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Congestion Control Problem

• Regulate transmission rates of end-to-end connections so that 
they take advantage of the available bandwidth, but avoid 
exceeding it (congestion).  

• Motivation:
– An interesting, large-scale feedback control problem.
– Deficiencies of current TCP (long queues, oscillations). 

• Aim: regulate large “elephant” flows to a stable point that 
exploits available capacity, but keep queues small so that 
uncontrolled “mice” can fly through with minimal delay. 
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Fluid flow modeling
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Feedback mechanism: 
Each link has a congestion measure or price .
Each source has access to aggregate price  of the links in its path.
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Congestion Control Loop
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Decentralized control at links and sources. 
Routing assuming fixed,  i.e. varying at much slower time-scale.



Optimization interpretation
(Kelly et al, Low et al, Srikant et al.,…)
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“Primal”, “dual”, and the end-to-end principle.
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Usual convention (Kelly, Maulloo, Tan ’98):  
primal = dynamics at sources,  dual = dynamics at links. 

It may appear that primal  is closer to current TCP, and the 
end-to-end principle. However: 

• Current TCP has dynamics in both places. 
• End-to-end principle is about complexity, not dynamics.



Dynamics and the role of delay
• Without delay, nothing would stop us from 

adapting the sources’ rates arbitrarily fast.
• In the presence of delay, there is a stability 

problem: e.g., controlling temperature of your 
shower. 

• Special case of general principle in feedback 
systems: what limits the performance (e.g. speed 
of response) are characteristics of the open loop 
(bandwidth, delay). 

• In this case, the only impediment is delay. In 
particular, this sets the time-scale of our response.



Congestion control loop with delays
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Control objectives and design
1. Track available capacity, yet almost empty queues. 
2. Stability in the presence of large variations in delay.
3. Dynamic performance: respond as quickly as possible. 
• Difficulties for control synthesis:

– Large-scale, coupled dynamics but decentralized information at 
links and sources. Decentralized control design is hard.

– Not just global variables, but the plant (routing, capacities,… ) 
changes in a way unknown to sources/links. Must be robust.

– Delay can vary widely. However, sources can adapt to it. 
– To top it off, solution must be simple.

• Our approach:
– Local linear design with classical heuristics.
– Validated analytically by a local multivariable stability proof.
– Global nonlinear laws built from the linearization. 
– Performance verified empirically. 



Matching capacity through integral control
 Tracking of capacity requires integral action in the loop.

  Where should we put integrators? A first look (ignore delay):
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Compensation for delay
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 Consider a static source rate control ( ),  (  decreasing).  
  Laws become a special case of those in Low and Lapsley '99. 
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Distributed gain compensation
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Nyquist argument for stability

0( )
j

i i

i i

ixL j
c j
e ωταω
τ ω

−

= ∑
0Since 1,  the loop gain is a convex combination of points

in the curve ,  scaled by  For ,  no encirclements.
2

i

i j

i i

x
c

j
e θ πα α
θ

−

≤

⇒ <

∑

Note: if all delays are 
scaled by some constant, 
the plot does not change.

In the time domain, only 
effect is a change in 
time-scale of response. 

2
π

−

•1− •



Extension to arbitrary networks
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Local analysis around equilibrium. Routing matrices refer 
here only to bottleneck links. 



Stability result
 Assume the matrix (0)= (0) (involving only

the bottleneck links) is of full row rank, and that .  Then the 
2

feedback system is locally stable for arbitrary delays and capacities. 
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Global, nonlinear implementation
( ) {  or 0}
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But we want to clear the queues! 

So replace  by a "virtual" capacity (1 ) .
Price is now a virtual queueing delay. 
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Remark: Athuraliya and Low ’00 considered adding 
another integrator to clear the queue. However, scalable 
stability for arbitrary delays does not extend to that case. 



Global, nonlinear implementation
Static control law for sources:  linearization requirement is
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Properties of the nonlinear laws
• Global stability? Validate by 

– Flow simulation of differential equations using Matlab. 
So far, cases of local stability have been global. 

– Mathematical proof. Tools which combine delay and  
nonlinearity are very limited! We  have partial results 
for single link, but with further parameter constraints. 

• Fairness of equilibrium?
Difficult with exponential 
laws, which distinguish too
sharply the rates for different 
delays. 



An alternative with fairer allocation 
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Packet-level implementation

.

 Links maintain price through a virtual queue counter, 
   incremented on packet arrival, decremented at rate (1 ) lcε
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 The price can be communicated to sources by  "random 
   exponential marking" (REM,  Athuraliya and Low '00): 
•

 Sources can estimate  from packet marking statistics: e.g.,
   counting positive marks on the last  packets. Estimation 

   dynamics adds an extra lag of , where  is the current 
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Packet-level implementation
 The parameter  should be "universal". Now for  good estimation, 

   the marking probability should not be too close to 0 or 1, which 
  forces prices to vary in some  absolute range. Since they are v
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• ns-2 implementation:
• Modify REM-module for the links.
• Modify Vegas module for the sources. 



Packet-level simulation in ns-2
60 sources starting in groups of 20, RTT=120ms. 1 link, 25 pkts/ms

Queue

Window

Stable, but time-response not slower than existing protocols. 



Conclusions
• Classical design heuristics + multivariable analysis lead to a 

locally stable feedback control under widely varying operating 
conditions, and within very tight information constraints. 

• From local to global: extract nonlinear laws from linearization 
conditions at every point. This step leaves some degrees of 
freedom left for addressing equilibrium fairness, etc. 

• Pending theory questions:
– Global stability with nonlinearity and delay. Partial results exist. 
– Equilibrium structure

• Packet implementation based on ECN marking appears to 
perform well. In particular, fast response, empty queues. 
Issues for future studies:  
– Parameter settings: some of them must be “universal”. 
– Backward compatibility, incremental deployment.
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