Observations on Equation-Based Rate Control*

Milan Vojnović

Joint Work with Jean-Yves Le Boudec

March 12, 2002

*IPAM Workshop on Large-Scale Communication Networks: Topology, Routing, Traffic, and Control, University of California, Los Angeles, USA, March 18, 2002. (http://www.ipam.ucla.edu)
The Control that We Study

Data send rate set as:

\[X_n = f(\tilde{p}_n) \]
\[X(t) = X_n, \; T_n < t \leq T_{n+1} \]

We call it basic control.

- \(\{T_n\} \) a point process on \(\mathbb{R} \); \(S_n \overset{\text{def}}{=} T_{n+1} - T_n \)
- \(\tilde{p} \), long-run loss event ratio
 \[\tilde{p} = \lim_{t \to \infty} \frac{\sum_{k>0} 1_{[0,t)}(T_k)}{\int_0^t X(s)\,ds} \]
- \(\hat{p}_n \), estimator of \(\tilde{p} \) at \(T_n \)
- \(f : [0,1] \to \mathbb{R}^+ \), non-increasing
- \(f \) is typically TCP loss-throughput function; it is also function of some statistics of round-trip time; not considered here
The Control that We Study (cont’d)

Comprehensive control – the basic control, plus: if at t, the amount of data sent since the most recent loss event, $\theta(t)$, would increase the value of the estimator $\hat{\theta}(t)$, then use it as a sample

Sample-Paths:

![Basic Control Diagram]

![Comprehensive Control Diagram]
What is the Problem?

P: Is it true

\[\mathbb{E}[X(0)] \leq \mathbb{E}[X_{tcp}(0)] \]

Here \(\mathbb{E}[X_{tcp}(0)] \) is TCP throughput under the same operating conditions. If yes, we say the control is TCP-friendly.

We subdivide P into three subproblems:

P1:

\[\mathbb{E}[X(0)] \leq f(\bar{p}) \]

If yes, we say the control is conservative.

P2: Does it hold

\[\bar{p} \geq \bar{p}_{tcp} \]

P3: Does TCP satisfy its equation,

\[\mathbb{E}[X_{tcp}(0)] = f(\bar{p}_{tcp}) \]
Why is the Problem of Interest?

- Several equation-based rate controls proposed with various definitions of \(\{T_n\}, \hat{p}_n \)

 Ex. See:

 http://www.psc.edu/networking/tcp_friendly.html

 http://www.icir.org/tfrc

- Common objective:

 - smooth send rate dynamics, but still responsive to sustained congestion

 - TCP-friendly: the long-run throughput less than or equal to TCP throughput under the same operating conditions
Two Additional Assumptions

(A1) \(\{T_n\} \) is point process of loss events

(A2) \(\hat{p}_n = \frac{1}{\hat{\theta}_n}, \hat{\theta}_n = \sum_{l=1}^{L} w_l \theta_{n-l} \)

- \((w_l)_{l=1}^{L}\) positive-valued, \(\sum_{l=1}^{L} w_l = 1\)

- \(\theta_n\) is amount of data sent in \([T_n, T_{n+1})\); we call it as in TFRC: loss-event interval

Ob. \(1/\hat{p}_n\) is unbiased estimator of \(1/\bar{p}\)
Some Functions f

SQRT:

$$f(p) = \frac{1}{c_1 R \sqrt{p}}$$

PFTK-standard:

$$f(p) = \frac{1}{c_1 R \sqrt{p} + Q \min[1, c_2 \sqrt{p}] \left(p + 32p^3\right)}$$

PFTK-simplified:

$$f(p) = \frac{1}{c_1 R \sqrt{p} + Q c_2 \left(p^{3/2} + 32p^{7/2}\right)}$$

- R: expected round-trip time
- Q: expected retransmit timeout
- c_1, c_2: positive-valued constants
We Will See

1. Throughput Representation

2. What Makes the Basic Control Conservative or Not?
 - For the basic control: two sets of conditions for either conservative or non-conservative control
 - Suggestions of the analytical results, validation by numerical and ns-2 experiments

3. We expect $\bar{p} \geq \bar{p}_{tcp}$.

4. It may be $\mathbb{E}[X(0)] > \mathbb{E}[X_{tcp}(0)]$, even though $\mathbb{E}[X(0)] \leq f(\bar{p})$, and $\bar{p} \geq \bar{p}_{tcp}$.

