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From computational neuroscience —
computational psychiatry . ..

Psychiatry has fundamental problems in defining and diagnosing mental
disorders/iliness, partly due to obvious difficulties in measuring origins of symptoms
(brain is largely inaccessible).

In order to better understand, diagnose, and treat mental disorders,
clinicians/scientists should leverage insights gained from the integrative
methodologies used in computational and experimental neuroscience.

However, computational neuroscience is a complex field, taking years of training. . .

To allow computational neuroscience and psychiatry to make the largest impact,
new computational/algorithmic tools are needed that integrate multiscale brain
dynamics and behavior, and allow scientists to rapidly test their hypotheses on the
neural origins of mental disorders.
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Outline: modeling tools (solutions) &
modeling case studies

Build open-source modeling tools (Human Neocortical Neurosolver: HNN) to
help researchers understand circuit level origins of human brain dynamics
(EEG/MEG)

Use auditory thalamocortical models to link functionally relevant brain rhythms
In non-human primate to human electrophysiological data

Use hippocampal network models to study schizophrenia

Use multi-scale models of primary motor cortex to study neocortical
hyperexcitability and its pharmacological treatments

Use models of sensory/motor cortex to understand learning/behavior —
beyond deep learning?
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1. Problem in human neuroscience

eQuestion: How do we link human macroscopic, noninvasively measured
MEG/EEG signals to their underlying cell/circuit-level generators?

eData: Source localized human MEG/EEG current dipole signals

eModel: Biophysical circuit models of the thalamocortical system that
generate current dipole signals directly comparable to experimental data

eResult: New open-source modeling tool allowing clinicians/researchers
to import their data and use the model to simulate commonly observed
patterns (event-related potentials, low frequency rhythms), enabling
hypothesis testing of circuit-level generators of the observed patterns

Neymotin et al., eLife 2020



New open-source modeling tool: Human
Neocortical Neurosolver (HNN)

e Use biophysical thalamocortical models to test hypotheses on cell/circuit-level origins of
human neural dynamics in health & disease
elmports Human MEG/EEG data for model comparison/fitting

f T l HOME OVERVIEW & UNIQUENESS UNDER THE,HOOD TUTORIALS INSTALL

DEVELOPMENTTEAM REEDBACK FORUM

Human Neocortical
Neurosolver

SUBSCRIBE TO OUR GOOGLE GROUP

ehttps://hnn.brown.edu includes background, tutorials, documentation, publications (eLife)
eHNN workshops/presentations at Computational Psychiatry
(http://computationalpsychiatry.org/cp18/), Cutting EEG, and SFN meetings, ...



https://hnn.brown.edu
http://computationalpsychiatry.org/cp18/

The HNN model simulates the primary
currents contributing to MEG/EEG




HNN’s laminar neocortical
microcircuit model

. ramidal
Layered cortical network of Py
. . @®AMPA/NMDA
pyramidal neurons and interneurons |  caBa

Individual neurons are
compartmental models using parallel

conductance equations with e
standard Hodgkin-Huxley ion

channels

Layer 2/3

Apical

Pyramidal neurons generate current
dipole signal directly comparable to
source-localized signals obtained
from MEG/EEG experiments
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Activating HNN’s microcircuit model

Proximal drive represents synaptic inputs from thalamic core

Distal drive represents synaptic inputs from thalamic matrix and
corticocortical feedback

Each type of drive pushes pyramidal neuron dendrite current flow in
opposing directions

@ Local Network Connections Proximal Drive @ Distal Drive @ Network Model

Layer 2/3

Layer 4

Layer 5




HNN'’s

Lo Networs onma Crve Dutal Drive Nord smresca ~
- ® o Vaust cxten
Corvectora Trsam.a That [Cortca Fasctack
o
o

e View Abou
/ Sor Pawreters - Erom Fée B Semutaton Gt

[E5) View About P /

Run simulation #S

—g

Set parameter file ¥P
Clear canvas/data XX
Load data file #D
Clear data file ®C
Exit ®xQ

