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Outline

* An Explanatory Or Pragmatic Framework
e Computational Failure Models

e Four Examples Of Computational Failures Modes In
Anxiety:
e Differentiating Signal From Noise During Change Point
Detection

e Adjusting To Current And Future Error In A Movement
Task

e Perception Versus Decision-making In An Uncertain
Environment.

e Differentiating Decision Uncertainty From Emotional
Conflict In An Approach/Avoidance Situation.



What are the decision-
making dysfunctions in
individuals with
psychiatric disorders?

How does the brain
contribute to these
dysfunctions?

Stakeholder Demands:
5Ps: Patients, Providers, Payers, Policy Makers,
Problem Solvers (Researchers)

v

Formulate Researchable Question

¥

Primary Goal

Explanatory Pragmatic
Building mechanistic Generating individual-
disease models level predictions

Level of causality Accuracy & Robustness

' ]

Actionable Outcomes

!

Dissemination of Outcomes:
Measurable Impact on Stakeholders

Criteria for Evidenced-Based Pragmatic Psychiatry:

* Problem (what do stakeholder want?)

* Experimental Design (intervention vs. observation)
* Levels of Analysis (is it explanatory or predictive?)
» Statistical Framework (how reproducible?)

* Qutcome Variables (how valid and actionable?)

Evidenced-Based Pragmatic Psychiatry—A Call to Action

Martin . Paulus, MD

Can we use biological
or other variables to
predict clinically
meaningful
outcomes?


Presenter
Presentation Notes
In a recent viewpoint, I argued that there has been a disconnect between stakeholder demands and research in psychiatry.  Computational Psychiatry has the unique opportunity to start with stakeholder demands, develop researchable question and apply relevant models.  These models will have fundamentally two goals.  Computational models can serve to build new mechanistic understanding in the disease process that are based on empirical evidence not on heuristic musings of psychiatrist from over 100 years ago.  In addition, these models can generate predictive trajectories and thus can have pragmatic value to inform the clinician of the effect of different perturbations.  However, importantly researchers need to keep in mind that outcome measures need to provide actionable information and that this information need to be distributed eventually to have a measurable impact on stakeholders.
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Presenter
Presentation Notes
It can helpful to contrast the “old approach” of linking behavior to brain with the approach proposed by computational psychiatry.
Whereas in the old approach the relationship between behavior and brain was mostly based on correlation or association.  Computational psychiatry seeks to build specific process models that can connect these levels and provide a deeper understanding of how patterns of brain activation can be related to observed (or future) behavior.
The explanatory depth is encoded in the computational model that hypothesizes how latent variables compute observed behaviors.
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Anxiety: Computational Failure
Modes and ARDM

e Reinforcement Learning framework:
e Sensitivity to reward or punishment
e Slower updates to aversive prediction errors
* Overwhelming Pavlovian biases
e Altered reference points- framing, counterfactuals

e Active Inference framework:

e Habitual predictions that are computationally less
effortful

e Excessive response cost
e Altered prior beliefs about state-observation relationship



Value-based Decision-Making in
Addiction and Anxiety

Addiction Anxiety
Actions: States: Actions: States:
Value: Value:
Take _ ]
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Use Value-Based Action Selection: select actions that increase the future value of the states (i.e. intoxicated/alone or
abstinent/affiliated)

Positive Reinforcement Negative Reinforcement

Select an action that make positively valued states most likely. Select an action that makes negatively valued states least likely.



Active Inference in Addiction and
Anxiety

States and Observations: States and Observations:
- Addiction Anxiety
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Use Free Energy Principle: minimizing the difference between the states that are expected and
observed and the amount of surprise of making an observation (i.e. calm/irritable or
talking/silent)

Positive Reinforcement I Negative Reinforcement

Select an action from the policies that makes Select an action from the policies that makes
the observation (calm, talking) most likely. the observation (irritable, silent) least likely



Ccomputational Failure Modes:

e Hyper-precise Priors (prior probability)

* The expectation of afferent information is so precise that
incoming evidence does not significantly alter the
expectation.

e Context Rigidity

e The individual is unable to adjust the prior expectation of
information to a different context.

Annual Review of Clinical Psychology

Martin P. Paulus,! Justin S. Feinstein, '
and Sahib S. Khalsa'?



Computational Failure Modes
and Interoception:

e Hyper-precise Priors (prior probability)

e The expectation of afferent information is so precise that incoming
evidence does not significantly alter the expectation.

e Context Rigidity

e The individual is unable to adjust the prior expectation of
information to a different context.