5. Conclusion
Throughput Representation

Palm inversion formula:

\[\mathbb{E}[X(0)] = \lambda \mathbb{E}_T[\int_0^{S_0} X(s)ds] \]

- \(\lambda = 1/\mathbb{E}_T[S_0] \)
- \(\mathbb{E}_T \) is expectation w.r.t. Palm probability (given a point at 0; \(T_0 = 0 \))

We suppose stability, i.e. \(\{X_n\} \) and \(\{S_n\} \) are stationary ergodic
Throughput Representation (cont’d)

Basic control:

\[\mathbb{E}[X(t)] = \frac{\mathbb{E}[\theta_n]}{\mathbb{E}\left[\frac{\theta_n}{f(1/\theta_n)}\right]} \]

Comprehensive control (PFTK-simplified):

\[\mathbb{E}[X(t)] \leq \frac{\mathbb{E}[\theta_n]}{\mathbb{E}\left[\frac{\theta_n}{f(1/\theta_n)}\right] - \mathbb{E}[V_n1_{\theta_{n+1}>\theta_n}]} \]

\[V_n = \frac{1}{w_i} \left[-2c_1R(\bar{\theta}_{n+1}^{\frac{1}{2}} - \bar{\theta}_{n}^{\frac{1}{2}}) + 2c_2Q(\bar{\theta}_{n+1}^{\frac{3}{2}} - \bar{\theta}_{n}^{\frac{3}{2}}) - \\
\quad + 2c_3Q(\bar{\theta}_{n+1}^{-\frac{5}{2}} - \bar{\theta}_{n}^{-\frac{5}{2}}) + (\bar{\theta}_{n+1} - \bar{\theta}_n)\frac{1}{f(1/\theta_n)} \right] \]

Ob. From the joint law of \(\theta_n, \ldots, \theta_{n-L} \) one may compute the throughput
First Set of Sufficient Conditions for Conservativeness

Assume

(F1) \(\frac{1}{f(1/x)} \) is convex with \(x \)

(C1) \(\text{Cov}[\theta_n, \hat{\theta}_n] \leq 0 \)

Then, the basic control is conservative.

Moreover,

\[
\mathbb{E}[X(t)] \leq f(\bar{p}) \frac{1}{1 + \frac{f'(\bar{p})\bar{p}^3}{f(\bar{p})}\text{Cov}[\theta_n, \hat{\theta}_n]}
\]

Ob. \(\text{Cov}[\theta_n, \hat{\theta}_n] = \sum_{i=1}^{L} w_i \text{Cov}[\theta_n, \theta_{n-i}] \)

Ex. (C1) is indeed true for \(\{\theta_n\} \) renewal process (i.i.d.)
For SQRT and PFTK-simplified, \(\frac{1}{f(1/x)} \) is Convex
For PFTK-standard, $\frac{1}{f(1/x)}$ is Almost Convex

- Note: $g(x) \overset{def}{=} \frac{1}{f(1/x)}$, g^* is convex conjugate of g
First Suggestion

Assume θ_n and $\hat{\theta}_n$ are negatively or lightly correlated. Consider the function f in the region where $\hat{\theta}_n$ takes values.

1. The more convex $\frac{1}{f(1/x)}$, the more conservative the control is.

2. The more variable $\hat{\theta}_n$, the more conservative the control is.
First Suggestion: Numerical Example

\{\theta_n\} i.i.d. with generalized exponential density

\[f_{\theta_n}(x) = \lambda \exp(-\lambda(x - x_0)), \ x \geq x_0, \ \lambda, x_0 \geq 0 \]

- \(\mathbb{E}[\theta_n] = x_0 + \lambda \)

- Coeff. of variation: \(\frac{\lambda}{\sqrt{\lambda + x_0}} \)

- Skewness: 2

- Kurtosis: 6
First Suggestion: Numerical Example

SQRT

PFTK-simplified

Ob. PFTK-simplified: the larger \(\bar{p} \), the more convex \(\frac{1}{f(1/x)} \), the more conservative the control.
First Suggestion: Numerical Example
(PFTK-simplified, fixed \(\bar{p} \))

\[\bar{p} = 0.01 \]

\[\bar{p} = 0.1 \]

\textbf{Ob.} The more variable \(\bar{\theta}_n \), the more conservative the control.
First Suggestion: Numerical Example
(Comprehensive Control)

SQRT

PFTK-simplified

Ob. Qualitatively the same as for the basic control, but somewhat less pronounced.
First Suggestion: ns-2 Experiment (TFRC, PFTK-standard)

Setting: single RED link shared by TFRC and TCP-Sack1 connections (link capacity 15 Mb/s, round-trip time about 50 ms)
First Suggestion: ns-2 Experiment (TFRC, SQRT)
Second Set of Sufficient Conditions for Conservativeness

Assume

(F2) $f(1/x)$ is concave with x

(C2) $\text{Cov}[X_n, S_n] \leq 0$

Then, the basic control is conservative.