-

00 § W S mulation
BN yes trial S1 ERP &) awg

S 2
| 0
) 25
-
« ~50
- . 2 -
75 4
(Avg. RMSE:9.7 | e - - - s i - -
0 20 40 0 80 100 120 140 160

Time (ms)

Locd Neteon
Corvectora

Deta Drove Nore emvescal
That Coricel feadback

W onre rve

T £ Noow Vieusl satior
raara

Simulation Name default
o @ Local Network Parameters
Run Cett
Local Network Synaptic Gains Cols QRS Rl Layer 5 Pyr Layer 2/3 Bas Layer 5 Bas

Rhythmic Proximal Inputs
L2/3 Pyr -> L2/3 Pyr AMPA weight (nS) D.00110250000000¢

Rhwthmec Distal inputs
L2/3 Pyr <> L2/3 Pyr NMDA weight (nS) 0.00055125000000

N
Svoked nputs L2/3 Basket -> L2/3 Pyr GABAA weight (nS) 0.06

<] ! R
el e L2/3 Basket -> L2/3 Pyr GABAB weight (nS) 005
Tonic Inputs

Save Parameters To File

3 evdist
|
' . x ' ' x 4

) evpeox

 View

b

graphical user interface

¢t 4Qre n

About

View Simulation Dipoles
View Simulation Spiking Activity
View PSD

View Somatic Voitage
View Spectrograms

View Model Schematics
View Local Network (3D)
View Simulation Log

Toggle Average Dipole Drawing
Change Font Size

Change Line Width

Change Marker Size

Distribute Windows
Hide Windows

® ¢ » Qe B

R




Low-frequency alpha/beta rhythms widely observed
in human MEG/EEG signals, altered in disease

Source-localized MEG signals from somatosensory cortex have transient alpha/beta
events inversely correlated with attention/detection of tactile stimuli; alpha/beta events

detectable in auditory/visual cortex, with similar function (i.e. inhibition of unattended
modality: Lakatos et al., Nature Neurosci 2016 )
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Low frequency oscillations (delta, theta, alpha, low gamma) are altered in schizophrenia
(Lisman JAMA Psychiatry 2016; Lakatos et al., J Neurosci 2013; Kopell et al.)



Using HNN to model alpha/beta rhythms

Stochastic 10 Hz rhythmic inputs to
proximal/distal dendrites in phase
(antiphase) produce beta (alpha)
rhythms/events

Model beta mechanism validated with
invasive laminar electrode array recordings
(Sherman et al., PNAS 2016)

Use the software to investigate origins of
rhythms, how circuit alterations lead to
reduced/enhanced ability to respond to
stimuli in health and in disease

Next: use invasive laminar electrode array
(LFP/CSD/MUA) data from nonhuman
primates to optimize/validate models and
investigate auditory/speech processing
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2. Integrating electrophysiology in nonhuman primates
(NHP) during auditory stimulus/speech processing with
computer modeling

Question: How does thalamocortical circuitry generate

and potentially use oscillations to support auditory & a4 -~  Macroscopic : Y
speech processing? Why does the circuitry fail to 2D S | B }ﬁ'ﬂu"‘:w
properly entrain to stimuli in neuropsychiatric : Vo m jﬂg"G%L-l-(-}-
disorders”? B) ,, Me::::opic Microscopic

cora ‘ CSD ~  MUA % =N
Data: Multi-area/multilaminar ephys data (thalamus, E : ::?: § - '
A1, V1) at multiple scales (single-unit, multi-unit, LFP, | c 3 LASSE X e
CSD, ECoG) from Lakatos lab @ NKI: human iEEG R L =
data from S. Bickel (Northwell) bl

e8] L == =
Model: Detailed biophysical thalamocortical system - R Pt B SRS NS

circuits 2 R e i

Result: Model generates LFP/CSD comparable to
experiment, allowing prediction on circuit generators,
mechanisms, and neuromodulation targets



