
The role of belief updating in human 
sequential decision making with uncertainty

Brian J. Stankiewicz
Department of Psychology

Center for Perceptual Systems
University of Texas, Austin

The role of belief updating in human 
sequential decision making with uncertainty



Confessions

Team Bayes



Bayes as a tool

• Provides a vocabulary for understanding/describing a task.

• What should a rational system do?

• Provides a benchmark assuming no processing inefficiencies or resource 
limitations.

• If humans are optimal, assume an understanding of processes and 
resources for that task

• If not optimal, localize how/why people are sub-optimal



Sequential Decision Making with Uncertainty

• Examples

• Medical diagnosis

• Localization in space

• Scientific exploration

• etc.

• Maximize reward given hidden state



Sequential Decision Making with Uncertainty
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Sequential Decision Making with Uncertainty
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Structure of SDMU Task

• States: S

• Actions: A=<“Left”, “Right”, “Forward”>

• Observations: O=<T-Junction, L-Junction, 
etc.>

• Cost/Rewards: C=<$5,$200,...,$2,000>



Partially Observable Markov 
Decision Process

Outline
Introduction

p(s ′|s, a) (1)

p(o|s, a) (2)

bt(s ′) = p(s ′|bt−1, a, o) (3)

bt(s ′) =
p(o|s′,a) P

s p(s′|s,a)bt−1(s)
p(o|a,bt−1)

(4)
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Belief Updating:

Transition function:

Outline
Introduction

p(s ′|s, a) (1)

p(o|s, a) (2)

bt(s
′) = p(s ′|bt−1, a, o) =

p(o|s ′, a) ∑
s p(s ′|s, a)bt−1(s)

p(o|a, bt−1)
(3)
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Observation function:

Outline
Introduction

p(s ′|s, a) (1)

p(o|s, a) (2)

bt(s
′) = p(s ′|bt−1, a, o) =

p(o|s ′, a) ∑
s p(s ′|s, a)bt−1(s)

p(o|a, bt−1)
(3)
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Maximize the expected accumulated reward over time.

Computing Reward

Outline
Introduction

p(s ′|s, a) (1)

p(o|s, a) (2)

bt(s ′) = p(s ′|bt−1, a, o) (3)

bt(s ′) =
p(o|s′,a) P

s p(s′|s,a)bt−1(s)
p(o|a,bt−1)

(4)

Reward(a, s) (5)
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Spatial Navigation

• Questions:

• 1. How efficiently do people navigate with uncertainty in a known 
environment?

• 2. If inefficient, determine why inefficient

• a. Observations

• b. Transition function

• c. Belief updating

• d. Decision strategy



Spatial Navigation

• Develop a task that would be sensitive to 
all factors involved.

• Indoor virtual reality navigation task in 
which subjects navigate from unspecified 
state to a goal state.

• Vary the complexity/size of the 
environment



Experiment 1

• What is the effect of layout 
complexity/size on human 
navigation performance?

– Environments composed of 10, 
20, 40 and 80 hallway units.

Hallway
Unit



Quantifying the task

• Simplify Environments
– Indoor Environments (based on Cartesian grid)

• Simplify Visual Information (observations)
• No “Landmark Information”
• Structural Cues (e.g., T-junctions, L-junctions, etc.)

• Simplify State Space
– Quantize space into discrete set of states

• Finite set of Locations and Orientations

• Simplify Actions
• Move Forward
• Rotate Right 90°
• Rotate Left 90°



Simplify Visual 
Information & Actions

• Desktop VR

• Visually Sparse
– Perceptual Aliasing

• Actions made by keypress
– Forward 1 Hallway Unit

– Rotate Left 90°

– Rotate Right 90°



General Procedure

• Training (Human):
– Freely explore environment for limited time (3 minutes)

– 1 Target Location in environment

– Specified by auditory signal

– Draw environment on blank grid.