Conversely, if

(F2') $f(1/x)$ is convex with x

(C2') $\text{Cov}[X_n, S_n] \geq 0$

(V) $\hat{\theta}_n$ has non-zero variance

Then, the basic control is non-conservative.
When $f(1/x)$ is concave or convex?

- **SQRT**: $f(1/x)$ concave
- **PFTK**: $f(1/x)$ concave for light loss, but convex for heavy loss
Importance of Feller’s Paradox Type of Effects

Feller’s Paradox: for a point process, average interval between two points seen by a random observer is larger than as seen at the interval boundaries.

Recall (C2): $\text{Cov}[X_0, S_0] \leq 0$

Thus, by Palm inversion formula:

$$\mathbb{E}[X(0)] = \mathbb{E}_T[X(0)] + \frac{\text{Cov}[X_0, S_0]}{E_T[S_0]}$$

it follows (C2) $\Rightarrow \mathbb{E}[X(0)] \leq \mathbb{E}_T[X(0)]$

Interpretation:

1. a random observer would more likely pick larger interval S_n

2. (C2) implies, on average, she would see smaller rate than as seen at $\{T_n\}$
When (C2) is True?

Ob. $\mathbb{E}[S_n | X_n = x]$ non-increasing with $x \Rightarrow \text{Cov}[X_n, S_n] \leq 0$ (C2)

Ex. If θ_n is independent of data send rate X_n, then

$$\mathbb{E}[S_n | X_n = x] = \frac{1}{px}$$

Thus, (C2) holds.
Second Suggestion

- Assume S_n and X_n are negatively or non correlated.

 If $f(1/x)$ is concave in the region where $\hat{\theta}_n$ takes its values, the control tends to be conservative.

- Conversely, assume S_n and X_n are positively or non correlated.

 If $f(1/x)$ is convex in the region where $\hat{\theta}_n$ takes its values, the control is non conservative.

In both cases, more variable $\hat{\theta}_n$ is, stronger the effect.
Second Suggestion: ns-2 Experiment

\[L = 4 \]

Setting: a rate controlled source with fixed packet send rate (each 20 ms) through a single loss link (fixed drop probability independent of the packet size)
Second Suggestion: ns-2 Experiment

$L = 8$

Ob. Qualitatively the same as for $L = 4$, but the effects less pronounced
Third Suggestion (Loss Event Ratios Seen by Sources)

The loss event ratios for TCP, our adaptive equation based rate controlled source (A), and a non-adaptive source (P) (Poisson) should be in the relation

\[(*) \quad \bar{p}_{tcp} \leq \bar{p}_A \leq \bar{p}_P\]

The more responsive source A is, the closer \bar{p}_A should be to \bar{p}_{tcp}.

\textbf{Ob.} If $\mathbb{E}[X(0)] \leq f(\bar{p}_A)$, and $(*)$, then

$$\mathbb{E}[X(0)] \leq f(\bar{p}_{tcp})$$

(Conservativeness implies TCP-friendliness, for a TCP source that attains throughput $\geq f(\bar{p}_{tcp})$, with equality if f is accurate loss-throughput function of the given TCP)
Third Suggestion: ns-2 Experiment
\(f \) may be Inaccurate Loss-throughput Function

Ob. TCP-Sack1 does not verify PFTK loss-throughput function \(f \)
f may be Inaccurate Loss-throughput Function

Ob. Control may be not friendly to the given TCP, even though being conservative and friendly to the function \(f \)

Ob. This is NOT problem of the control, but merely due to inaccuracy of \(f \)
Conclusion

Two causes of $\mathbb{E}[X(t)] \neq f(\bar{p})$:

- time versus event averages

- convexity properties of $f(1/x), 1/f(1/x)$

Important to separate:

