An exact penalty function view of resource allocation and congestion control in the Internet

Srisankar Kunniyur

University of Pennsylvania http://www.seas.upenn.edu/~kunniyur R. Srikant University of Illinois at Urbana-Champaign

http://comm.csl.uiuc.edu/~srikant

March 18, 2002

1

Overview

- Resource allocation and congestion control (Kelly et al.)
- Penalty function approach to obtain decentralized congestion controllers (Kelly etal.)
- Dual approach (Low et al.)
- Shadow prices via penalty function approach
- Interpretation: Low-loss, low-delay network operation with high utilization (AVQ)
- Decentralized design of AVQ parameters

- L Set of links l with capacity C_l
- γ_l Desired utilization at link l
- $\gamma_l C_l$ Target capacity at link *l*
- User *r* Subset of *L*
- R Set of all users
- *S* Routing matrix, i.e., $S_{rl} = 1$ if $l \in r$, otherwise $S_{rl} = 0$.
- x_r Rate of User r
- $U_r(x_r)$ Utility of rate x_r to User r
- Let $x = (x_r, r \in \mathbb{R})$ and $C_{\gamma} = (\gamma_l C_l, l \in L)$

System Problem ... (Kelly et al.)

 $\frac{\text{SYSTEM}(U, S, \gamma)}{\max_{x} \sum_{r} U_{r}(x_{r})}$

subject to

 $S^T x \leq C_{\gamma}$ $x \geq 0$

Maximize aggregate utility subject to capacity and non-negativity constraints

• Penalty function approach to the system problem:

$$\max_{\{x_r\}} \sum_r U_r(x_r) - \beta \sum_{l \in L} \int_0^{\sum_{i:l \in I} x_i} p_l(z) dz$$

- $\beta p_l(x)$ is the penalty for exceeding the capacity at link *l*
- Can achieve the solution to the above problem in a decentralized manner using congestion-controllers (steepest ascent algorithm):

$$\frac{dx_r}{dt} = 1 - \beta (U'_r(x_r))^{-1} \sum_{l:l \in r} p_l(\sum_{j:l \in j} x_j)$$

Can we solve SYSTEM(U, S, γ) exactly?

- By appropriate choice of penalty functions
- Penalty is finite
- Called Exact Penalty Functions

Exact Penalty Functions

• Rewrite the original penalty function:

$$\max_{\{x_r\}} \sum_r U_r(x_r) - \beta \sum_{l \in L} \int_0^{\sum_{i:l \in I} x_i} p_l(z, \tilde{C}_l) dz$$

- Parametrize the penalty functions using a parameter called the virtual capacity
- \tilde{C}_l can be thought of as a parameter that determines when congestion feedback is provided

Goal: Design the parameters $\{\tilde{C}_l\}$ **such that the penalty function formulation solves SYSTEM**(U, S, γ)

• Update \tilde{C}_l at each link as follows:

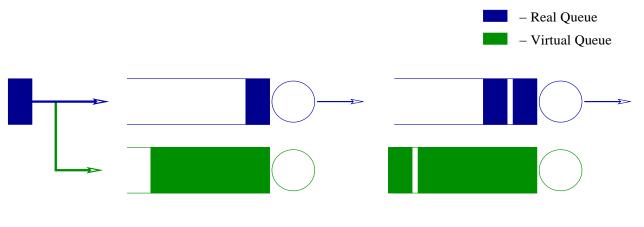
$$\dot{\tilde{C}}_l = \alpha_l (\gamma_l C_l - \lambda_l)$$

where λ_l is the total flow into the link

- When total arrival rate < target arrival rate: increase $\tilde{C} \Rightarrow$ reduce number of packets marked \Rightarrow total arrival rate increases
- When total arrival rate > target arrival rate: decrease $\tilde{C} \Rightarrow$ increase number of packets marked \Rightarrow total arrival rate decreases
- At the equilibrium point, **total arrival rate** = **target arrival rate**
- α determines speed of adaptation

