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e case study: wireless communication network

— communication network with nodes connected by wireless links
— multiple flows, from source to destination nodes
— total traffic on each link limited by link capacity

— link capacity is function of communication resource variables such as
power, bandwidth, which are limited

goal: find optimal operation of network, i.e., do simultaneous routing
and resource allocation (SRRA)
e basic idea: exploit problem structure via duality

— vertical decomposition (dualize coupling constraints between layers)
— horizontal decomposition (dualize local constraints among neighbors)
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Outline

e the simultaneous routing and resource allocation (SRRA) problem

— network flow/routing

— communication resource allocation
— formulation of SRRA
— examples

e solution via dual decomposition (vertical decomposition)

— formulation of the dual problem
— subgradient method
— analytic center cutting-plane method (ACCPM)

e distributed algorithms for subproblems (horizontal decomposition)

— flow routing
— resource allocation
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Network topology

e directed graph with nodes
N ={1,...,n}, links L={1,...,m}

e O(i): set of outgoing links at node ¢
Z(7): set of incoming links at node ¢

e incidence matrix A € R™*™

1, if ke O()
air =1 —1, if ke Z(i)
0, otherwise
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Network flow model

e multiple source/destination pairs

e identify flows by destinations d € D C N/

— s ¢ R™ sgd) flow from node i to node d
— @ € R™: z\¥ flow on link k, to node d

e flow conservation laws

Z x}({d)_ Z x}({;d) :Sgd)

keO(i) ke (i)

or Az = sd)
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Multicommodity network flow problem

e network flow constraints

Ax(d) = g(d) flow conservation law
z(4) = 0, nonnegative flows

th =Y epr”, total traffic on link k
tr < cp, capacity constraints

e one traditional optimal routing problem: with s, ¢ fixed, minimize
convex separable function of ¢, e.g., average or total delay

L tk
minimize Dot = g .
— Cr — Uk
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e another traditional formulation: with ¢ fixed, maximize sum of concave
utility functions over source flows:

maximize Uiot = Z Z U;d)(sgd))

d itd

e optimization based congestion control (Kelly et al, Low et al, ...)

maximize Z U,(s,)

reR
subject to Z sr<c¢, ,leLl
reS(1)

— adjust s, with fixed routing table; only have capacity constraints
— TCP running at a faster time scale than IP

e many solution methods, including distributed algorithms by duality
(will come back to this later)
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Communications model and assumptions

now we consider effect of communication resources (e.g., power,
bandwidth) on capacity of the links

6 vector of communication resources for link k, e.g., 0, = (Pi, W)
capacity of link k given by cx = ¢r(0x), where ¢y is concave, increasing

communication resource limits:

e.g., limits on total transmit power at node, total bandwidth over groups
of nodes
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Example: Gaussian broadcast channel with FDMA

e communications variables 0y, = (P, Wi), Px, W >0

o cx = dr(Pr, Wi) = Wy logo(1 + 5s-)

e total power and bandwidth constraints on each outgoing link:

Z Py < Pt((fﬁ

Z Wy < W&fi
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Communication resource allocation problem

maximize weighted sum of capacities, subject to resource limits

maximize Zk WECL — Zk wkgbk(Hk)
subjectto COH<0b, 6>0

e convex problem

e special methods for particular cases, e.g., waterfilling for variable
powers, fixed bandwidth

maximize Zk WECL — Zk wkqbk(Pk)
subject to ), Pr < Piotal, Pr >0

IPAM Workshop, 4/18/02



Simultaneous routing and resource allocation

separable convex objective function fhei(z,s,%) + feomm(0)

minimize  fuet(x, S,t) + feomm(6)

subject to  Axz(® = 5(D), flow conservation
z(4) = 0, nonnegative flows
bk = D 4ep x,({d), total traffic on links
tr < Or(6y), capacity constraints
co<b 6>0 resource limits

e a convex optimization problem with variables x, s, t, 6

e when communication resource allocation 6 is fixed, get convex
multicommodity flow problem
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Examples

