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CHALLENGES FOR OBJECTIVE CLINICAL PSYCHIATRY

Major historical challenge for psychiatry
- What is the state space?

Major challenges for biological modeling of psychiatry
- What biological scale?
- What are the important non-linearities?
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CHALLENGES TO OBJECTIVE CLINICAL PSYCHIATRY

Psychophysics + electrophysiology is useful for making this tractable.
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My STARTING POINT 2007

— partnered with Carson C Chow (Laboratory of Biological Modeling,
NIDDK, NIH)

working memory differences in autism with minicolumn differences
(bridging channel and histological findings with behavior)

Vattikuti and Chow (2009) A computational model for cerebral cortical
dysfunction in autism spectrum disorders. Biological Psychiatry

— rivalry modeling

— general framework for simple cognitive traits



BINOCULAR (STATIC) RIVALRY



RIVALRY - PHENOMENA

Changes in perception independent of the stimulus.

binocular rivalry
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BINOCULAR RIVALRY - PHENOMENA

Sir Charles Wheatstone 1838 -
invents the stereoscope, and
observes stereoscopic (3D) illu-
sion




BINOCULAR RIVALRY - PHENOMENA

Sir Charles Wheatstone 1838 -
invents the stereoscope, and

observes stereoscopic (3D) illu-
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BINOCULAR RIVALRY - PHENOMENA

Levelt's propositions - stereotypical and non-obvious changes in
percept dynamics with change in stimulus

“signal-to-noise”
contrast response function
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BINOCULAR RIVALRY - PHENOMENA

Levelt's 4th proposition
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BINOCULAR RIVALRY - PHENOMENA

Levelt's 2nd proposition
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BINOCULAR RIVALRY MODEL

History

- Challenge for mutual inhibition models for many decades (1960s
t0 2002)

- Laing and Chow (2002) explain how a physiological neuronal
model based on a general cortical architecture can explain this
(rediscovery and expansion of point in Arrington thesis with
Grossbherg, 1993)
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BINOCULAR RIVALRY MODEL - ELECTROPHYSIOLOGY

Stimulus (object) - sensitive populations act like neurons (Wilson
and Cowan, 1973) - 1960s-90s Mountcastle, Hubel, Weisel, Albright,
Tanaka (MT, IT, etc.)

Pool at different descriptive scales

Wilson-Cowan
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BINOCULAR RIVALRY MODEL- ELECTROPHYSIOLOGY

Pools are also correlated with perception, not just stimuli.

Leopold and Logothetis 1990s -
Binocular rivalry neuronal spiking correlated with perception in
higher processing areas

(Also evidence from memory experiments by Funahashi,
Goldman-Rakic, Colby, others.)
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BINOCULAR RIVALRY MODEL - ELECTROPHYSIOLOGY

Binocular rivalry
presentation
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BINOCULAR RIVALRY MODEL - ELECTROPHYSIOLOGY

9(x)
& neuron response function
§ (Fl-curve)
Type 1 g
yp! £
Q
=
Q.
w
current
e Tl = —u; + g(S — Bu; — va:)
C'E = Ioxt = Imem(V, 1, h) — Inup(V, [Cal) — Iyn Tall; = —a; +u;

Tnem = 91.(V = Vi) + gxn*(V — Vi) + gnamioh(V = Viva)

Ianp = ganp[Cal/([Ca] + 1)(V — Vk) where 74 >> 7,

g(z) = max(0, z)"

o ,\
Leopold b
o ... | and )
Y Logothetis, \
1996 1



BINOCULAR RIVALRY MODEL WITH CHANNEL KINETICS
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BINOCULAR RIVALRY MODEL - MECHANISMS
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BINOCULAR RIVALRY MODEL - MECHANISMS

Release vs Escape

dominant percept
super threshold release* (classic idea)
threshold = = = = = = = === — — — -
1 escape

subthreshold
suppressed percept

S - Bu(t)dominant - "}’0:(75) 1

* shape of activation function strongly governs which predominates



BINOCULAR RIVALRY MODEL - MECHANISMS

Escape reproduces Levelt's propositions.

S= Bu(t)dominant - 'Va(t)
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BINOCULAR RIVALRY MODEL

- Variants - synaptic depression, complex architecture (eye
effects, object disparity, etc.)

- General model used to explain alternative forced choice,
normalization, flanker-suppressor, and short-term memory..

..and associated cryptic electrophysiology.

Flanker-suppressor Rollenhagen and ° Moldakarimov, Rollenhagen,
task Olson, 2005 Olson, and Chow 2005
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SHORT-TERM MEMORY REVISITED:
INTERMITTENT RIVALRY



SHORT-TERM MEMORY - PHENOMENA

Delay-period activity during memory tasks
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SHORT-TERM MEMORY - PHENOMENA

Debated - delay activity often highly variable and close to baseline
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SHORT-TERM MEMORY - PHENOMENA

stimulus

perception N
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RIVALRY MEMORY - PHENOMENA

Many forms of rivalry have memory
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INTERMITTENT RIVALRY - PHENOMENA

Percept (memory) is more stable with longer delays.
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QUARTET - PHENOMENA

Experiment + modeling - Vattikuti S, Thangaraj P, Xie HW, Gotts S, Martin
A, Chow CC. (2016) Canonical Cortical Circuit Model Explains Rivalry,
Intermittent Rivalry, and Rivalry Memory. PLoS Comput Biol.

