensory, visual, and motor cortex 
trained using spike-timing dependent reinforcement learning

●Result: Models utilize sensory information to learn appropriate 
behavioral responses



Scaling up to behavior: sensorimotor learning

Neymotin et al., Neural Comput 2013



Trained network reaches target

Neymotin et al., Neural Comput 2013



Learning enhances information transfer

After learning, 
relevant sensory 
information is 
utilized more 
effectively.



Learning produces attractors



Motor cortex/spinal cord model trained to 
control more realistic arm model & robot arm
6-layered neocortical architecture: each layer can perform distinct computations 
(gathering information in input layers, routing/selecting information to send in output 
layers)

Dura-Bernal et al., Front Neurorobotics 2015



Training biophysical circuit models to play games

Video game frames converted to 
topographic inputs that drive 
non-homogenous Poisson process

Visual hierarchy feeds to motor 
population command layers which 
learn to process dynamic sensory 
information to produce behaviors 
maximizing reward

Only using learning rules that are 
considered biologically-plausible



Testing influence of architecture: visual 
hierarchy, recurrent connectivity, and 
top-down influence



Conclusions
●Our software/models enable researchers to predict mechanistic origins and 

functions of neural oscillations and activity patterns through integrating 
modeling with behavioral experiments while performing invasive intracranial 
laminar electrode array recordings in nonhuman primates and noninvasive 
MEG/EEG recordings in humans.

●Oscillatory power was linked with the level of information processing in 
networks: overly high gamma power produced more stereotyped firing patterns 
and may suggest a loss of responsiveness to external information 
(outsideworld), and potentially explains aspects of hallucinations in 
schizophrenia.

●We used our models standalone, and in combination with machine learning 
approaches, to derive novel pharmacological and electrostimulation therapies 
for neuropsychiatric disorders, such as schizophrenia. 

●Ongoing work: training detailed circuit models of thalamocortical system to 
perform behaviors through streaming of dynamic signals (speech/video) and 
biologically-plausible learning rules
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