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Garden Path vs. Garden Variety
Modeling Robustness

The Garden Path View of Human Parsing

Parsing: extracting syntactic structure from a string; prerequisite
for assigning a meaning to the string.

Structures are built incrementally (word by word) as the input
comes in (Tanenhaus et al. 1995), which leads to local ambiguity.

Example:

(1) The athlete realized his potential . . .

a. . . . at the competition.
b. . . . would make him a world-class sprinter.
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The Garden Path View of Human Parsing

Early commitment: when it reaches potential, the processor
has to decide which structure to build.

If the parser makes the wrong choice (e.g., NP reading for
sentence (1-b)) it needs to backtrack and revise the structure.

A garden path occurs, which typically results in longer reading
times (and reverse eye-movements).

Garden paths traditionally the main object of study in
psycholinguistics:

determine experimentally under which conditions they occur;
draw conclusions about the architecture of the human parser;
build models that explain garden pathing.

Frank Keller Models of Sentence Processing 7



Properties of the Human Parser
Probabilistic Grammars

A Probabilistic Model of Human Parsing

Garden Path vs. Garden Variety
Modeling Robustness

Garden Path vs. Garden Variety

Limitations of current models of human parsing:

Most models deals with processing breakdown (garden paths
as main object of study).

However, processing breakdown is exceedingly rare in naturally
occurring speech and text.

Under normal conditions, human parsing is extremely robust:

accurate: recovers the correct interpretation;
coverage: deals with most types of sentences, including
ungrammatical and noisy input;
efficient: processes utterances in real-time, incrementally.

Challenge: model garden variety parsing, i.e., parsing that occurs
naturally and doesn’t lead to processing breakdown.
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Modeling Robustness in Human Parsing

Goal: our models must account for, and explain:

processing difficulty in specific circumstances;

robustness in general.

Probabilistic approach: the processor computes t̂, the most
probable parse for a sentence S :

t̂ = arg max
t

P(t, S)

Estimate P(t, S) using probabilistic grammars.
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Unlexicalized Grammars
Lexicalized Grammars

Probabilistic Context-Free Grammars

A PCFG is a standard CFG where each grammar rule N → ζ

is annotated with a probability P(N → ζ);

the probabilities of all rules with the same lefthand side sum
to one: ∑

j

P(N → ζ j) = 1

the probability of a parse t is the product of the probabilities
of all rules applied in that parse:

P(t) =
∏

(N→ζ)∈ t

P(N → ζ)
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Probabilistic Context-Free Grammars

Example for an ambiguous sentences:

(2) Peter saw the man with the bottle.

Grammar that generates two readings for this sentence:
S → PN VP 1.0 PN → Peter 1.0

VP → V NP .8 V → saw 1.0
VP → VP PP .2 D → the 1.0
NP → NP PP .7 N → man .5
NP → D N .3 N → bottle .5
PP → P NP 1.0 P → with 1.0

Frank Keller Models of Sentence Processing 11



Properties of the Human Parser
Probabilistic Grammars

A Probabilistic Model of Human Parsing

Unlexicalized Grammars
Lexicalized Grammars

Probabilistic Context-Free Grammars
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Probabilistic Context-Free Grammars
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Unlexicalized Grammars
Lexicalized Grammars

Lexicalized PCFGs

Incorporate lexical information into the grammar:

project lexical items along the head projection in the tree;

augment grammar rules accordingly;

approximates fine-grained syntactic (e.g., agreement) and
semantic information (e.g., selectional restrictions);

lexicalization can dramatically improve parsing accuracy
(Charniak 1997, 2000; Collins 1997);

convincing evidence that the human parser makes use of
lexical information (Trueswell 1996; MacDonald et al. 1994).
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Unlexicalized Grammars
Lexicalized Grammars

Lexicalized PCFGs
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Towards Robust Models of Human Parsing

Aim: build and evaluate models of human parsing that perform
well on garden variety text:

train probabilistic grammars on a syntactically annotated
corpus;

compare models that differ in the amount of information they
extract from the corpus (unlexicalized vs. lexicalized);

evaluate model fit against eye-movement data.

