L@l Probabilistic mechanisms in sensorimotor control
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Q. Why do we have a brain?

A. To produce adaptable and complex movements

« movement is the only way we have of
— Interacting with the world
— Communication: speech, gestures, writing

+ sensory, memory and cognitive processes = future motor outputs

Sea Squirt

Why study computational sensorimotor control?

Principles of Neural Science, Kandel et al.
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Reverse-engineering human sensorimotor control
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« Multiple degrees of freedom
« Nonlinear & time-varying

* Time delays & noise
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l. Bayesian Motor Learning

Real world tasks have variability, e.g. estimating ball’s bounce location

\ Sensory feedback (Evidence)
Combine multiple cues
to reduce uncertainty

+

Notall locations are
equally likely

Optimal estimate (Posterior)
Bayes rule

P(state|sensory input) oc P (sensory input|state) P(state)

Does sensorimotor learning use Bayes rule?

If so, isit implemented

« Implicitly: mapping sensory inputs to motor outputs to minimize error?

« Explicitly: using separate representations of the statistics of the prior and sensory noise?
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Task in which we control
1) prior statistics of the task
2) sensory uncertainty
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Supports model 2: Bayesian

Bayesian integration
Subjects can learn
* multmodal priors
« priors over forces
« different priors one after the other

istribution single subjec all sul -
A distribufi B ingl ibject ' i ject:

1

E £

z g g
£ 5§ 5 ag’f
9 55 5-:0_;;‘45_..: 2
2 By 8

& 2 [ 2 U

true lateral shift [erm] true lateral shift [em] rue lateral shift [een]

(Kérding& Wolpert NIPS 2004, Kording, Ku & Wolpert J. Neurophysiol. 2004)




Statistics of the world shape our brain

Objects Configurations of our body

+ CNS
— Represents the distribution of tasks
— Estimates its own sensory uncertainty
— Combines these two sources ina Bayesianway

Statistics of action

« Statistics of visual/auditory stimuli = representation visual/auditory cortex
« Statistics of early experience = what can be perceived in later life
(e.g. statistics of spoken language)

With limited neural resources statistics of motor tasks = motor performance

Symmetry bias

In phase (0) Out of phase (180)
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Symmetry bias in extrinsic space
(Mechsner et al, Nature, 2001)
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System with limited resources
+Allocate more resources to common (important) movements
«If correlations between hands then code with single controller
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Symmetry bias may reflect statistics of tasks

II. Sensory likelihood

P(state|sensory input) oc P (sensory input|state) P(state)

Prodictors
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Fundamental for

1. State estimation

2. Control with delays
3. Mental simulation

4. Likelihood estimation

Wolpert & Kawato, Neural Networks 1998
Haruno, Wolpert, Kawato, Neural Computation 2001
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. Sensory filtering

(Wolpertet al., Science, 1995)




Sensory prediction

Our sensors report
< Ex-afferent information:
« Re-afferent information:

changes in outside world
changes we cause

Predicted

Efference sensory | A

feedback

Internal External
source source

Tickling

Self-administered tactile stimuli rated as less ticklish than
externally administered tactile stimuli. (Weiskrantz et al, 1971)

Does prediction underlie tactile cancellation in tickle?
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(Blakemore, Frith & Wolpert. J. Cog. Neurosci. 1999)

The escalation of force

Tit-for-tat

Farce (N)

Force escalates under rules designed

to achieve parity: Increase by ~40% per tum

(Shergill, Bays, Frith & Wolpert, Science, 2003) Turn




Perception of force

Matched foree (N)

70% overestimate in force
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Defective prediction in patients
with schizophrenic
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The CNS predicts sensory
consequences

Matched force (N)

Sensory cancellation in
Force production

Defects may be related to
delusions of control

Target force (N)
(Shergill, Samson, Bays, Frith & W oert, Am J. Psychiatry, In Press)

[ll. Loss Functions in Sensorimotor system
P (state|sensory input) oc P(sensory input|state) P(state)
—

Posterior Likelihood Prior

Posterior
Probability

Target Position

* What is the performance criteria (loss, cost, utility, reward)?
— How bad is 2cm s. 1cm error?

» Often assumed in statistics & machine learning
— that we wish to minimize squared error
— for analytic or algorithmic tractability

» What measure of error does the brain care about?

Loss function
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Virtual pea shooter
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(Kérding & Wolpert, PNAS, 2004)

Probed distributions and optimal means

Possible Loss functions
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IV. Decisions in a redundant motor systems

» Tasks are usually specified at a symbolic level
» Motor system works at a detailed level, specifying muscle activations
* Gap between high and low-level specification

Duration Hand Trajectory

Joint Muscles

Motor evolution/learning results in stereotypy

Stereotypy between repetitions and individuals

Arm- movements

Eye-saccades

1

Velocity
o
o
TN

0 500
Time (ms)

Time (ms)

« Main sequence « 2/3 power law

« Donder’s law
+ Listings Law

Fitts’ law
Isochrony




The Assumption of Optimality

Movements have evolved to maximize fitness
— improve through evolution/leaming
— every possible movementwhich can achieve a task has a cost
— we selectmovementwith the lowestcost

Overall cost cost)- cost,+ cost, ....

Previous (incorrect) costs

Saccadic eye movements Arm Movements
litie vision over 4°/s * Are smooth
saccades >200°/s
« frequent2-3 /sec each ~50ms
« deprives of vision ~90 min/day

24 = Minimum jerk
(rate of change of acceleration)

=Minimize time => Minimum torque change

Criteria for cost for goal-directed movement

. Makes sense in terms of advantage for evolution & leaming

. Simple for CNS to measure

. Generalizes to different systems e.g. eye, head, arm

. Generalizes to differenttasks e.g. pointing, grasping, drawing

— Reproduce & predict behaviour

Fundamental constraint=Signal-de pendent noise

‘Sgral-depends noise
+ Signal-dependent noise:
8|
— Constant coefficient of variation
— SD (motor command) ~ Mean (motor command)*
7]
» Evidence from 9
— Experiments: SD (Force) ~ Mean (Force) g o
— Modelling 8
« Spikes drawn from a renewal process g
« Recruitment properties of motor units ==
(Jones, Hamilton & Wolpert , J. Neurophysiol., 2002) i
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Sequence of motor commands = probability distribution (statistics) of movement.

The statistics of action can be controlled by changing the motor command
Task = Optimizing f(statistics)

(Harris & Wolpert, Nature, 1998)

Pointing movements: (f=terminal error)
Given: A
* Amplitude
» Duration
+ Eye model: 3 order linear system

+ Signal-dependent noise G, oc u

Unique optimal trajectory

O

)

o) t-ue
kie T +hie 2 +hkse

(= m)neT +(n=m)me™ +(n-m)new

u(t) =

Saccade predictions

- B 400

P

£ s

= z

gam- 2 200
]

= >




Prediction: very slow saccade

22 degree saccade in 270 ms (normally ~ 70 ms)
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Coordination: Sharing reduces variance

Eye only Var=k A2
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Angular deviation at acquisition
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Arm movements

Obsverved Predicted
Smoothness

Non smooth movement

= requires abrupt change in velocity
= given inertial system

= large motor command

= increased noise

Smoothness = accuracy
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Arm movements

Obstacle avoidance Drawing Muscle tuning

» Biologically plausible undeminning
for eye, head, amm and wrist movements
* Noise lead to statistics of movement
* We can control the statistics by choosing different ways to move

Summary

CNS
— Minimizes uncertainty through Bayesian estimation
— Predict consequences of actions
— Penalize squared errors but robust to outliers
— Controls statistics through planning
www.wolpertlab.com
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