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Probabilistic mechanisms in sensorimotor control
Daniel Wolpert, University College London

• movement is the only way we have of

– Interacting with the world 

– Communication: speech, gestures, writing 

• sensory, memory and cognitive processes ���� future motor outputs

Q. Why do we have a brain?
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Why study computational sensorimotor control?
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Reverse-engineering human sensorimotor control

Outline
– Learning

• I. Bayesian learning

– Prediction

• II. Sensory prediction

– Evaluation

• III. Loss function

– Control

• IV. Optimal control
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Upper limb 
• Multiple degrees of freedom
• Nonlinear & time-varying
• Time delays & noise

I. Bayesian Motor Learning
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Optimal estimate (Posterior)

Bayes rule
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Task statistics (Prior)
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Sensory feedback (Evidence)

Combine multiple cues

to reduce uncertainty

Estimate

Evidence

Prior

P (sensorP(state| y input|ssensory tate Pinput) (st )) ate∝

Real world tasks have variability,  e.g. estimating ball’s bounce location

Does sensorimotor learning use Bayes rule?

If so, is it implemented

• Implicitly: mapping sensory inputs to motor outputs to minimize error?

• Explicitly: using separate representations of the statistics of the prior and sensory noise?

(Körding & Wolpert, Nature, 2004)
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(Körding & Wolpert, Nature, 2004)
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1) prior statistics of the task 
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Supports model 2: Bayesian

Results: 10 subjects
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Bayesian integration
Subjects can learn 

• multimodal priors

• priors over forces

• different priors one after the other

(Körding& Wolpert NIPS 2004,  Körding, Ku & Wolpert J. Neurophysiol. 2004)
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Statistics of the world shape our brain

Objects Configurations of our body

• CNS

– Represents the distribution of tasks

– Estimates its own sensory uncertainty

– Combines these two sources in a Bayesian way

Statistics of action

With limited neural resources statistics of motor tasks ���� motor performance

• Statistics of visual/auditory stimuli ���� representation visual/auditory cortex
• Statistics of early experience ���� what can be perceived in later life

(e.g.  statistics of spoken language)

Symmetry bias
In phase (0) Out of phase (180)90

Symmetry  bias in extrinsic space 

(Mechsner et al, Nature, 2001)

System with limited resources

•Allocate more resources to common (important) movements
•If correlations between hands then code with single controller

Phase relationships and 

symmetry bias

Symmetry bias may reflect statistics of tasks

II. Sensory likelihood
P(sensorP(state| y input|ssensory tateinput) P(st )) ate∝

Fundamental for
1. State estimation 

2. Control with delays

3. Mental simulation

4. Likelihood estimation
Wolpert & Kawato, Neural Networks 1998
Haruno, Wolpert, Kawato, Neural Computation 2001

5. Sensory filtering

(Wolpert et al., Science, 1995)
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Sensory prediction
Our sensors report

• Ex-afferent information:    changes in outside world

• Re-afferent information: changes we cause

+ =

Internal 

source
External

source

Tickling
Self-administered tactile stimuli rated as less ticklish than 

externally administered tactile stimuli. (Weiskrantz et al, 1971) 

Does prediction underlie tactile cancellation in tickle?
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(Blakemore, Frith & Wolpert. J. Cog. Neurosci. 1999)

The escalation of force Tit-for-tat

Force escalates under rules designed 

to achieve parity: Increase by ~40% per turn

(Shergill, Bays, Frith & Wolpert, Science, 2003)
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Perception of force

70% overestimate in force

Perception of force

Labeling of movements

Large 
sensory

discrepancy

Defective prediction in patients 

with schizophrenic

• The CNS predicts sensory 
consequences

• Sensory cancellation in  
Force production

• Defects may be related to 
delusions of control

Patients 
Controls

(Shergill, Samson, Bays, Frith & Wolpert, Am J. Psychiatry, In Press)

III. Loss Functions in Sensorimotor system

• What is the performance criteria (loss, cost, utility, reward)? 

– How bad is 2cm vs. 1cm error?

• Often assumed in statistics & machine learning 

– that we wish to minimize squared error

– for analytic or algorithmic tractability

• What measure of error does the brain care about?
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Loss function

312 2

Target
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2
Loss error=

1
2Loss error=

Loss error=
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Virtual pea shooter
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(Körding & Wolpert, PNAS, 2004)

Probed distributions and optimal means

Possible Loss functions
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Duration Hand Trajectory

Joint Muscles

• Tasks are usually specified at a symbolic level
• Motor system works at a detailed level, specifying muscle activations

• Gap between high and low-level specification

IV. Decisions in a redundant motor systems

Eye-saccades Arm- movements

Motor evolution/learning results in stereotypy

Stereotypy between repetitions and individuals

Time (ms)

• Main sequence

• Donder’s law

• Listings Law

• 2/3 power law

• Fitts’ law

• Isochrony
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The Assumption of Optimality
Movements have evolved to maximize fitness

– improve through evolution/learning

– every  possible movement which can achieve a task has a cost

– we select movement with the lowest cost

Overall cost =   cost1 + cost2 + cost3 ….

Previous (incorrect) costs

Saccadic eye movements

• little vision over 4°/s

• saccades >200°/s

• frequent 2-3 /sec each ~50ms

• deprives of vision ~90 min/day

⇒Minimize time

Arm Movements 

• Are smooth

⇒ Minimum jerk 

(rate of change of acceleration)

⇒ Minimum torque change

Criteria for cost for goal-directed movement

• Makes sen se in terms of advantage for evolution & learning 

• Simple for CNS to measure

• Generalizes to different systems  e.g.  eye, head, arm

• Generalizes to different tasks  e.g. pointing, grasping, drawing

→ Reproduce & predict behaviour 

Fundamental constraint=Signal-dependent noise

• Signal-dependent noise: 

– Constant coefficient of variation

– SD (motor command) ~ Mean (motor command)

• Evidence from

– Experiments: SD (Force) ~ Mean (Force)

– Modelling  

• Spikes drawn from a renewal process

• Recruitment properties of motor units

(Jones, Hamilton & Wolpert , J. Neurophysiol., 2002) 
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Signal-dependent noise and task achievement

Sequence of motor commands ⇒ probability distribution (statistics) of movement.

The statistics of action can be controlled by changing the motor command

Task ≡ Optimizing  f(statistics)

(Harris & Wolpert, Nature, 1998)
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Noise

Desired command Actual command

TimeTime

Pointing movements: (f=terminal error)

Given:

• Amplitude

• Duration

• Eye model: 3rd order linear system

• Signal-dependent noise σu ∝ u

Unique optimal trajectory

A

Saccade predictions

SDN

Motor 
command

Jerk
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22 degree saccade in 270 ms (normally ~ 70 ms)
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(Tomlinson & Bahra, 1986)

Coordination: Sharing reduces variance

Var=k A2Eye only

Var=k A2Head only

Var= k (A/2)2 + k (A/2)2

= k A2 /2
Eye + Head

Gaze amplitude
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Arm movements

Smoothness

Non smooth movement 

⇒ requires abrupt change in velocity

⇒ given inertial system

⇒ large motor command

⇒ increased noise

Smoothness ⇒ accuracy

Arm movements

Obstacle avoidance Drawing Muscle tuning 

• Biologically plausible underpinning 
for eye, head, arm and wrist movements

• Noise lead to statistics of movement

• We can control the statistics by choosing different ways to move

Summary
CNS

– Minimizes uncertainty through Bayesian estimation

– Predict consequences of actions
– Penalize squared errors but robust to outliers 

– Controls statistics through planning
www.wolpertlab.com
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