Routing and Peering in a Competitive Internet

Ramesh Johari John Tsitsiklis

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

rjohari@mit.edu

Peering

- Multiple network providers: AT&T, Sprint, etc.
- Peering points: connection points between network providers
- Key issue: What is the value of interdomain routing?

Outline

- Provider objectives
- Routing in a competitive internet
- Future directions

Provider objectives

Assume we are given two providers with following goals:

- The sending network S: Outgoing traffic should exit as cheaply as possible
- The receiving network R: Incoming traffic should be sent to destination at minimum cost

Sender's strategy: nearest exit or "hot potato" routing.

Routing in a competitive Internet

Henceforth: Assume peering point locations are fixed.

- Optimal routing and nearest exit routing
- Game theoretic models

Optimal routing: the traditional framework

- Flow on link (i, j): f_{ij}
- Cost incurred on link (i, j): $C_{ij}(f_{ij})$
- Minimize $\sum_{(i,j)} C_{ij}(f_{ij})$ subject to source-destination flow constraints

Note: As if only one network provider exists.

"Nearest exit" routing: the competitive Internet

• Two network providers connected by peering points

• Each minimizes cost only within their own network

Optimal vs. nearest exit routing

• All costs linear: $C_{ij}(f_{ij}) = d_{ij}f_{ij}$

• Peering points: $p_1, \ldots, p_n \in N$ (zero cost)

Optimal routing: Shortest path between s and d.

Nearest exit routing: Provider 1 sends from s to nearest peering point p_i . Provider 2 uses shortest path from p_i to d.

Comparison

How much worse than optimal routing is nearest exit routing?

Theorem:

lf:

- All costs are linear, and
- S = R

Then:

Nearest exit routing cost $\leq 3 \times$ optimal routing cost

Proof of bound

Blue: Nearest exit routing Red: Shortest path routing (cost = r)

Proof of bound

Note: $x \leq r$ by definition of nearest exit routing.

One possible receiver route from p_{NE} to d:

 $p_{NE} \rightarrow s \in R$: cost $x \leq r$ $s \rightarrow d \in R$: cost $\leq r$

So total nearest exit cost is $\leq 3r$.

In general?

In general, nearest exit cost is arbitrarily worse than optimal.

Competitive routing as a two-stage game:

- 1. Providers choose prices for use of their links
- 2. *Given prices*, providers determine how best to route flow

Is the optimal routing solution, with:

price of link = marginal cost of link

an equilibrium of this game?

Game theoretic models: example

Provider *A*: Wants to send x_A from *s* to *d*. Provider *B*: Wants to send $x_B \ll x_A$ from *s* to *d*.

At optimal routing solution, marginal costs are low.

But at these prices, provider B has an incentive to raise his price.

Game theoretic models

Objective for provider *A*:

Minimize:

Cost of total flow on A's link: $C_A(f_A)$ + Payment to provider B: $p_B \times (A$'s flow sent on B's link) -Payment from provider B: $p_A \times (B$'s flow sent on A's link) Subject to:

A sends x_A from s to d

Game theoretic models

We can analyze the optimal routing solution, which yields:

- flow f_i on link i
- price $p_i = C'_i(f_i)$ (marginal cost) on link i

Except in a completely symmetric situation, the optimal routing solution is *never* an equilibrium of the two-stage game.

Future directions

Moral: We must not assume that the predictions of a global static optimization model will hold up in a competitive Internet.

Future research questions:

- Game theoretic analysis of routing for arbitrary networks
- Optimal strategies for individual providers

Future directions

- Pricing mechanisms to encourage optimal routing
- Protocol design to encourage optimal routing