How do we evaluate model fit?
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Evaluating the Robustness of a Model

Current practice in evaluation:

take a small set of hand-picked examples; test if model makes
the right predictions for these sentences; (e.g., Jurafsky 1996;
Crocker and Brants 2000).

take a small set of experimental conditions; test if the model
produces the same pattern of results (e.g., Narayanan and
Jurafsky 2002).

Instead, we should test if the model accounts for the robustness of
the human parser:

Test quantitative predictions on a random sample of realistic
sentence material.
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Evaluating the Robustness of a Model

Typical example (Narayanan and Jurafsky 2002):
Subjects: Model:

Qualitative evaluation on four experimental conditions; model
produces roughly the same pattern as the experiment.
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Evaluating the Robustness of a Model

Alternative: evaluation on large sample of sentences:
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Regression analysis provides quantitative comparison of model
predictions and experimental measures.
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Training Data

Parsing models trained on the same training set: Penn Treebank
(Marcus et al. 1993):

approximately 1 million words of newspaper text (from the
Wall Street Journal);

manually part of speech tagged and annotated with phrase
structure trees;

standard division into training set (ca. 50,000 sentences), and
development and test set (ca. 2,000 sentences each).

train an unlexicalized and a lexicalized PCFG (Charniak 2000);
rule probabilities obtained using maximum likelihood
estimation.
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Test Data

Embra Corpus (McDonald and Shillcock 2003):

material: 10 articles from UK broadsheet newspapers, wide
range of topics;

97–405 words per article, 2,262 words in total;

subjects: 23 native speakers of British English;

texts presented on computer screen, 65 characters per line,
10 lines, 23 pages in total;

eye-movements recorded using Dual Purkinje Image
eye-tracker;

comprehension question presented after each article.
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Interlude: Eye-tracking Experiments
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The pilot embarrassed John and put himself in a very awkward situation.

gaze duration = 5+6
Total time = 5+6+8+10
Second pass time = 8+10

First fixation time = 5

Skipping rate: e.g. put

Early measures (first fixation time, gaze duration, skipping
rate) are informative about early processes;

Later measures (total time, second pass time) tell you more
about processes that occur after some delay.
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Modeling Methodology

Test models against experimental data (unseen test set):

parse the experimental stimulus;

compute the probability of best parse;

correlate probability with reading time.

Note: all reading time measures are by-sentence means (e.g., mean
first fixation time for all words in a sentence).

Sentence probabilities normalized in the same way (i.e., per-word
means are computed).
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Modeling Methodology

All analyses computed using regression analyses including the
following predictors:

mean word length;

mean word frequency (logs);

mean sentence probability (logs).

Word length and word frequency are known to correlate with
reading times.

By including them in the regression we can assess if sentence
probability is an independent predictor of reading measures.

All analyses conducted based on Lorch and Myers’s (1990)
recommendations for repeated measures regression.
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Modeling Results

Baseline model: word frequency
Correlations (r)

first skip gaze total length

length .365∗∗∗−.436∗∗∗ .335∗∗∗ .279∗∗∗

freq −.227∗ .303∗∗ −.197 −.169 −.556

Significant independent predictors in the regression equation:
∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Word frequency sig. indep. predictor for early measures.
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Modeling Results

Parsing model: unlexicalized PCFG
Correlations (r)

first skip gaze total length freq

length .365∗∗∗−.436∗∗∗ .335∗∗∗ .279∗∗∗

freq −.227∗ .303∗∗ −.197∗ −.169∗ −.556
prob −.091 .142 −.059∗∗ −.052∗ −.229 .685

Unlexicalized PCFG probability sig. indep. predictor for later
measures.
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Modeling Results

Parsing model: lexicalized PCFG (Charniak 2000)
Correlations (r)

first skip gaze total length freq

length .365∗∗∗−.436∗∗∗ .335∗∗∗ .279∗∗∗

freq −.227 .303∗ −.197 −.169 −.556
prob −.260∗∗∗ .289∗ −.245∗∗∗−.207∗∗∗−.519 .576

Lexicalized PCFG probability sig. indep. predictor for early and
later measures.
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Discussion

Word frequency sig. predictor of early measures (first fixation,
skipping rate):

⇒ well-know effect from the eye-tracking literature;

Unlexicalized PCFG probabilities sig. indep. predictors of later
measures (gaze duration, total time):

⇒ models syntactic information that goes beyond word frequency
and influences later processing stages;

Lexicalized PCFG probability sig. indep. predictor of both
early and late measures; higher correlation than unlex. PCFG:

⇒ combines lexical and syntactic information; models syntactic
information more accurately than PCFG.