- conservativeness

- this control loss event ratio versus TCP loss event ratio

- obedience of TCP to given function f
Pointers

Available at: http://lcawww.epfl.ch
Appendix

Comparison of (Non-)Conservativeness Conditions

(F1) \(\frac{1}{f(1/x)} \) convex \hspace{1cm} (F2) \(f(1/x) \) concave

(F1') \(\frac{1}{f(1/x)} \) concave \hspace{1cm} (F2') \(f(1/x) \) convex

(F2) \(\Rightarrow \) (F1)
Comparison of (Non-)Conservativeness Conditions (cont’d)

\((C1)\) \(\text{Cov}[\theta_n, \tilde{\theta}_n] \leq 0\) \hspace{1cm} \((C2)\) \(\text{Cov}[X_n, S_n] \leq 0\)

\((C1')\) \(\text{Cov}[\theta_n, \tilde{\theta}_n] > 0\) \hspace{1cm} \((C2')\) \(\text{Cov}[X_n, S_n] > 0\)

\((C2) \Leftrightarrow \)

\(\text{Cov}[\theta_n, \frac{1}{f(1/\tilde{\theta}_n)}] \geq \mathbb{E}[\theta_n] \left(\frac{1}{\mathbb{E}[f(1/\tilde{\theta}_n)]} - \mathbb{E}[\frac{1}{f(1/\tilde{\theta}_n)}] \right)\)

\((C2') \Leftrightarrow \)

\(\text{Cov}[\theta_n, \frac{1}{f(1/\tilde{\theta}_n)}] < \mathbb{E}[\theta_n] \left(\frac{1}{\mathbb{E}[f(1/\tilde{\theta}_n)]} - \mathbb{E}[\frac{1}{f(1/\tilde{\theta}_n)}] \right)\)

Ob. The RHS is negative.

Assume \(g(x) = \frac{1}{f(1/x)}\) non-increasing convex.

\((C2) \Leftrightarrow \text{Cov}[\theta_n, \tilde{\theta}_n] \leq \frac{\mathbb{E}[\theta_n]}{g'(\mathbb{E}[\theta_n])} \left(\frac{1}{\mathbb{E}[f(1/\tilde{\theta}_n)]} - \frac{1}{f(1/\mathbb{E}[\theta_n])} \right)\)

\((C2') \Rightarrow \text{Cov}[\theta_n, \tilde{\theta}_n] > \frac{\mathbb{E}[\theta_n]}{g'(\mathbb{E}[\theta_n])} \left(\frac{1}{\mathbb{E}[f(1/\tilde{\theta}_n)]} - \frac{1}{f(1/\mathbb{E}[\theta_n])} \right)\)

Ob. For \(f(1/x)\) convex with \(x\), the RHS is positive. In this case, if \((C2')\) holds, then necessarily \((C1')\) holds.
Example of Non-Conservative Control

Assume:

- $\{\theta_n, Z_n\}$ is semi-Markov process

- $[p_{ij}]$ transition matrix of DTMC $\{Z_n\}$

- $P(Z_{n+1} = j, \theta_n = m|Z_n = i) = p_{ij}g_i(m)$

Consider:

- $\{Z_n\}$ two-state DTMC with state space $\{g, b\}$

- periodic losses while in a given state; $P(\theta_n = n_g|Z_n = g) = 1$ and $P(\theta_n = n_b|Z_n = b) = 1$
Example of Non-Conservative Control
(cont’d)

Slow MC limit, $p_{gb}, p_{bg} \to 0$, $\frac{p_{gb}}{p_{bg}} = u$,

$$
\mathbb{E}[X(0)] \to \frac{p_{bg} n_g + p_{gb} n_b}{p_{bg} f(1/n_g) + p_{gb} f(1/n_b)}
$$

Maximum attained for $\frac{p_{bg}}{p_{gb}} = \sqrt{\frac{n_b}{n_g}}$; maximum normalized throughput $(\mathbb{E}[X(0)]/f(\bar{p}))$,

$$
x^* = \frac{1}{2} \sqrt{\frac{n_g}{n_b} + \frac{1}{\sqrt{\frac{n_g}{n_b}}}}
$$
Example of Non-Conservative Control
(cont’d)

$\mathbb{E}[X(0)]/f(\bar{p})$ vs. p_{gb} and p_{bg} (Basic Control)
Example of Non-Conservative Control (cont’d)

$E[X(0)]/f(\tilde{p})$ vs. p_{gb} and p_{bg} (Comprehensive Control)
Example of Non-Conservative Control (cont’d)

Maximum $\mathbb{E}[X(0)]/f(\bar{p})$ for slow MC limit (x^*)