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Outline of second part:
1. Performance in feedback loops: tracking, disturbance 

rejection, transient response. Integral control.
2. Fundamental design tradeoffs. The role of delay. Bode 

Integral formula
3. Extensions to multivariable control.  



Performance of feedback loops

• Stability and its robustness are essential properties; 
however, they are only half of the story.

• The closed loop system must also satisfy some notion of 
performance:
– Steady-state considerations (e.g. tracking errors).
– Disturbance rejection.
– Speed of response (transients, bandwidth of tracking).

• Performance and stability/robustness are often at odds.
• For single input-output systems, frequency domain tools 

(Nyquist, Bode) are well suited for handling this tradeoff. 
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Performance specs 1: Steady-state tracking

( ) ( ) ( )
Error between reference signal  and output .
Tracking means this error is kept small. 
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0Suppose that  ( ) ,constant, and that the system  is 
stable. Then as , ( ) stea( ),   dy-state error. 
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Ideally, we would like the steady-state error to be zero.
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Tracking, sensitivity and loop gain

( )L s yr e The mapping from  ( ) to ( ) has
1transfer function  ( )  .   

1 ( )
That is, ( ) ( ) ( ) in Laplace. 
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Under stability, ( ) has no poles in Re[ ] 0.
1Then for ( ) , we have   ( ) (0)
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Good steady-state tracking  (0) small  (0) l .argeS L↔ ↔

 sensitivity function( ) is called the  of the system.  S s



Integral control

( )L s yr e
Suppose ( ) has a pole at 0.

1Then  (0) = 0.  
1 (0)

Zero steady-state error!

L s s

S
L

=

=
+

( )( ) .

.

Example: ( ) .

Loop is stable for 0,  and has a pole at 0.
Therefore, it has zero steady-state tracking error
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Simple congestion control example
Single link/source, no delays for now.

:  Transmission rate (pkts/sec)
: Capacity of the link (pkts/sec)
: Queue size; assume it is fed back to source.
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Performance specs 2: tracking of 
low-frequency reference signals.

( )L s yr e Transfer function from  ( ) to ( ) 
1is the sensitivity  ( )  .   

1 ( )
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Assume the system is stable: then the steady-state 
response to a sinuoidal reference ( ) cos( ) is 
( ) | ( ) | cos( ( )).S
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( )Let  ( ) | ( ) |  be the polar decomposition.SjS j S j e φ ωω ω=

0 0Good steady-state tracking  | ( ) | small  | ( ) .|  largeS j L jω ω≈↔ ←→



( )L jω ( )S jω

Tracking  Large | ( ) | Small  | ( ) |  
             in frequency range of interest.

L j S jω ω↔ ↔

log | ( ) |L jω log | ( ) |S jω

( )Lφ ω ( )Sφ ω

Representation of frequency functions 
Bode plot
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Example 2: tracking of variable references
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Variations in capacity (e.g. Available Bit Rate)



Performance specs 3: disturbance rejection.
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d
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Input disturbance:
( )( )    

1 ( )d y
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Output disturbance:
1( )    
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To reject disturbances, we need attenuation in the 
frequency range of interest  Large | ( ) | .L jω≈



Example 3: disturbance rejection
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Performance specs 4: speed of response

 Superimposed to the steady-state solutions discussed before, 
  we have transient terms of the form  Here the 

  modes  are the roots of 1 ( ) 0.
 For fast response,  Re[ ] must be as ne
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1Example: ( ) . 1 ( ) 0 .

The higher ,  the faster our transient response.
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( )L s yr e

log | ( ) |L jω

cω

Transient decays in a 
1time of the order of 
cω

For ( )  (e.g. our congestion control with queue feedback)
1decays in the order of  seconds.c
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For faster response, increase the open loop bandwidth.

Heuristic look based on Fourier: 
frequencies where | ( ) | 1  
cannot occur (filtered out). So 
the speed of response is roughly
the bandwidth where | ( ) | 1.
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Performance specifications: recap
• Tracking of constant, or varying reference signals. 
• Disturbance rejection.
• Transient response. 

Rule of thumb for all: increase 
the gain or bandwidth of the 
loop transfer function  ( ).L jω

What stops us from arbitrarily
good performance?
Answer: stability/robustness.



Example: loop with integrator and delay.

( )( ) ( ) ( )t K r t ty y τ= − −�
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Stability? 1 ( ) 0 0.
Transcendental equation. However, use Nyquist.
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Stability analysis via Nyquist:

Loop  function ( )
sKL s
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To avoid encirclements,  impose 
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Nyquist plot of  ( ) :L jω
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2
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Not much harder than analysis without delay! 
Much simpler than other alternatives 
(transcendental equations, Lyapunov functionals,…)
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Stability in the Bode plot

0

0 0

Impose  ( ) 1 
at :  ( )
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Conclusion: delay limits the achievable performance. 
Also, other dynamics of the plant (known  or uncertain) 
produce a similar effect.   ( )P s( )K s
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Increasing moves  
the top plot upwards. 