Frank Keller Models of Sentence Processing 31



Properties of the Human Parser
Probabilistic Grammars

A Probabilistic Model of Human Parsing
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Summary

Robust probabilistic parsing models were tested as models of
human parsing;

these models share the accuracy, broad coverage, and
efficiency of the human parser;

all models predict garden variety eye-tracking data, but differ
as to whether they predict early or later measures;

the most successful parsing model was a lexicalized PCFG,
which is able predict both early and later measures.
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Part II

Models of Text Processing
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Entropy Rate Principle
Predictions

From Sentence to Text

We have successfully modeled the processing of individual
sentences using probabilistic models.

Can the probabilistic approach be extended to text, i.e.,
connected sequences of sentences?

Use notions from information theory to formalize the
relationship between processing effort for sentences and
processing effort for text.
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From Sentence to Text

Entropy Rate Principle

Speakers produce language whose entropy rate is on average
constant (Genzel and Charniak 2002, 2003; G&C).

Motivation:

information theory: most efficient way of transmitting
information through a noisy channel is at a constant rate;

if human communication has evolved to be optimal, then
humans produce text and speech with constant entropy;

some evidence for speech (Aylett 1999).
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Entropy Rate Principle

Applying the Entropy Rate Principle (ERP) to text:

entropy is constant, but the amount of context available to
the speaker increases with increasing sentence position;

prediction: if we measure entropy out of context (i.e., based
on the probability of isolated sentences), then entropy should
increase with sentence position;

G&C show that this is true for both function and content
words, and for a range of languages and genres;

entropy can be estimated using a language model or a
probabilistic parser.
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Entropy Rate Principle

Sentences in context:

1. a a a a a a a
2. b b b b b b b
3. c c c c c c c
4. d d d d d d d
5. e e e e e e e

Sentences out of context:

a a a a a a a H = 0.4

e e e e e e e H = 0.7
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Predictions

Predictions for Human Language Processing

Out-of-context predictions

out-of-context entropy increases with sentence position; tested
extensively by G&C (replicated in Exp. 1);

out-of-context processing effort increases with sentence
position;

reading time as an index of processing effort;

prediction: out of context reading time correlated with
sentence position (Exp. 3).
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Entropy Rate Principle
Predictions

Predictions for Human Language Processing

In-context predictions

in-context entropy on average the same for all sentences;

prediction: in-context reading time not correlated with
sentence position (Exp. 2).

processing effort increases with entropy;

reading time as an index of processing effort;

prediction: reading time correlated with entropy (Exp. 2).
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Experiment 1: Method

Replication of G&C’s results:

use Wall Street Journal corpus (1M words), divided into
training and test set;

treat each article as a separate text; compute sentence
position by counting from beginning of text (1–149).

compute per-word entropy computed using an n-gram
language model:

Ĥ(X ) = −
1

|X |

∑

xi∈X

log P(xi |xi−(n−1) . . . xi−1)

Extension of G&C’s results:

correlation on raw data or on binned data (avg. by position);

baseline model: sentence length |X |.
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Results
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Results

Correlation of sentence entropy and sentence position (c = 25):

Binned data Raw data

Entropy 3-gram 0.6387∗∗ 0.0598∗∗

Sentence length −0.4607∗ −0.0635∗∗

Significance level: ∗p < .05, ∗∗p < .01
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Results

We need to disconfound entropy and sentence length.

