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The Control that We Study

Data send rate set as:

Xn = f(Pn)
X(t) =Xn, Tn <t <Thy1

We call it basic control.

, d
e {T,,} a point process on R; S, 24 n+1 — In
e p, long-run loss event ratio

1 T;
t—00 fo X (s)ds

e p,, estimator of p at T,
e f:[0,1] — RT*, non-increasing

e f is typically TCP loss-throughput function; it is
also function of some statistics of round-trip time:
not considered here



The Control that We Study (cont'd)

Comprehensive control — the basic control, plus:
if at ¢, the amount of data sent since the
most recent loss event, 6(¢), would increase
the value of the estimator 8(¢), then use it as
a sample

Sample-Paths:

Basic Control

X(t)

T To+t1 t
Sh

Comprehensive Control

X(t)

T, Tt t




What is the Problem?
P: Is it true

E[X(0)] < E[X¢p(0)] 7

Here E[X:(0)] is TCP throughput under the same op-
erating conditions. If yes, we say the control is TCP-

friendly.

We subdivide P into three subproblems:

P1:

E[X(0)] <rp) 7

If yes, we say the control is conservative.

P2: Does it hold
P 2 Dtcp
P3: Does TCP satisfy its equation,

E[Xtcp(o)] — f(ﬁtcp) [



Why is the Problem of Interest?

e Several equation-based rate controls pro-
posed with various definitions of {1n}, pn

EXx. See:

http://www.psc.edu/networking/tcp_friendly.html
http://www.icir.org/tfrc

e Common objective:

— smooth send rate dynamics, but still re-
sponsive to sustained congestion

— TCP-friendly: the long-run throughput
less than or equal to TCP throughput
under the same operating conditions



Two Additional Assumptions
(Al) {T,} is point process of loss events

(A2) ﬁn — ' gn — ZlL:]_ ’wlen_l

S

o (w))f | positive-valued, ¥k, w; =1

e 0y is amount of data sent in [Ty, Tj,4.1); we
call it as in TFRC: loss-event interval

Ob. 1/p, is unbiased estimator of 1/p



Some Functions f

SQRT:
1
f(p) =
c1R./p
PFTK-standard:
1

f(p) =

c1R\/p + Q min[1, co,/p](p + 32p3)

PFTK-simplified:

f(p) = !

c1R\/D + Qco(p3/2 + 32p7/2)

e R. expected round-trip time
e (). expected retransmit timeout

e ci1,co. positive-valued constants



We Will See
1. Throughput Representation

2. What Makes the Basic Control Conserva-
tive or Not?

e For the basic control: two sets of con-
ditions for either conservative or non-
conservative control

e Suggestions of the analytical results, val-
idation by numerical and ns-2 experi-
ments

3. We expect p > piep.

4. It may be E[X (0)] > E[X},(0)], even though
E[X(0)] < f(p), and p > picp.

5. Conclusion



Throughput Representation

Palm inversion formula:
S
E[X (0)] = AEr] /o " X (s)ds)]
e A= 1/Ep[So]

e £ is expectation w.r.t. Palm probability
(given a point at 0; Top = 0)

We suppose stability, i.e. {Xp} and {Sp} are
stationary ergodic



Throughput Representation (cont’'d)

Basic control:

E[X (1)] = —on!

E

)]

Comprehensive control (PFTK-simplified):

EIX(8)] < £l6n]

E[

f(1/9n)] B IE[Vn19n+1>§n]

v,= 1 [_zclR(é‘g L —02) +202Q(8,7, — 0,7)—
+2c3Q(0,31 — 0,7) + (Ong1 — én)f(%/gn)]

Ob. From the joint law of 6,,...,0,,_1 one may
compute the throughput



First Set of Sufficient Conditions for
Conservativeness

Assume

1 : .
(F1) F(i/z) 1S convex with z

(C1) Cov[bn,0,] <O

Then, the basic control is conservative.