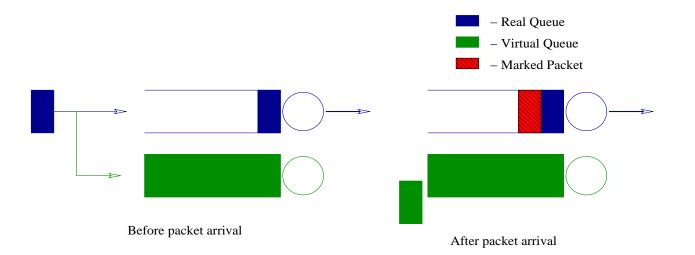
AVQ Algorithm

- Consider a link with capacity *C*
- Assume desired utilization is $\gamma < 1$
- Maintain a virtual queue with capacity \tilde{C} (*virtual-capacity*) and buffer size *B*
- Upon each arrival, add a fictitious packet to the VQ
- If VQ overflows, discard the fictitious packet and mark/drop a packet in the real queue
- Update \tilde{C} periodically by measuring the total average arrival rate



Before packet arrival

After packet arrival



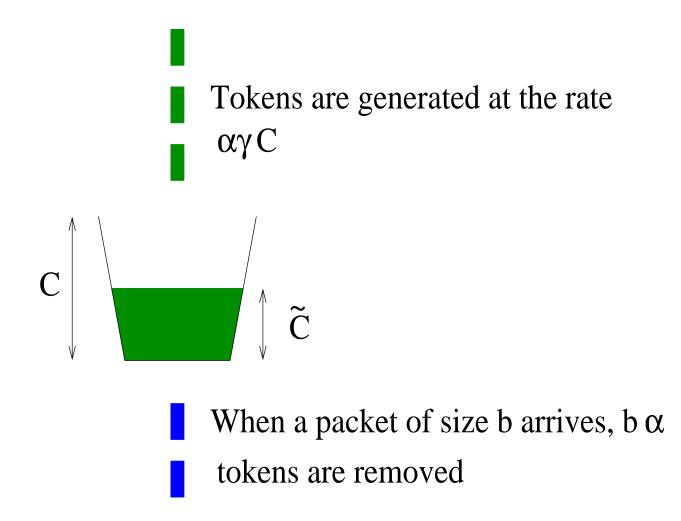


Fig. 1: Token Bucket interpretation

- System comprises of:
 - Congestion-controllers at the sources
 - AVQ algorithm at the links
- In the absence of feedback delays, system is **semi-globally exponentially stable** for **small** α
 - Proof by Singular Perturbations
 - Adapt at the link at slower rate
- Lagrange multipliers of SYSTEM(U, S, γ) are given by $\{\beta p_l(\gamma_l C_l, \tilde{C}_l^*)\}$
- How to choose α for non-zero round-trip delays?

System Model

- Consider a single link
- Users with fixed round-trip propagation delay d
- Assume users employ proportional congestion controller ($U(x) = \log(x)$)

$$\dot{x}_r = \kappa_r \left(w_r - x_r (t - T_r) p(\sum_{j \in \mathbb{R}} x_j (t - d), \tilde{C}(t - d)) \right)$$

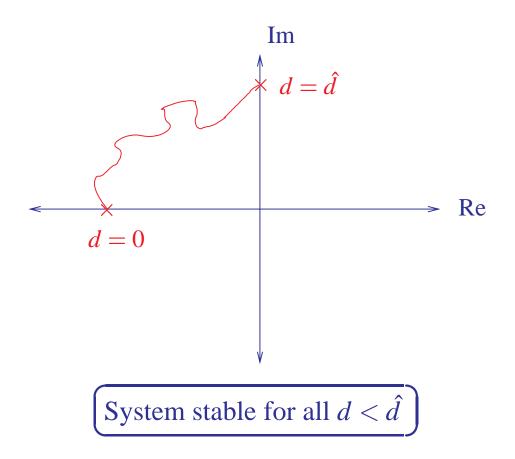
• Update equation at the link is:

$$\dot{\tilde{C}} = \alpha(\gamma C - \sum_{j \in R} x_j(t)) \quad \forall l \in L$$

Key Idea

- Linearize the system
- Take Laplace transform
- Obtain the characteristic function
- For stability, all roots of the characteristic equation should have negative real parts
- When d = 0, the system is stable for all $\alpha > 0$.