– Repeat exploration and drawing until map drawn correctly twice in a row.
–

• Test (Human and Ideal): 
– Start from random location in environment

– Move to target location using as few actions as possible

– Indicate when they reached target location
– Measure number of actions to reach target



Number Hallway Units = 10



Number Hallway Units = 80



Experiment 1: Design

• 3 Subjects

• 2 Environments / Condition

• Each subject ran in each environment.
– Random order

• Started from each position equal number of times.
– Ran multiple trials from each position

– Equal number of trials / condition
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Number of Actions as a Function
Of Layout Size



Number of Actions as a Function
Of Layout Size
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Figure 5.  The effect of layout size on human navigation performance.  The upper graph shows the
average number of moves for the three participants and the ideal navigator (the error bars indicate
the standard error of the mean).  The lower graph shows navigation efficiency of the participants,
computed as the average number of actions of the ideal navigator divided by the number of actions
made by the participant.
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Experiment 1: Analysis

“Efficiency” = Number of moves Ideal
            Number of moves Human



Action Efficiency
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Figure 5.  The effect of layout size on human navigation performance.  The upper graph shows the
average number of moves for the three participants and the ideal navigator (the error bars indicate
the standard error of the mean).  The lower graph shows navigation efficiency of the participants,
computed as the average number of actions of the ideal navigator divided by the number of actions
made by the participant.
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Experiment 1: Summary
• Clear Effect of Layout Size on Efficiency.

• Where is the inefficiency?

– Experiment 2

– Inefficient visual processing (observations)?

– Experiment 3

– Accessing the Cog. Map (transition function)

– Belief Vector Generation (belief updating)

– Decision Strate



Experiment 2

• Can inefficient visual processing explain 
inefficiencies?

– Manipulate the amount of visual information 
available to the human observer.



Experiment 2: Limited View

• Added virtual fog

• Only able to see down 
1 hallway unit



Predictions: Inefficient VP
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Predictions: Efficient VP
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Experiment 2: Design

• 6 Subjects

– Normal or corrected vision

• Ran in two different environments

– Limited and Unlimited views

• Started from every state in the environment 6 times

– 960 trials / environment
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Figure 9. The mean efficiency of reducing visual information on human navigation performance in
Experiment 2.  The limited view condition was the condition in which “Fog” obliterated all visible
details beyond the next intersection.  In the Unlimited View condition, visual information was available
in the forward direction to the end of the corridor.

Discussion

This experiment investigated the effect of limiting visual input on spatial navigation performance.  The

purpose of this experiment was to determine whether the cognitive limitation found in Experiment 1 was due to

inefficient visual processing.  For example, in Experiment 1, participants might have processed information

only one or two hallway units down a corridor view.  If participants' performances were limited by visual

processing, then the participants should be less efficient in environments that have more long corridors
10

 than

those with fewer long corridors.  The smaller environments in Experiment 1 have fewer long corridors than the

large environments and thus limited visual processing might account for the data.

We predicted that if participants were limited in the amount of visual information that they process, then

we should find an increase in efficiency when we redefine the task to have a reduced visual demand.  In other

words, the fog manipulation reduced the useful information for both the human participants and the ideal-

navigator model, potentially putting the human and model on a more even footing.  If this were the case, we

would have found higher efficiency in the fog condition.  Because we did not find higher efficiency, we

conclude that human inefficiency in Experiment 1 is not due to a failure to encode and use visual information

beyond a restricted view depth.

Experiment 3

The current experiment investigates whether the inefficiency found in Experiment 1 is due to

inefficiencies in: a) accessing the cognitive map, b) spatial updating or c) decision strategy. In Experiment 3 we

did not manipulate the layout size (we used only one layout size: 40 hallways) but instead provided participants

with supplementary map information while they navigated to the target location from an unspecified starting

                                                  
10 A corridor is a series of co-linear hallways



Experiment 2: 
Summary

• Does inefficient visual processing explain the 
inefficiencies found in Experiment 1?