At rest: complex temporal pattern of oscillations

Using the data (Lakatos lab) to optimize
the model
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Integrating NHP electrophysiology during
auditory processing with modeling

Determine mechanisms supporting flexible

oscillations needed to track rhythmic auditory
stimuli (speech). Model determines strengths of  A)zse00-
connectivity between cortex and thalamus, |
suggests ways to increase oscillation flexibility.

frequency (Hz)

Determine thalamocortical mechanisms of

oscillatory phase reset for aligning brain rhythms 8 100]

to stimuli, could be used to parse auditory objects.  sound
| A-\l LL[L ‘LL .‘.‘K

Model predicts in vivo neuromodulation strategies ¢ | R, ;
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to improve this process.
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Determine mechanisms supporting auditory object
Different A1 L2/3 ensembles show phase

formation, hypothesized to occur through periodic synchronization for vowels (< 8 KHz;
inhibition. Model tests how different interneuron low-frequency tuned) or consonants (> 10

) ) . . KHz; high-frequency tuned), which tend to
populations contribute to this process, providing occur out-of-phase

additional in vivo neuromodulation strategies.



Model: neuronal populations

Neurons: multi-compartment, conductance-based.

Excitatory neurons: intratelencephalic (IT), pyramidal tract (PT), spiny stellate (ITS), corticothalamic (CT) and
MGB thalamocortical (TC).

Inhibitory neurons: somatostatin (SOM), parvalbumin (PV), neurogliaform (NGF), vasoactive intestinal peptide
(VIP), and thalamic reticular nucleus (RT).

Geometry: Simplified morphologies. Dendritic lengths sized to match the macaque cortex dimensions.

Model built with NetPyNE platform (https://netpyne.org Dura-Bernal et al., eLife 2019)
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https://netpyne.org

Model Development Challenge: pyramidal neurons

have unknown spatial distribution of ion channels
a b C

eFull spatial channel distribution is unknown, but
experimental literature indicates certain spatial
constraints (e.g. HCN density increases distally)

eRequirement: develop detailed models with full
dendrite reconstruction (~700 compartments) and
simplified models (6 representative compartments)
in order to produce accurate circuit dynamics

‘IOOum

eGoal: optimize model channel densities (Na, K, Ca,
HCN) in order to reproduce observed in vitro activity
from current clamp recordings

—
=

eSolution: Use sequential optimization: 1.
subthreshold fits; 2. firing property fits

L

oy

Neymotin et al., J Neurophysiology 2016



Model neuron optimization

Pyramidal PT cell model vs exp

Cell types in each layer fitted to macaque or MMML MW“]WWL

rodent electrophysiology data via | I |
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Model: data-driven circuit connectivity
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Model includes biophysically-detailed
LFP — comparison with in vivo data

Local Field Potential (LFP) recorded at different depths

The A1 model Sepin
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Providing auditory stimuli to the model

Pathway: sound wave — cochlea — inferior colliculus (IC) - MGB — A1

Full pathway allows comparison of NHP and model data to determine circuit mechanisms
supporting sound/speech processing
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Biophysical thalamocortical system model to
predict origin of different oscillations

Model: thalamic core/matrix interconnected
bidirectionally with neocortex — creates

oscillations Spike Raster Laminar LFP Laminar CSD Spectral Power
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3. Hippocampal network model to
study neuropsychiatric disorders

Background: A mutation in the HCN1 gene (5p21) is near one of 108 loci implicated
in schizophrenia (Schizophrenia Working Group, Nature 2014). Another mutation is in
the GRINZ2A gene (glutamate ionotropic NMDAR subunit 2A on 16p13), a subunit that
forms part of the ionotropic NMDA-type glutamatergic receptor (NMDAR). The
psychomimetic ketamine (NMDAR antagonist) is used to model the disorder.

