The role of belief updating in human sequential decision making with uncertainty

Brian J. Stankiewicz Department of Psychology enter for Perceptual Systems University of Texas Austin

HEALTY

101100

Confessions

Bayes as a tool

- Provides a vocabulary for understanding/describing a task.
 - What should a rational system do?
- Provides a benchmark assuming no processing inefficiencies or resource limitations.
 - If humans are optimal, assume an understanding of processes and resources for that task
 - If not optimal, localize how/why people are sub-optimal

Sequential Decision Making with Uncertainty

• Examples

- Medical diagnosis
- Localization in space
- Scientific exploration
- etc.
- Maximize reward given hidden state

Sequential Decision Making with Uncertainty

Observation Belief "Rotate Left"

Sequential Decision Making with Uncertainty

Next View

Observation

Belief

Structure of SDMU Task

- States: S
- Actions: A=<"Left", "Right", "Forward">
- Observations: O=<T-Junction, L-Junction, etc.>
- Cost/Rewards: C=<\$5,\$200,...,\$2,000>

Partially Observable Markov **Decision Process** Transition function: p(s'|s, a)Observation function: p(o|s, a)Belief Updating: $b_t(s') = p(s'|b_{t-1}, a, o)$ $b_t(s') = \frac{p(o|s',a) \sum_{s} p(s'|s,a) b_{t-1}(s)}{p(o|a,b_{t-1})}$

Computing Reward Reward(a, s)

Maximize the expected accumulated reward over time.

Partially Observable Markov Decision Process

References

- A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov Decision Processes. PhD thesis, Department of Computer Science, Brown University, May 1998.
- [2] A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In D. Geiger and P. P. Shenoy, editors, *Proceedings of* the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), pages 54–61, San Francisco, CA, 1997. Morgan Kaufmann Publishers.
- [3] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. *Artificial Intelligence*, 101:99–134, 1998.
- [4] E. Sondik. The Optimal Control of Partially Observable Markov Decision Processes. Ph.d. thesis, Stanford University, 1971.

Spatial Navigation

- Questions:
 - I. How efficiently do people navigate with uncertainty in a known environment?
 - 2. If inefficient, determine why inefficient
 - a. Observations
 - b.Transition function
 - c. Belief updating
 - d. Decision strategy

Spatial Navigation

- Develop a task that would be sensitive to all factors involved.
- Indoor virtual reality navigation task in which subjects navigate from unspecified state to a goal state.
- Vary the complexity/size of the environment

Experiment I

What is the effect of layout complexity/size on human navigation performance?

Environments composed of 10, 20, 40 and 80 hallway units.

Quantifying the task

Simplify Environments

Indoor Environments (based on Cartesian grid)

Simplify Visual Information (observations)

No "Landmark Information"

Structural Cues (e.g., T-junctions, L-junctions, etc.)

Simplify State Space

Quantize space into discrete set of states

Finite set of Locations and Orientations

Simplify Actions

Move Forward Rotate Right 90° Rotate Left 90°

Simplify Visual Information & Actions

Desktop VR Visually Sparse Perceptual Aliasing Actions made by keypress Forward I Hallway Unit Rotate Left 90° Rotate Right 90°

General Procedure

Training (Human):

Freely explore environment for limited time (3 minutes)

I Target Location in environment

Specified by auditory signal

Draw environment on blank grid.

Repeat exploration and drawing until map drawn correctly twice in a row.

Test (Human and Ideal):

Start from random location in environment

Move to target location using as few actions as possible

Indicate when they reached target location

Measure number of actions to reach target

Number Hallway Units = 10

Number Hallway Units = 80

Experiment I: Design

3 Subjects

2 Environments / Condition

Each subject ran in each environment.

Random order

Started from each position equal number of times.

Ran multiple trials from each position

Equal number of trials / condition

Training Sessions

Number of Actions as a Function Of Layout Size

Number of Actions as a Function Of Layout Size

Experiment I: Analysis

"Efficiency" = <u>Number of moves Ideal</u> Number of moves Human

Action Efficiency

Experiment I: Summary

Clear Effect of Layout Size on Efficiency.

Where is the inefficiency?

Experiment 2

Inefficient visual processing (observations)? Experiment 3

Accessing the Cog. Map (transition function) Belief Vector Generation (belief updating) Decision Strate

Experiment 2

Can inefficient visual processing explain inefficiencies?