Annual Review of Clinical Psychology

Martin P. Paulus,! Justin S. Feinstein, '

and Sahib S. Khalsal*



Hyper-precise Priors

a Healthy brain

Competing models (prior)

Afferent input weighting




-

Context Rigidity

a Healthy brain

Competing models (prior) Adjusted models (prior)

Uncertain evidence

New evidence ina
Prediction new context

error

Certain evidence

Afferent input weighting Afferent input weighting




Computational
Approaches to Identify
Processing Dysfunctions
in Anxious Individuals

Computational Dysfunctions in Anxiety:
Failure to Differentiate Signal From Noise

He Huang, Wesley Thompson, and Martin P. Paulus
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Conclusions

Why is this important?
e Both anxious and non-anxious ir '~ "Juals learn about
the underlying statistics ~f the c. point detection
task. 4 o 2

* Anxious individuals~
fluctuations'a

 Modern treatments of anxiety are based on re-learning fear-related content.

 New behavioral or pharmacological strategies need to be developed if anxious
individuals do not learn appropriately.

 The computational approach allows us to precisely quantify the degree of
learning dysfunction and to determine how much intervention correct it.



Evidence for
Underweighting of
Current Error and - =Y
Overestimation of }? '

Future Error in 4 i
Anxious Individuals  jonathan Howter




Start — Stop Task

Tt

T+ . Measured - '
e The position of a virtual car was Caluites o P Koest)
| 1 itte
controlled using a gaming Goal + Error Acceloration
joystick. 5
* Each subject completed 30 1 o .0

trials. In each trial, subjects
were instructed to drive the car
as quickly as possible and stop
as close as possible to a stop
|s_ign without crossing the stop-
ine.

Position

Process [«

10" Percentile K, 30" Percentile K, 70" Percentile K, 90" Percentile K,,

e At each time point within a
trial, acceleration was modeled
as a linear combination of
current error (goal position
minus current care position)
and derivative of the error, with
coefficients K, and K,
respectively.
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Anxiety- Related Findings

* Subjects reporting high levels
of fear displayed:

* decreased weighting on
current error (consistent with
inhibited goal approach)

* and also decreased weighting
on the rate of change of error
(leading to overcorrecting
oscillations around the goal).

* These findings were specific to
fear after controlling for
general negative affect.

* The experimental approach is
easy, robust, and yields reliable
motor trajectories and can be
conducted on mobile
platforms.
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K4 Subject SD 1
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K4 Gender f31
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K4 Subject SD 4

K4 Caudal ACC Volume {31
K4 Total Cortical Volume f3 4
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Conclusions

e Using a proportion-integral-derivative control
framework we can parse altered error control in
individuals with anxiety-related problems:

e Anxious individual underestimate the error of current
motor actions consistent with increased inhibition

e Anxious individuals underestimate the rate of change of
the error which results in oscillatory behavior (“should |
stay or should | go now”)

e These parameters have direct relevance to treatment
targets in behavioral interventions.
e Direct brain modulation to increase error sensitivity.



Evidence for Slower

Updating of Visual |7
Expectations in } | ‘
Anxious Individuals "¢ ¥ -

Jonathan Howlett



Background

e Surprising events are important sources of internal
model updating which adjusts expectations for how we
perceive available options and select among them.

e Based on previous work, we hypothesized that anxious
individuals experienced exaggerated surprise to
predictable events, which imbues them with undue
salience.

e We applied a hybrid Rescorla Wagner (RW)/Drift
Diffusion Model (DDM) to a change point detection task
in a transdiagnostic group of individuals with mood and
anxiety disorders.



Model Approach

* The model assumes that
expectations regarding target
location influences both:

e the initial location choice on
trial and

* the response and reaction
time to the random-dot
stimulus

e The updating of location
expectations based on the
true target location on each

trial was modeled using an
RW model.

e RW expectations influenced
either the DDM bias
parameter, DDM drift rate
parameter, or both.
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Model Comparisons

* We performed a model comparison of six models:
e bias-only single a model,
e bias-only dual @ model,
e drift-only single a model,
e drift-only dual a model,
e bias and drift single a model,
e and bias and drift dual @ model.

e All models predicted both categorical location
choices and random-dot reaction times



Hierarchical Statistical Model

e To determine the
relationship between - a
fear and model
parameters, we
constructed a
hierarchical model in
which both subject-
level learning rates
depended on scaled \\
age, gender, and
PANAS X Fear.




Results

a SD

Perceptual
e Model comparison using cFear Slope
WAIC indicated that the bias
and drift dual o model e
provided the best fit for the enaeTEeee
observed data. ercoptua

* Individuals who reported the @ Age Slope
highest fear scores showed the ®
lowest rate of perceptual

Decision

1 a SD
updating
e Older individuals showed Decision |
SIOWGF perceptual but not a Fear Slope

decisional updating. N

* For the decision learning rate,  «Gendersiope|
median ICC was .62
Decision

e For the perceptual learning o Age Slope
rate, median ICC was .80




Conclusions

e Anxious (and older) individuals exhibit slower updating
of the internal model that influences perceptual
processing, but not the model that influences decision-
making.