Question: NMDAR & HCN channel changes are implicated in schizophrenia. How do
these alterations impact hippocampal dynamics & information processing? Can we
use biophysical circuit models to predict effects of gene/circuit alterations contributing
to the disorder, & match experimental observations?

Data: Hippocampal oscillations in mouse in vivo show less theta, more gamma after
ketamine; human gammal/other oscillatory alterations in schizophrenia

Model: Hippocampal CA3 circuit; ketamine simulated by setting NMDA receptor
conductance to zero (blockade); NMDA,HCN mutations via conductance change

Result: Model generates realistic oscillations, predicts ketamine’s site of action,
disease mechanisms, and novel target for therapy.



In vivo: altered hippocampal oscillations
after applying psychomimetic ketamine
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Hippocampal CA3 circuit model

Model: Circuit-level biophysical model of hippocampal CA3 containing
interconnected pyramidal neurons, OLM interneurons, basket
interneurons, medial septum (MS) inputs
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CA3: looking for ketamine’s site of action

NMDA OFF=0, NMDA ON=1

 w—
?_T_f
NMDA4

DA2

b — — — — — — —

- o << = n 2
w oc oc
S > a a 3 @ a
0O 0 0 O - 1 0 O
O O O 1 1 0 O
0O 0o 1 0 - 1 0 1
O O 1 1 1 0 1
01 0 1 \l_ 11 o0
o 1 1 0o 7‘_ 1 A 1
single sim
average
theta
o1 1 1 ll_ change
-15 SD

Neymotin et al., J Neurosci 2011



Simulated ketamine: reduced theta,
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Simulated ketamine: reduced theta,
Increased gamma
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Neymotin et al., J Neurosci 2011



Simulated ketamine: OLM NMDA receptor
conductance regulates theta/gamma
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OLM cell NMDA receptor conductance changes can account for lower
theta & higher gamma amplitudes seen in schizophrenia (e.g. in ketamine

models) Neymotin et al., Hippocampal Microcircuits, Springer 2018



Simulation predicts that higher HCN density in
basket cells could also produce higher gamma
power observed in schizophrenia models
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Treatment: restoring oscillations via
current injection to OLM cells
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Aberrant oscillations — altered function?

[OUse transfer entropy to link dynamics/oscillations and function by
measuring information transferred through the simulated hippocampal

network
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Ketamine: increased gamma reduces network
responsiveness to outside “world”

15

decreasing OLM NMDA
conductance
(increasing ketamine)
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Oscillatory power is linked with the level of information processing in the network:
overly high gamma power produces more stereotyped firing patterns and suggests
mechanism for hallucinations (loss of responsiveness to external information (outside

world) and over-reliance on internal information)
Neymotin et al., J Comp Neurosci 2011; Neymotin et al., J Neurosci 2011;
Neymotin et al., Hippocampal Microcircuits, Springer 2018



More generally: intermediate excitability and
synchrony/gamma support optimal information
throughput

Synchrony/gamma displays
inverted-U relationship with
information transfer

Overly weak
synchrony/gamma associated
with sparse firing and low
information throughput (L1)
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firing and low information
throughput (L2)
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Sherif et al., NJP Schizophrenia (under review)



Excitability and synchrony impact response
to driving input and information flow

Low excitability: driving input insufficient to reach threshold and trigger firing, reducing
information flow from driving input.

Moderate excitability: pyramidal neurons close to firing threshold — driving input is enough to
push cells into firing,

High excitability: pyramidal neurons pushed back-and-forth between synchronized firing with
little driving input influence relative to internal drive, and synchronized inhibition with little
input influence due to distance from threshold.

Low neuronal Moderate excitability High excitability
excitability and synchrony and synchrony

Driving
input @
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Sherif et al., NJP Schizophrenia (under review)




4. Multiscale simulations for pharmacological
treatments of neocortical hyperexcitability

Extracellular Cytosol ER

Question: Can we use multiscale
models to assist development of
novel multitarget therapies for
complex neurological/psychiatric
disorders?