Moreover,

1

'(®p° )
1+ Fk) Cov/(0hp, On]

E[X ()] < 5(p)

Ob. Cov[fy,,0,] = & wCov[n, 0, ]

Ex. (C1) is indeed true for {6,} renewal pro-
cess (i.i.d.)
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For PFTK-standard, (1/ ) is Almost Convex

© 1=1.0026

g(0)/g” (x)

3.25 3.3 3.35 3.4 3.45 35 X

d . .
e Note: g(z) f(%/x) g* is convex conju-

gate of ¢
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First Suggestion

Assume 6, and 8,, are negatively or lightly cor-
related. Consider the function f in the region
where 6,, takes values.

1. The more convex ﬁ/x) the more conser-
vative the control is.

2. The more variable 6,,, the more conserva-
tive the control is.

13



First Suggestion: Numerical Example
{6,} i.i.d. with generalized exponential density

fo, (x) = Axexp(=XA(x —z0)), * > xg, A, 20 > O

o E[0n] = zg + )

A

e Coeff. of variation: ITae

e Skewness: 2

e Kurtosis: 6
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First Suggestion: Numerical Example
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Ob. PFTK-simplified: the larger p, the more convex

#, the more conservative the control.
f(1/x)
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First Suggestion: Numerical Example
(PFTK-simplified, fixed p)
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Ob. The more variable 6,, the more conservative the

control.
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First Suggestion: Numerical Example
(Comprehensive Control)
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ODb. Qualitatively the same as for the basic control, but
somewhat less pronounced.
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First Suggestion: ns-2 Experiment (TFRC,
PFTK-standard
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Setting: single RED link shared by TFRC and TCP-
Sackl connections (link capacity 15 Mb/s, round-trip
time about 50 ms)
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First Suggestion: ns-2 Experiment (TFRC,
SQRT)
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Second Set of Sufficient Conditions for
Conservativeness

Assume
(F2) f(1/xz) is concave with x
(C2) Cov[Xn,Sn] <0

Then, the basic control is conservative.

Conversely, if
(F2’) f(1/x) is convex with z
(C2’) Cov[Xn,Sn] >0

(V) 0, has non-zero variance

Then, the basic control is non-conservative.
20



When f(1/z) is concave or convex?

140
— SQRT
PFTK-standard
— PFTK-simplified
120+

100

80

f(1/x)
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e SQRT: f(1/x) concave

e PFTK: f(1/x) concave for light loss, but convex
for heavy loss
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Importance of Feller's Paradox Type of
Effects

Feller’'s Paradox: for a point process, average
interval between two points seen by a random
observer is larger than as seen at the interval

boundaries.

Recall (C2): Cov[Xp,Sp] <0

Thus, by Palm inversion formula:

Cov [Xo, So]
E7[So]

E[X(0)] = Er[X(0)] +

it follows (C2) = E[X(0)] < Ep[X(0)]

Interpretation:

1. a random observer would more likely pick larger in-
terval S,

2. (C2) implies, on average, she would see smaller rate
than as seen at {7}

22



When (C2) is True?

Ob. E[S,|Xn = x] non-increasing with =z =
Cov[Xp, Sn] <0 (C2)

EXx. If 6,, is independent of data send rate X,,

then
1
E[Sn|Xn =z] = —
px
Thus, (C2) holds.

23



Second Suggestion

e Assume S,, and X, are negatively or non
correlated.

If f(1/z) is concave in the region where 0,
takes its values, the control tends to be
conservative.

e Conversely, assume S,, and X,, are posi-
tively or non correlated.

If f(1/x) is convex in the region where 8,
takes its values, the control is non conser-
vative.

In both cases, more variable 8, is, stronger the
effect.