 Constraint on 
      for stability. 
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The performance/robustness tradeoff

• As we have seen, we can improve performance by increasing  
the gain and bandwidth of the loop transfer function L(jw). 

• L(s) can be designed through K(s). By canceling off P(s), 
one could think L(s) would be arbitrarily chosen. However:
– Unstable dynamics cannot be canceled.
– Delay cannot be canceled (othewise K(s) would not be causal). 
– Cancellation is not robust to variations in P(s).

• Therefore, the given plant poses essential limits to the 
performance that can be achieved through feedback.

• Good designs address this basic tradeoff. For single I-O 
systems,“loopshaping” the Bode plot is an effective method. 
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The Bode Integral formula 
( )L s yr e Recall: the mapping from  ( ) to ( ) 

1has transfer function  ( )  .  
1 ( )
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For tracking, we want  the sensitivity | ( ) |  to be small, 
for as large a frequency range as possible. How large can it be?
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The Bode Integral formula.
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( )P s( )K s
The unstable poles  that come from the
plant ( ) cannot be eliminated by ( )

 Integral of sensitivity is a conserved 
quantity over all stabilizing feedbacks.
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Small sensitvity at low frequencies must be “paid” by a
larger than 1 sensitivity at some higher frequencies.



But all this is only linear!
• The above tradeoff is of course present in nonlinear 

systems, but harder to characterize, due to the lack 
of a frequency domain (partial extensions exist). 

• So most successful designs are linear based, 
followed up by nonlinear analysis or simulation.

• Beware of claims of superiority of “truly nonlinear” 
designs. They rarely address this tradeoff, so may 
have poor performance or poor robustness (or both).

• A basic test: linearized around equilibrium, the 
nonlinear controller should not be worse than a  
linear design. 



Multivariable control
( )P s( )K s u yr e

Signals are now vector-valued (many inputs and outputs).
Transfer functions are matrix-valued. 
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[ ] 1( ) ( ) ( ) ( )y s L s I L s r s−= +

[ ] [ ]1Stability: poles of ( ) (i.e., roots of det ( ) 0)
must have negative real part.
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Multivariable Nyquist criterion: study encirclements of
the origin of det ( ) 1 ( ) ,

where ( ) are the eigenvalues of ( ).
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Performance of multivariable loops
( )P s( )K s u yr e

[ ] 1( ) ( ) ( ) ( ) ( )e j S j r j I L j r jω ω ω ω ω−= = +

{ }

The tracking error will depend on frequency, but also
on the direction of the vector ( ). The worst-case
direction is captured by the maximum singular value:
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Network congestion control example
L communication links shared by S source-destination pairs. 

1  if link  serves source 
0  otherwise                 li

l i
R 
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Routing matrix:

i uses l

i uses l

: Rate of th source (pkts/sec)
: Total rate of th link (pkts/sec)

: Capacity of the th link (pkts/sec)
: Backlog of the th link (pkts)
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Suppose sources receive  by feedback,  and set ( )i i i iq x f q=



Linearized multivariable model, around equilibrium.
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1Now: ( )  is easily diagonalized.TL s RKR
s

=
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 Modes: roots of det( ( )) 0 , 1,..., .

Therefore: stable if  is full rank. Transient response 
dominated by slowest  mode, ( ).
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Performance analysis reduces to the scalar case.



( ) T
s
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e τ−
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Now, consider stability in the presence of delay. For 
simplicity, use a common delay (RTT) for all loops.

minλ
ω
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Diagonalize and apply 
Nyquist: Stable for 
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τ
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Summary: performance defined by ( ), delay robustness

by ( ). Tradeoff is harder for ill-conditioned !
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More generally, eigenvalues don’t tell the full story.

( )P s( )K s u yr e

 Performance: for transfer functions which are not self-adjoint,
( ( )) can be much larger-than the maximum eigenvalue.S jσ ω

i

0 Robust stability: consider a ball of plants ( ) ( ) ( ),
1( ( )) . Nyquist not very useful to establish stability ( )

  for all , since det( ) depends on it in a complicated way.
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 However, it can be shown that the condition 
( ( ) ( ) ( )) < 1     gives robust stability.S j K jσ ω ω α ω ω∀

Singular values are more important than eigenvalues.



Summary
• A well designed feedback will respond as quickly as possible to 

regulate, track references or reject disturbances.
• The fundamental limit to the above features is the potential for

instability, and its sensitivity to errors in the model. A good design 
must balance this tradeoff  (robust performance). 

• In SISO, linear case, tradeoff is well understood by frequency domain 
methods. This explains their prevalence in design.

• Nonlinear aspects usually handled a posteriori. Nonlinear control can 
potentially (but not necessarily) do better. A basic test:  linearization
around any operating point should match up with linear designs.

• In multivariable systems, frequency domain tools extend with some 
complications (ill conditioning, singular values versus eigenvalues,…) 

• All of this is relevant to network flow control: performance vs 
delay/robustness, ill-conditioning,… Nonlinearity seems mild. 