Quartet illusion captures these phenomena plus more.

r
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QUARTET - PHENOMENA

Drive occurs at the frame transition.
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INTERMITTENT RIVALRY AND HABITUATION IN THE QUARTET - PHENOM-

ENA

Quartet illusion captures these phenomena plus more.

Vattikuti et. al 2016

Increase duration with

increased delay
b

number of pings
until switch

JLEEL

15 200 260 %0 335

interval between pings

(msec)

\_

Acceleration of alternations
with fixed delay

6

i

b

~

28



INTERMITTENT RIVALRY AND HABITUATION IN THE QUARTET - PHENOM-

ENA

Phenomenological constraints

- delay period activity - variable amplitude
- increased percept stability with increased delay

- habituation with fixed parameters
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Challenge for the standard rivalry model

- longtime variable in rivalry is fatigue — “anti-memory”

StimulusA ON OFF ON OFF ON OFF
StimulusB ON OFF ON OFF ON OFF

Pool A .

Pool B
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Solutions?

- positive feedback within pool - issue rhythmogenesis and
amplitude

- add another positive variable like facilitation, subthreshold
current - more complications but plausible

31



INTERMITTENT RIVALRY AND HABITUATION - MODEL

Our solution:

— “topological memory”
standard static rivalry model can do it if:

mutual inhibition + threshold-concave activation
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Drive memory with arbitrarily close to zero fixed drive.

StimulusA ON OFF ON OFF ON OFF
StimulusB ON OFF ON OFF ON OFF
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Drive memory with zero-mean noise only.

StimulusA ON OFF ON OFF ON OFF
StimulusB ON OFF ON OFF ON OFF
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Topological memory

uj-u,
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

ﬂero-mean noise stabilized memory \
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Mechanism notes

- Activity u fixed point competes with fatigue variable.

- Low activity during off-state “stops” buildup of fatigue and
stabilizes prior state.

- Mechanism is release, mutual inhibition strength does not factor
into percept duration.

- Fatigue variable explains why stability is increased with bigger
breaks and scales nonlinearly; slower build up.

- Complex relationship between noise, off-state activity, and
fatigue.

Open analysis problems
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INTERMITTENT RIVALRY AND HABITUATION - MODEL

Acceleration (habituation) is explained by release due to
local fatigue such as spike frequency adaptation or synaptic
depression in the dominant percept pool.
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adaptation .
(local fatigue)

\ time (msec)/
38




SUMMARY 1

- Static and intermittent rivalry explained by same simple mutual
inhibition type models.

- Threshold and shape of activation function important for both.

- Static rivalry most consistent with escape (durations depend on
mutual inhibition strength).

- Intermittent rivalry most consistent with release (durations do
not depend on mutual inhibition strength).

- Breaks are good for dynamic-memory as well as noise (?)
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These models have a major flaw.
Rivalry is fundamentally stochastic.
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NOISE MODEL FOR RIVALRY




ROBUST STATISTICS FOR RIVALRY - DATA
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BALANCED

Balanced-state - attractor state theory for intrinsic variability in the
brain (van Vreeswijk and Sompolinksy, 1996).

Explains the robust Poisson-like spike statistics of neuronal action
potentials, despite many inputs.

Softky and Koch 1993

_ spike interval standard deviation

CVist

spike interval mean

o o 2 s % 0w @
Ai(moec)

Churchland, et. al
2010

Spike count Fano
factor
spontaneous >1
evoked ~1
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BALANCED

Balanced-state based on excitatory and inhibitory neurons balancing
such that:

- mean input is at threshold
- spike generation is fluctuation driven

Excitatory
Inhibitory

Net
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MUTUAL INHIBITION VS THE BALANCED-STATE

Can balanced-state and mutual inhibition (net negative) coexist as a
model for perceptual rivalry?

Cohen BP, Chow CC, Vattikuti S. (2019) Dynamical modeling of multi-scale
variability in neuronal competition. Commun Biol.
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MUTUAL INHIBITION VS THE BALANCED-STATE

Two candidate rivalry (mutual inhibition) and balanced-state
frameworks.