Key Idea



Key Idea

- Given α , and γ , find the maximum delay \hat{d} such that the system is stable for all $d < \hat{d}$.
- More practical situation is, given d, find α such that the system is stable
- Condition remains the same
- In general, fix any three of the four parameters α, d, γ and N to find a bound on the fourth paarmeter to guarantee stability

System Model:

- $d_1(r)$: Delay from the source to the link
- $d_2(r)$: Feedback delay from the link to the source
- $T_r = d_1(r) + d_2(r)$: Total delay
- log utility function

$$\dot{x}_r = \kappa_r \left(w_r - x_r(t - T_r) p(\sum_{j \in R} x_j(t - d_1(j) - d_2(r)), \tilde{C}(t - d_2(r))) \right),$$
$$\dot{\tilde{C}} = \alpha(\gamma C - \sum_{j \in R} x_j(t - d_j(1))).$$

• (Vinnicombe) In the absence of AVQ, the system of congestion-controllers is stable if:

$$\kappa_r(\hat{p}+\hat{p}_x\gamma C)\leq rac{\pi}{2T_r}\qquad orall r\in R\,.$$

• With AVQ, we can show that the system is stable if:

$$\kappa_r(\hat{p}+\hat{p}_x\gamma C)\leq \min\{\frac{1}{4T_r},\kappa_{\max}\}\qquad \forall r\in R,$$

and

$$\alpha \leq \min\{\frac{\hat{p}}{\sqrt{2}\hat{p}_{\tilde{C}}\gamma CT_{\max}}, \frac{\pi^{2}\hat{p}_{x}\kappa_{\max}}{32\hat{p}_{\tilde{C}}T_{\max}^{2}}\}.$$

Adapt the virtual capacity at a rate slower than the maximum round-trip delay

Simulations

- Single link with capacity 10 Mbps
- TCP Reno users with average packet length of 1000 bytes
- Propagation delay of each user between 40ms and 130 ms
- Buffer capacity at the link 100 packets
- Study the convergence properties and buffer sizes at the link for the AVQ scheme
- Number of long FTP connections = 180
- Short flows (20 packets each) arrive at the rate of 30 flows per second
- Introduce the short flows at time t = 100s

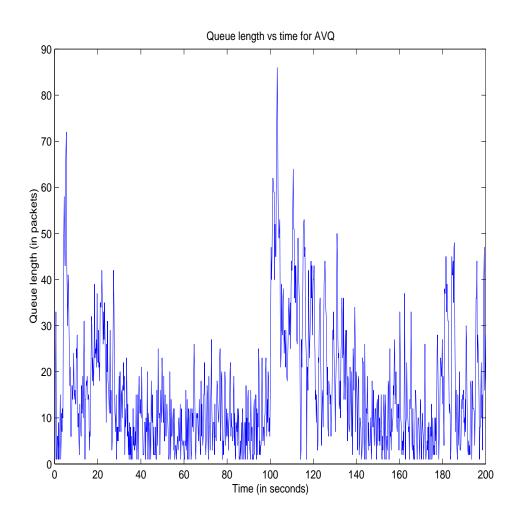


Fig. 2: Queue length vs time for the AVQ scheme

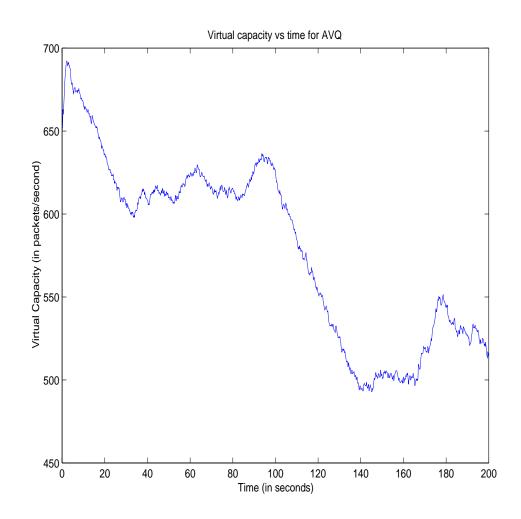


Fig. 3: Virtual capacity vs time for the AVQ scheme

Conclusions

- Presented an easily implementable, robust AQM scheme
- Direct result of using an exact penalty function approach
- Decentralized choice of AQM parameters

All papers can be downloaded from: http://www.comm.csl.uiuc.edu/~srikant or http://www.seas.upenn.edu/~kunniyur