24



Second Suggestion: ns-2 Experiment

@ 1.1 T T T
= SQRT —+—
§ 1.08 - PFTK-standard —<— 7
& 1.06 | PFTK-simplified —&— i
2 1.04 + .
ey
g 1.02 .
2
£ I -
e
_E 0.98 |- -
g 096 s
E 0.94 L L L L
0 0.05 0.1 0.15 0.2 0.25
Loss Event Ratio p

0.25 ]
5
© B _
¢ 02
<
=
s 015 -
5
heo} 01 - -
g
S SQRT —+— ‘

0.05 |- -
A PFTK-standard —<—

PFTK-simpIifield —— | | |
0

0 0.05 0.1 0.15 0.2 0.25
Loss Event Ratio p

Setting: a rate controlled source with fixed packet send
rate (each 20 ms) through a single loss link (fixed drop
probability independent of the packet size)
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Second Suggestion: ns-2 Experiment
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Ob. Qualitatively the same as for L = 4, but
the effects less pronounced

26



Third Suggestion (Loss Event Ratios Seen by
Sources)

The loss event ratios for TCP, our adaptive equation
based rate controlled source (A), and a non-adaptive
source (P) (Poisson) should be in the relation

(%) Ptep S PA S Pp

The more responsive source A is, the closer py
should be to ptep.

Ob. If E[X(0)] < f(p4), and (x), then

E[X(0)] < f(Ptep)

(Conservativeness implies T CP-friendliness, for
a T CP source that attains throughput > f(Dtcp).
with equality if f is accurate loss-throughput
function of the given TCP)
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Loss Event Ratio p
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Third Suggestion: ns-2 Experiment
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f may be Inaccurate Loss-throughput
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Ob. TCP-Sackl does not verify PFTK loss-
throughput function f
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f may be Inaccurate Loss-throughput
Function
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Ob. Control may be not friendly to the given
TCP, even though being conservative and friendly
to the function f

ODb. This is NOT problem of the control, but
merely due to inaccuracy of f
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Conclusion

Two causes of E[X(t)] #= f(p):

e time versus event averages

e convexity properties of f(1/x), 1/f(1/x)

Important to separate:

e conservativeness

e this control loss event ratio versus TCP
loss event ratio

e Oobedience of TCP to given function f
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Appendix

Comparison of (Non-)Conservativeness

Conditions
(F1) ﬁ/x)convex (F2) f(1/z) concave
(F1’) f(l;/x)concave (F2') f(1/z) convex
(F2) = (F1)
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Comparison of (Non-)Conservativeness
Conditions (cont'd)

(C1) Cov[,0,] <0 | (C2) Cov[Xy, Sp] <O

(C1’) Cov[f,,0,] >0 | (C2’) Cov[X,,S,]>0

(C2) &
1 1 L
Cov[bn, f(l—/é‘n)] > E6] (E[f(l/én)] i IE[f(l—/gn)])
(C2') &
1 1 1
Cov|[6,, f(l—/é},)] < E[6,] (E[f(l/én)] B E[f(l—/gn)])

ODb. The RHS is negative.

Assume g(z) = ﬁ/x) non-increasing convex.

~ E[6, ] 1 . 1
(C2) <= Covitn, 0n] < JmE (E[f(l/ém f(l/E[enD)
(C2') = Cov[bhn,th] > Fmp (E[f(l/ém f(l/E[enD)

Ob. For f(1/x) convex with z, the RHS is positive. In
this case, if (C2’) holds, then necessarily (C1’) holds.
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Example of Non-Conservative Control

Assume:

o {0, Zn} is semi-Markov process

o [p;;] transition matrix of DTMC {Zy}

o P(Z,41=173,0n =m|Zpn =1) = p;jgi(m)

Consider:

e {Z,} two-state DTMC with state space
{g,b}

e periodic losses while in a given state; P(0,, =

35



Example of Non-Conservative Control
(cont'd)

pgb

Slow MC limit, pgy, ppg — O, = u,

pbgng + Pgpm
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Pgb Ng
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1 / 1
2 g ng

\ np

36



Example of Non-Conservative Control
(cont'd)

E[X (0)]/f(p) vs. pg and pp, (Basic Control)
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Example of Non-Conservative Control
(cont'd)

E[X(0)]/f(p) vs. pg and pp, (Comprehensive

Control)
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Example of Non-Conservative Control

(cont'd)

Maximum E[X (0)]/f(p) for slow MC limit (x*)

Slow HMC limit of E[X(t))/f(p)
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