– No



Experiment 2:Discussion

• Perception

• Accessing cognitive map 

• Transition Function

• Spatial Updating 

• Belief updating

• Decision Strategy



Experiment 3: Procedure

• Training

– Same as Experiment 1

• Test

– Same as Experiment 1 with an additional 
map display

– Three map conditions



Sample Display 
(No Map)



Sample Display 
(Map)



Sample Display 
Map + Belief Vector
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Experiment 3: Design

• 4 Subjects

• 2 Different environments

– Each subject ran in 1 environment
• Conditions were ran in random order

• Subjects ran in all three conditions

• Started from every state in each condition 3 times

– 1440 Trials / subject



Experiment 3: Results
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by taking the ratio of the number of moves required by the ideal observer to the number of moves required by

the human observer.

Figure 11 illustrates these data for the three supplementary map conditions.  Planned comparison T-

Tests found that there was no significant difference between the No Map and the Map conditions for all four

participants (see Table 3) but there was a significant effect between the Map and the Map+Belief Vector

condition for all four participants.

Figure 11. Action selection efficiency plotted for the four participants in Experiment 3 as a function of
the supplementary information provided to the participant while navigating.

Table 3. Planned, paired t-tests for the four participants in Experiment 3.

Participant No Map vs. Map Map vs. Map + Belief Vector

Sub6 t(126)=-1.881; p=0.062 t(127)=-5.791; p<.001

Sub7 t(127)=.142;p=0.887 t(127)=-6.764; p<.001

Sub8 t(124)=-0.769; p=0.443 t(124)=-6.796; p<.001

Sub9 t(125)=0.463; p=0.644 t(127)=-5.848; p<.001

Discussion

The findings from Experiment 3 are very clear.  There was no significant increase in performance from

the No Map to the Map condition.  This result suggests that participants did not have difficulty in accessing

their cognitive map, or that the global information afforded by the supplementary map was not useful to them.

No Map Map Map + Belief Vector
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Experiment 3

• Providing explicit belief updating improves 
efficiency

• What about non-spatial navigation tasks?

• What if observations and actions are 
probabilistic



Seek & Destroy



Seek & Destroy

• In a space, there is an enemy.

• Enemy’s position remains static

• Find the enemy and destroy the enemy

• Actions and observations are 
probabilistic



Seek & Destroy
• “Seek & Destroy Task”

• 5x5 Area

• 1 Enemy 

• Actions

• Reconnaissance

• Artillery

• Declare Finished



Seek & Destroy

• Reward(Recon)=-35

• Reward(Artillery)=-100

• Reward(Declare|Dead)=500

• Reward(Declare|!Dead)=-750



Seek & Destroy

• p(Positive|Enemy)=0.9

• p(Positive|!Enemy)=0.05

• p(s’=Dead|Artillery(s),Enemy(s))=0.75



Seek & Destroy

• Three conditions

• Last action and observations

• All latest actions and observations

• Current belief given actions and 
observations
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Summary

• Sequential Decision Making with Uncertainty task 
that is a non-spatial navigation task

• How does belief updating affect performance

• Providing explicit belief updating improves 
performance

• Consistent with Navigation task.



General Summary

• Sequential Decision Making with 
Uncertainty.

• Where are the “cognitive bottlenecks” in 
solving these tasks efficiently.

• Currently: Primary limitation is belief 
updating.



Other thoughts...

• Computationally, belief updating is simple, 
computing optimal action difficult

• Belief updating:

• Human bad; computer good

• Optimal action

• Human good (given BV); Computer 
Laborious



Other thoughts...

• Learning about an environment

• Belief updating over possible environments.

• Constrain set of environments

• Number of hallways

• “footprint” of environment

• Drawing is estimate of current hypothesis



Collaborators

• Anthony Cassandra

• Gordon E. Legge

• J. Stephen Mansfield

• Erik Schlicht

• Kyler Eastman

• Chris Goodson



Thank you