Manipulate the amount of visual information available to the human observer.

Experiment 2: Limited View

Added virtual fog

Only able to see down I hallway unit

Predictions: Inefficient VP

Predictions: Inefficient VP

Predictions: Efficient VP

Predictions: Efficient VP

Experiment 2: Design

6 Subjects

Normal or corrected vision

Ran in two different environments

Limited and Unlimited views

Started from every state in the environment 6 times

960 trials / environment

Experiment 2: Summary

Does inefficient visual processing explain the inefficiencies found in Experiment 1?

No

Experiment 2:Discussion

Perception-

Accessing cognitive map Transition Function Spatial Updating Belief updating Decision Strategy

Experiment 3: Procedure

Training

Same as Experiment I

Test

Same as Experiment I with an additional map display

Three map conditions

Sample Display (No Map)

Sample Display (Map)

Sample Display

Map + Belief Vector

Predictions: Accessing Cog. Map

Predictions: Belief Updating

Predictions: Decision Strategy

Experiment 3: Design

- 4 Subjects
- 2 Different environments
 - Each subject ran in 1 environment
- Conditions were ran in random order
- Subjects ran in all three conditions
- Started from every state in each condition 3 times
 - 1440 Trials / subject

Experiment 3: Results

Experiment 3

- Providing explicit belief updating improves efficiency
 - What about non-spatial navigation tasks?
 - What if observations and actions are probabilistic

- In a space, there is an enemy.
- Enemy's position remains static
- Find the enemy and destroy the enemy
 - Actions and observations are probabilistic

- "Seek & Destroy Task"
- 5x5 Area
- I Enemy
- Actions
 - Reconnaissance
 - Artillery
 - Declare Finished

- Reward(Recon)=-35
- Reward(Artillery)=-100
- Reward(Declare|Dead)=500
- Reward(Declare|!Dead)=-750

- p(Positive|Enemy)=0.9
- p(Positive|!Enemy)=0.05
- p(s'=Dead|Artillery(s),Enemy(s))=0.75

- Three conditions
 - Last action and observations
 - All latest actions and observations
 - Current belief given actions and observations

] tk			-		-
Recon 0,0 Strike	Recon 1,0 Strike	Recon 2,0 Strike	Recon 3,0 Strike	Recon 4,0 Strike	
Recon 0,1 Strike	Recon 1,1 Strike	Recon 2,1 Strike	Recon 3,1 Strike	Recon 4,1 Strike	Se rec
Recon 0,2 Strike	Recon 1,2 Strike	Recon 2,2 Strike	Recon 3,2 Strike	Recon 4,2 Strike	art de de art rec
Recon 0,3 Strike	Recon 1,3 Strike	Recon 2,3 Strike	Recon 3,3 Strike	Recon 4,3 Strike	rea dis
Recon 0,4 Strike	Recon 1,4 Strike	Recon 2,4 Strike	Recon 3,4 Strike	Recon 4,4 Strike	
		Dead	•	•	1
Decl	are-Done Acti Last Last Last Acci	Start Trial on Count: 0 Action: N/A Observation: I Reward: N/A umulated Rewa	End Trial	Quit	

● tk						
Recon	Recon	Recon	Recon	Recon		
0,0	1,0	2,0	3,0	4,0		
Strike	Strike	Strike	Strike	Strike		
Recon	Recon	Recon	Recon	Recon		
0,1	1,1	2,1	3,1	4,1		
Strike	Strike	Strike	Strike	Strike	Seek/	
Recon	Recon	Recon	Recon	Recon	artille declar	
0,2	1,2	2,2	3,2	4,2	declar	
Strike	Strike	Strike	Strike	Strike	artille	
					recon	
Recon	Recon	Recon	Recon	Recon	displa	
0,3	1,3	2,3	3,3	4,3		
Strike	Strike	Strike	Strike	Strike		
Recon	Recon	Recon	Recon	Recon		
0,4	1,4	2,4	3,4	4,4		
Strike	Strike	Strike	Strike	Strike		
Dead						
Decl	are-Done	Start Trial	End Trial	Quit		
Action Count: 0						
Last Action: N/A						
Last Observation: N/A						
Last Reward: N/A						
Accumulated Reward: 0.0						