 The two models employ separate updating processes
with separate learning rates (a decision learning rate
and a perceptual learning rate), which are only weakly
correlated.

» Taken together, anxious individuals have difficulty
updating their expectations relayed to perceptual
circuits, rather than those relayed to decision-making
circuits.



Greater decision
uncertainty but not
emotional conflict

during approach-
avoidance conflict

Ryan Smith



Background

* Imbalances in the decision to approach or avoid
when both positive and negative consequences are
expected (i.e., approach-avoidance conflict; AAC) is
often problematic in mental health conditions.

 AAC paradigms create conflict between the receipt
of monetary rewards and either monetary
punishments, pain or aversive affective stimuli.

e This study aimed to examine the difference
between decision uncertainty and the emotional
conflict arising from an individual’s relative
sensitivity to negative affective stimuli vs. reward.



oproach Avoidance Conflict Tas
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Model Approach

° i Graphical Model Example Simulations ‘ A-Matrices
ACt Ive | nfe rence (Trial Type = Conflict — 2 points) (columns = runway positions, rows =
M O d e | : outcomes)
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Population

DAST-10

WRAT

Propensity Matched

Age

DAST-10

WRAT

Full Sample HCs DEP/ANX SUDs
(N =59) (N = 260) (N = 159)
Age

32.14 (11.13) 35.89 (11.30) 33.93 (9.09) 0.024
28 (48%) 70 (27%) 74 (47%) <0.001
0.90 (1.36) 12.63 (5.14) 6.50 (5.66) <0.001
1.27 (1.88) 9.80 (3.42) 5.78 (4.66) <0.001
0.12 (0.38) 0.67 (1.41) 7.48 (2.20) <0.001
62.37 (5.06) 63.53 (4.76) 58.49 (5.65) <0.001
HCs DEP/ANX SUDs P value

(N =59) (N =161) (N = 56)

32.14 (11.13) 35.11 (10.84) 32.67 (10.26) 0.119
0.47 (0.50) 0.25 (0.44) 0.62 (0.49) <0.001
0.90 (1.36) 12.64 (5.38) 7.95 (6.50) <0.001
1.27 (1.88) 9.78 (3.42) 6.80 (5.15) <0.001
0.12 (0.38) 0.62 (1.26) 7.45 (2.65) <0.001
63.53 (4.76) 62.58 (4.53) 61.89 (4.43) 0.15
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Results

e Individuals Group Differences
W | t h (propensity matched)
depression
and anxiety Emotional Conflict (EC) Decision Uncertainty (8)
related “ - © -
problems
show
greater
uncertainty
in decision-
making -
relative to
comparison
subjects.

Expected Aversiveness
Expected Policy Precision

HCs DEP/ANX SUDs HCs DEP/ANX SUDs
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Relationship to subjective report

Post-Task Self-Report Questions (Likert Scale: 1 = not at all; 7 = very much) _

1. | found the POSITIVE pictures enjoyable: .07

2. The NEGATIVE pictures made me feel anxious Or uncomfortable: 32%*
3. | often found it difficult to decide which outcome | wanted: .10*
4. | always tried to move ALL THE WAY TOWARDS the outcome with the LARGEST REWARD -74%*
POINTS:

5. | always tried to move ALL THE WAY AWAY FROM the outcome with the NEGATIVE .67%*
PICTURE/SOUNDS:

6. When a NEGATIVE picture and sound were displayed, | kept my eyes open and looked at the -.37%*
picture:

7. When a NEGATIVE picture and sound were displayed, | tried to think about something unrelated ik

to the picture to distract myself:

8. When a NEGATIVE picture and sound were displayed, | tried other strategies to manage .32%*

emotions triggered by the pictures

.02

.06

A5**

- 48**

37**

- 17**

1%

.05
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Conclusions

 The model showed high accuracy in predicting behavior.

e Parameter estimates showed strong relationships with
RTs and participants’ self-reported feelings/motivations
during the task.

e EC was uniquely associated with self-reported anxiety
on the task.

e 3 was uniquely associated self-reported difficulty
making decisions on the task.

e EC and 3 were not highly correlated and showed distinct
relationships with psychopathology.



General Conclusions

e Computational Failure Modes in Anxiety:
e Attenuated Error Control
e Attenuated Updating of incoming sensory information
e Exaggerated processing of uncertainty

e These failure modes can be:
e Readily assessed with behavioral paradigms
e Associated with distinct neural circuits
e Used to develop specific failure mode interventions



Applied Computational
Psychiatry:

A Roadmap for the Development of Applied
Computational Psychiatry

Martin P. Paulus4 4 .. Quentin J.M. Huys, Tiago V. Maia

DOI: http://dx.dol.org/10.1016/].bpsc.2016.05.001

Michael Browning




Goals

e |dentify mechanistically interpretable parameters.
 “how does the system work?”