Discrete Contlnuu m

Network architecture i

Types of coupling in random network
' ‘ h. 4

.4\ E-neuron index

syna ptic strength
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MUTUAL INHIBITION VS THE BALANCED-STATE

Models reproduce realistic spiking with no added noise term.
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AL INHIBITION VS THE BALANCED

Models reproduces realistic percept duration variability with
no added noise term.
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MUTUAL INHIBITION VS THE BALANCED-STATE

Models capture mean dynamics.
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MUTUAL INHIBITION VS THE BALANCED-STATE

What is the mechanism for variability?
Balanced-state?
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MUTUAL INHIBITION VS THE BALANCED-STATE

What is the mechanism for variability?
Balanced-state? Yes and no
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MUTUAL INHIBITION VS THE BALANCED-STATE

Under some conditions (that can be relaxed) in the limit of large N,
balanced-state becomes a linear problem.

representative
neurons populations  where net input
obeys
A Excitatory neurons becomes . WeeTe — WeiTi + fe =0
(or population) | WieTe — WiT; + fz =0
. Inhibitory neurons ‘ l I

(or population)

f
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MUTUAL INHIBITION VS THE BALANCED-STATE

How well does this fit?

20 dominant excitatory population
—— simulation
—— classic balanced state theory
15
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MUTUAL INHIBITION VS THE BALANCED-STATE

How well does this fit?

20 dominant excitatory population

—— simulation
—— classic balanced state theory
15 —— mutual-inhibition balanced state theory

10

rate (Hz)
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MUTUAL INHIBITION VS THE BALANCED-STATE

How well does this fit?

20 dominant excitatory population
—— simulation
—— classic balanced state theory
15 —— mutual-inhibition balanced state theory
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MUTUAL INHIBITION VS THE BALANCED-STATE

How well does this fit?

20 suppressed excitatory population
—— simulation
—— one-pool balanced state theory
15 —— two-pool balanced state theory
~N
<
P 10
o
5
0
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SUMMARY 2

- Self-consistent model explains spiking and perceptual
variability and percept mean dynamics.

- Supports a noise model for rivalry that is cross-multiplicative
from balanced-state dominant pool.

- Suggests mutual inhibition balanced-state model for none
winner-take-all but competitive psychophysics.
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CLINICAL PICTURE




CLINICAL POTENTIAL

Some clinically interesting features of rivalry:

- measure of cognitive stability
- assess structure of percept state-space

- capture effective biological parameters
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CLINICAL RESEARCH OF RIVALRY

Studied for many decades in many clinical contexts with many
positive associations:

@ most major mental illnesses -
schizophrenia, bipolar disorder, major depression,
autism

many pharmacological agents - caffeine,
benzodiazepine, catecholamine, psilocybin

but limited interpretation and utility due to task design
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Need to modernize clinical studies

+ Clinical studies are often

pOII’]t aﬂalyses Mixed surface A+ B

- Need to capture the
time-varying surface.

- Map the surface back to
mechanistic model.

Dominance Percept A

' Dominance Percept B
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MACHINE LEARNING




CONTEXT-DEPENDENT REPRESENTATION OF THE SYSTEM

Dynamical systems look different depending on context.
Need to deconvolve test-condition transformation on brain circuit.

biological parameters of interest

E external (context dependent) parameters

M(b(,@, E)) above embedded in report (measurement) function
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CONTEXT-DEPENDENT REPRESENTATION OF THE SYSTEM

du;
Tuid—; = —u; + g(S; — Bju; — vias)
where g(z) = [max (0,z)]™ M (b(B, {im1,im2,cl, c2})) = dominance distribution 7'
da: M (z):= some report filter on b(z) in context rivalry
Ta; TtZ = —a; +u;
Mathematical insight
Ta 2> Ty of dynamical observations S; — Bjitts
u; := neural activity ——- T = —Taj In{ ———
Vits
CiNgl \,\\ Dominance activity:
TN | ee— i) = 9(Si) — i)

Rivalry alone can “theoretically” identify 14 parameters, with
self-report.
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CONTEXT-DEPENDENT REPRESENTATION OF THE SYSTEM

ML notes

- Optimization scheme needs to account for different operating
regimes of the circuit.

- Add data from other tasks to augment model fitting.
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CURRENT WORK
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VR rig for psychophysical inputs

Report:

self-report (trackpad, head
position)

neural recordings
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CURRENT WORK
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CURRENT WORK
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CIRCUIT PARAMETERS AS LATENT VARIABLES

Disjoint models “islands”

b(z) := nonlinear brain model

E := environmental conditions — . 7 —
(stimulus) — vy= M(b(BLO)’ ) ™

M := vector of measurement,@tions / \ \ Latent variables
(self-report, recordings) ﬂLOl = g(ﬂLll’ BLIZ) ﬂLO? T (parameters for

brain model/
=

|
Bris =

eural activity / \

individual neurons Bri ﬂLllz

Bra, L27 brain networksj

"
genetic factog

[cellular factors
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CIRCUIT PARAMETERS AS LATENT VARIABLES

The things we can do with these latent variables
I. Uncover patient trajectories in cognitive-biological space using objective

parameters Class | Class 2
|. Learn about the course of disease Random-walk Two-attractors
2. Learn about interventions o
) ) independent
3. Predict risk of adverse event high-risk
\ (location in {
parameter =
space is

associated with
adverse events)
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