tk					
Recon	Recon	Recon	Recon	Recon	
0,0	1,0	2,0	3,0	4,0	
Strike	Strike	Strike	Strike	Strike	
Recon	Recon	Recon	Recon	Recon	
0,1	1,1	2,1	3,1	4,1	
Strike	Strike	Strike	Strike	Strike	
Recon	Recon	Recon	Recon	Recon	
0,2	1,2	2,2	3,2	4,2	
Strike	Strike	Strike	Strike	Strike	
Recon	Recon	Recon	Recon	Recon	
0,3	1,3	2,3	3,3	4,3	
Strike	Strike	Strike	Strike	Strike	
Recon	Recon	Recon	Recon	Recon	
0,4	1,4	2,4	3,4	4,4	
Strike	Strike	Strike	Strike	Strike	
		Dead		-	
Decl	are-Done	Start Trial	End Trial	Quit	
	Actio	on Count: 0			
	Lasi	Observation:	N/A		
	Last	Reward: N/A			
Accumulated Reward: 0.0					

] tk			-		-
Recon 0,0 Strike	Recon 1,0 Strike	Recon 2,0 Strike	Recon 3,0 Strike	Recon 4,0 Strike	
Recon 0,1 Strike	Recon 1,1 Strike	Recon 2,1 Strike	Recon 3,1 Strike	Recon 4,1 Strike	Se rec
Recon 0,2 Strike	Recon 1,2 Strike	Recon 2,2 Strike	Recon 3,2 Strike	Recon 4,2 Strike	art de de art rec
Recon 0,3 Strike	Recon 1,3 Strike	Recon 2,3 Strike	Recon 3,3 Strike	Recon 4,3 Strike	rea dis
Recon 0,4 Strike	Recon 1,4 Strike	Recon 2,4 Strike	Recon 3,4 Strike	Recon 4,4 Strike	
		Dead	•	•	1
Decl	are-Done Acti Last Last Last Acci	Start Trial on Count: 0 Action: N/A Observation: I Reward: N/A umulated Rewa	End Trial	Quit	

● tk							
Recon (?)	Recon (?)	Recon (?)	Recon (?)	Recon (?)			
0,0	1,0	2,0	3,0	4,0			
Strike	Strike	Strike	Strike	Strike			
Recon (?)	Recon (-)	Recon (?)	Recon (?)	Recon (?)			
0,1	1,1	2,1	3,1	4,1			
Strike	Strike	Strike	Strike	Strike	SeekAndDest		
					recon_reward		
Recon (?)	Recon (?)	Recon (?)	Recon (-)	Recon (?)	declare corre		
0,2	1,2	2,2	3,2	4,2	declare_incor		
Strike	Strike	Strike	Strike	Strike	artillery_dest		
					recon_detect_		
Recon (?)	Recon (+)	Recon (+)	Recon (?)	Recon (?)	display_mode		
0,3	1,3	2,3	3,3	4,3			
Strike	Strike	Strike	Strike	Strike			
Recon (?)	Recon (?)	Recon (?)	Recon (?)	Recon (?)			
0,4	1,4	2,4	3,4	4,4			
Strike	Strike	Strike	Strike	Strike			
	Dead						
Decl	are-Done	Start Trial	End Trial	Quit	1		
Action Count: 4							
Last Action: Recon-2-3							
Last Observation: EnemySighted							
	Last Reward: -35.0						
Accumulated Reward: -140.0							

巴

Seek & Destroy: Data

Summary

- Sequential Decision Making with Uncertainty task that is a non-spatial navigation task
 - How does belief updating affect performance
 - Providing explicit belief updating improves performance
 - Consistent with Navigation task.

General Summary

- Sequential Decision Making with Uncertainty.
 - Where are the "cognitive bottlenecks" in solving these tasks efficiently.
 - Currently: Primary limitation is belief updating.

Other thoughts...

- Computationally, belief updating is simple, computing optimal action difficult
 - Belief updating:
 - Human bad; computer good
 - Optimal action
 - Human good (given BV); Computer Laborious

Other thoughts...

- Learning about an environment
 - Belief updating over possible environments.
 - Constrain set of environments
 - Number of hallways
 - "footprint" of environment
 - Drawing is estimate of current hypothesis

Collaborators

- Anthony Cassandra
- Gordon E. Legge
- J. Stephen Mansfield
- Erik Schlicht
- Kyler Eastman
- Chris Goodson

Thank you