Compute correlation of entropy and sentence length with sentence
position, with the other factor partialled out (c = 25):

Binned data Binned data Raw data

Entropy 3-gram 0.6708∗∗ 0.0784∗∗

Sentence length −0.7435∗∗ −0.0983∗∗
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Discussion

Results of Exp. 1 confirm G&C’s main finding: entropy
increases with sentence position;

however: sign. negative correlation between sentence position
and sentence length: longer sentences tend to occur earlier in
the text;

further analyses show that entropy rate is a significant
independent predictor, even if sentence length is controlled for;

G&Cs effect holds even without binning: important for
evaluation against human data (binning not allowed).
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Aims
Method
Results
Discussion

Aims of Experiment 2

This experiment tests the psycholinguistic predictions of the ERP
in context:

entropy predicted to correlate with processing effort;

test this using a corpus of newspaper text annotated with
eye-tracking data;

eye-tracking measures of reading time reflect processing effort
for words and sentences;

sentences position predicted not to correlate with processing
effort for in-context sentences.
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Method
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Discussion

Method

Test set: Embra eye-tracking corpus (McDonald and Shillcock
2003); 2,262 words of text from UK newspapers;

regression used to control confounding factors: word length,
word frequency (Lorch and Myers 1990);

training and development set: broadsheet newspaper section
of the BNC; training: 6.7M words, development: 0.7M words;

sentence position: 1–24 in test set, 1–206 in development set;

entropy computed as in Experiment 1;
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Method
Results
Discussion

Results

Correlation of entropy and position on the Embra corpus:

Binned data Raw data

Entropy 3-gram −0.5512∗∗ −0.1674
Sentence length 0.3902 0.0885

Correlation of reading times with entropy and sentence position:

Entropy 3-gram 0.1646∗∗

Sentence position −0.0266
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Results
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Method
Results
Discussion

Discussion

Results on Embra corpus show sign. correlations between
entropy and sentence position;

sign. correlation between entropy and reading time (with word
length and frequency partialled out);

confirms ERP assumption: sentences with higher entropy are
harder to process;

no sign. correlation between position and reading time;

confirms ERP prediction: entropy constant in connected text.
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Aims of Experiment 3

This experiment further investigates the psycholinguistic
predictions of the ERP out of context:

entropy predicted to correlate with processing effort;

test this using out-of-context sentences;

self-paced reading time reflects processing effort for words and
sentences;

sentences position predicted to correlate with processing effort
for out-of-context sentences.
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Method

60 sentences samples randomly from Embra corpus;
5 sentences each for positions 1–12;

sentences presented out of context in random order; 24 filler
sentences interspersed;

32 native speakers read the sentences using a word-by-word
self-paced reading paradigm;

measure of processing effort: total reading time for a sentence,
normalized by sentence length;

regression used to control confounding factors: word length,
word frequency (as in Exp. 2);

entropy computed as in Exp. 1 and 2;
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Results

Correlation of entropy and position in the stimulus set:

Binned data Raw data

Entropy 3-gram 0.1201 −0.0366
Sentence length −0.1023 −0.0464

Correlation of reading times with entropy and sentence position:

Entropy 3-gram 0.0523
Sentence position 0.0504∗∗
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Discussion

Sign. correlation between sentence position and reading time
for sentences presented out of context;

confirms ERP prediction: out-of-context entropy increases
with sentence position.

however: no sign. correlation between entropy and sentence
position; no sign. correlation between entropy and reading
time;

probably due to small data set compared to Exp. 2.
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Summary

Probabilistic models extended from sentence to text using
entropy rate principle;

confirmed in-context predictions of ERP using reading time
data for connected text:

⇒ correlation between entropy and processing effort (i.e., reading
time);

⇒ no correlation between position and processing effort;

confirmed out-of-context predictions of ERP using reading
time data for isolated sentences:

⇒ correlation between sentence position and processing effort.
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Future Work

Sentence Processing Models

Incrementality: test parsing models on a word-by-word basis;
requires an incremental parser (and probability model);

Measures: replace sentence probability with more realistic
measure of processing difficulty (probability ratio, Jurafsky
1996, or entropy, Hale 2003);

Garden paths: show that the model not only works for garden
variety, but also for garden path sentences.

Text Processing Models

Integration: combine with sentence processing models; use
prob. grammars instead of language models.
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