Data: Mouse primary motor cortex
(M1) circuit-mapping data; current
clamp recordings for L5 pyramidals

Model: Multiscale model of M1

Result: Combining model with
machine learning approach was
successful in predicting
pharmacological targets to treat
hyperexcitability disorders

‘ » == 6] |
<02 - L

Spinal Cord

Neymotin et al., Frontiers in Pharmacology 2016



ctor similarity

ES5P firing ve:

Family of motor cortex models
shows three types of dynamics

Model ion channel densities randomly perturbed, creating a family of
models showing three clusters of distinct dynamics — 1. normal (low
synchrony), 2. seizure/latch-up (high intermittent synchrony), 3. dystonia
(high sustained synchrony)
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normal

dystonia

seizure

Dystonia & seizure have strong oscillations.
In seizure, many cells are in depolarization blockade.
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“Average” treatments won’t work (failure of averaging; blue
physiological, red pathological)

Neymotin et al., Drug Discovery Today: Disease Models 2016

Average parameters from each class do not produce simulations representative of the class.

The multiple, distinct manifestations of pathology, demonstrate utility of personalized medicine



Use machine learning + modeling to
determine multitarget polypharmacy

Machine learning approach
predicts that targeting
combinations of several 0:88
receptors is a more effective
treatment option than a
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5. Sensorimotor learning In
detailed circuit models

eQuestions: Can we model the circuit mechanisms, dynamics, and
learning that support sensory integration relevant for purposeful
behavior? How well do realistic biophysical circuit models with
biologically plausible learning rules perform against commonly used deep
reinforcement learning algorithms? Can we use the more detailed circuit
models to better understand in vivo learning mechanisms?

eData: Electrophysiology, fMRI recorded during sensorimotor learning and
decision-making experiments

eModel: Spiking neuronal networks of sensory, visual, and motor cortex
trained using spike-timing dependent reinforcement learning

eResult: Models utilize sensory information to learn appropriate
behavioral responses




Scaling up to behavior: sensorimotor learning
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Nevymotin et al., Neural Comput 2013



Trained network reaches target
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Learning enhances information transfer

After learning,
relevant sensory
information is
utilized more
effectively.
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Learning produces attractors




Motor cortex/spinal cord model trained to
control more realistic arm model & robot arm

6-layered neocortical architecture: each layer can perform distinct computations
(gathering information in input layers, routing/selecting information to send in output

layers)

Motor Commands

Feedback from arm

MOTOR CORTEX MODEL SPINAL CORD MODEL VIRTUAL AND ROBOT ARM

Dura-Bernal et al., Front Neurorobotics 2015



Training biophysical circuit models to play games
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Visual Input

Pong enviroment
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Video game frames converted to
topographic inputs that drive
non-homogenous Poisson process

Poisson processes driven by pixel mtens:ty

Visual hierarchy feeds to motor
population command layers which
learn to process dynamic sensory
information to produce behaviors
maximizing reward
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Testing influence of architecture: visual
hierarchy, recurrent connectivity, and
top-down influence
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Conclusions

e Our software/models enable researchers to predict mechanistic origins and
functions of neural oscillations and activity patterns through integrating
modeling with behavioral experiments while performing invasive intracranial
laminar electrode array recordings in nonhuman primates and noninvasive
MEG/EEG recordings in humans.

eOscillatory power was linked with the level of information processing in
networks: overly high gamma power produced more stereotyped firing patterns
and may suggest a loss of responsiveness to external information
(outsideworld), and potentially explains aspects of hallucinations in
schizophrenia.

e\We used our models standalone, and in combination with machine learning
approaches, to derive novel pharmacological and electrostimulation therapies
for neuropsychiatric disorders, such as schizophrenia.

eOngoing work: training detailed circuit models of thalamocortical system to
perform behaviors through streaming of dynamic signals (speech/video) and
biologically-plausible learning rules
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