* Integrate measurements across units of analysis.
e “relate behavior to circuits”

e Classify individuals into different classes.
e “separate health from pathology”

e Predict class membership (current and future)
e “identify individuals at risk for bad outcomes”



Future Directions

Preclinical Phase I(a) Phasel(b) Phase Il Phase Ill Phase IV

Drug Target (a) Safety / experimental Small Scale Efficacy Large Scale Post-marketing

Development identification, (b)  Tolerability medicine / target Efficacy

Analog optimization engagment

ORBIT(61) Define Refine Proof of Concept/  Efficacy Trial Effectiveness

Pilots

Time Line Discovery (1-6 Development (6 - 12
years) years)

Goals "to identify "to establish a "to establish target “to establish "to confirm "new
probe(s) / reliable / robust  process and clinical efficacy and clinical validity  applications"
measure(s) / probe(s) / engagement / model  validity" and
model(s) / measure(s) / application / demonstrate
intervention(s)" model(s) / intervention outcome

intervention(s)" engagement” improvement"
Stages Identification Validation Launch
Readiness /
Release

Population Healthy HV HV, Target TP TP new TP
Volunteers (HV) Population(s) TP

Study Type cross-sectional (cs) cs, longitudinal (I)  cs, |, experimental Randomized RCT cs, |, RCT

design(s) Controlled Trial
(RCT)

Sites single / few sites single - multi-site  single / few sites single - multi-site multi-site single / few

sites

Study Size small n small to large n medium n large n large n small n

A Roadmap for the Development of Applied
Computational Psychiatry

Martin P. F’aulu'—_-] .. Quentin J.M. Huys, Tiago V. Maia

DOI: http://dx.dol.org/10.1016/].bpsc.2016.05.001




Stakeholder Demands:
5Ps: Patients, Providers, Payers, Policy Makers,
Problem Solvers (Researchers)

v

Formulate Researchable Question

¥

Primary Goal

Explanatory
Building mechanistic
disease models

Pragmatic
Generating individual-
level predictions

Level of causality

Accuracy & Robustness

il "
Computational
psychiatry
Biophysical Computational
maodeling modeling
X v o tati
Data-mining \ / c;:'.’."mm,u I
— \ / —_—
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S WK
O Identify new genetic, molecular, cellular and neural dynamics
O Enable large-scale data-sharing
O Explore bi for healihy and d gnit
0 Provide of
TRENGS in Coprati Scances

Computational psychiatry

P. Read Montague'?, Raymond J. Dolan?, Karl J. Friston® and Peter Dayan®

"Virginia Tech Carilion Research Institute and Department of Physics, Virginia Tech, 2 Riverside Circle, Roanoke, VA 24016, USA

?Wellcome Trust Centre for Meuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
*Gatsby Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London, WCTN 3AR, UK
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In a recent viewpoint, I argued that there has been a disconnect between stakeholder demands and research in psychiatry.  Computational Psychiatry has the unique opportunity to start with stakeholder demands, develop researchable question and apply relevant models.  These models will have fundamentally two goals.  Computational models can serve to build new mechanistic understanding in the disease process that are based on empirical evidence not on heuristic musings of psychiatrist from over 100 years ago.  In addition, these models can generate predictive trajectories and thus can have pragmatic value to inform the clinician of the effect of different perturbations.  However, importantly researchers need to keep in mind that outcome measures need to provide actionable information and that this information need to be distributed eventually to have a measurable impact on stakeholders.


	Slide Number 1
	Disclosures
	Outline
	Slide Number 4
	Computational Psychiatry
	Computational Approaches to Aversion-Related Decision-�Making In Psychiatry (ARDM)
	Anxiety: Computational Failure Modes and ARDM
	Value-based Decision-Making in Addiction and Anxiety
	Active Inference in Addiction and Anxiety
	Ccomputational Failure Modes:
	Computational Failure Modes �and Interoception:
	Hyper-precise Priors
	Context Rigidity
	Computational Approaches to Identify Processing Dysfunctions in Anxious Individuals
	Change Point Detection
	Slide Number 16
	Conclusions
	Evidence for Underweighting of Current Error and Overestimation of Future Error in Anxious Individuals
	Start – Stop Task
	Anxiety- Related Findings
	Conclusions
	Evidence for Slower Updating of Visual Expectations in Anxious Individuals
	Background
	Model Approach
	Model Comparisons
	Hierarchical Statistical Model
	Results
	Conclusions
	Greater decision uncertainty but not emotional conflict during approach-avoidance conflict 
	Background
	Approach Avoidance Conflict Task
	Model Approach
	Population
	Results
	Relationship to subjective report
	Conclusions
	General Conclusions	
	Applied Computational Psychiatry:
	Goals
	Future Directions
	Slide Number 41