Minimum total power/bandwidth SRRA:
e source-sink vectors s(%) given

e SRRA objective function: w?6, w; = .
0 otherwise

variation: minimum total required bandwidth

Maximum utility SRRA:

e total utility given by U(s Z Z U (s
d 1#£d
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An example with FDMA

e total transmit power at each node: Pé’jﬁ =1
e total bandwidth, over all links in network: Wi, = 11
e receiver noise spectral densities: N = 0.1

e objective: maximize sum of flows: s§6> + 3&5)
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Optimal routing & resource allocation

e left: allocate power and bandwidth evenly across links, then optimize

flow; get 5&6) + 3%5) = 1.27

e right: solve SRRA problem (46 variables); get 50 + s = 8.2
1 2

SRRA gives significant performance improvement, sparse optimal routes
(load/utility dependent topology: choose an effienent subgraph)
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Solution methods

e real-world problems: hundreds of nodes, thousands of links
e general methods for convex problems: interior point methods

e can exploit structure in problem:

— A, and often C, are very sparse
— most constraints are local

e for real-world implementation: distributed algorithms
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A larger example

e 50 nodes, 340 links
e 5 destination nodes, 20 source/destination pairs

e 2060 variables (1720 flow variables, 340 power variables)
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generate random network topology

— nodes uniformly distributed on a square
— two nodes communicate if distance smaller than threshold
— randomly choose source and destination nodes

bandwidth allocation fixed; only allocate transmit power p;

total power limit at each node Z P < Doy
keO(i)

d
power path loss model P, = pp K (do)
k

noise power N; uniformly distributed on [N, N]

source utility function U(s ZZlog s( )
d 1#£d
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Optimal routes
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Comparison with uniform power allocation

1 |d=1|d=2|d=3|d=4|d=5
1 -2.26 1.03 0.88 1.01 1.37
2 0.56 | -13.95 1.73 9.59 5.92
3 0.54 2.07 -6.61 1.97 4.14
4 0.54 6.70 1.55 | -16.34 4.20
5 0.62 4.15 2.45 3.77 | -15.63

Table 1: Source-sink flows
routing (uniform power allocation), total utility: 12.77

(0

with fixed capacity

1 |ld=1|d=2|d=3|d=4|d=5
1 -3.88 1.11 0.92 1.12 1.13
2 1.03 | -16.05 2.93 6.98 6.97
3 0.84 2.69 -0.43 2.69 2.77
4 0.96 4.80 2.46 | -18.23 4.80
5 1.05 7.45 3.12 7.44 | -15.67

Table 2: Source-sink flows sgd)

with simultaneous

routing and resource allocation, total utility: 17.27
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Outline

e the simultaneous routing and resource allocation (SRRA) problem

— network flow/routing

— communication resource allocation
— formulation of SRRA
— examples

e solution via dual decomposition (vertical decomposition)

— formulation of the dual problem
— subgradient method
— analytic center cutting-plane method (ACCPM)

e distributed algorithms for subproblems (horizontal decomposition)

— flow routing
— resource allocation
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Exploiting structure via dual decomposition

structure of SRRA problem

e objective separable in network flow and communications variables

e only capacity constraints couple x, s, t and 6

dual decomposition (Lagrange relaxation)

e relax coupling capacity constraints by introducing Lagrange multipliers

e decompose SRRA into two subproblems, both highly structured,
efficient algorithms exist for each (dual decomposition again)

e subproblems coordinated by master dual problem
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minimize

subject to
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The SRRA problem

fnet(xa S, t) —+ fcomm(g)

Ax(d) = g(d) flow conservation
z(4d) = 0, nonnegative flows

tk = D _gep a:,gd), total traffic on links
tr < or(0r), capacity constraints
cC6<b, 606>0 resource limits
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Dual decomposition

e introduce multiplier A € RT" only for coupling constraints

L(z,8,t,0,\) = faet(z,8,t) 4+ feomm(0) + X (£ — ¢(6))
(fuer(@, 5,8) + ATE) + (feomm(6) = AT6(6)) ,

e dual function

Az @ = @ ¢@ 0 @ — }

gA) = inf{L(x,s,t,@,)\)‘ CO<b 650

— gnet(>\) + gcomm(>\)

Az® = §@ 3@ 0, 34 t}

gnet(>\) = inf {fnet(x, S, t) + )\Tt
deD

geomn(N) = inf { feoun(6) = AT$(0) | CO < b, 6= 0}
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The dual problem SRRA™

e master dual problem (coordinate capacity prices)
maximize g()\) — gnet(A> + gcomm<)\)
subjectto A >0

e network flow subproblem (evaluate gpet(N))

minimize  foet(, s,t) + A1t
subject to  Az(® = 5@ z(d) -

t=> 4gep (@

e resource allocation subproblem (evaluate gcomm(A))

minimize  foomm(0) — A ¢(0)
subjectto CO=<b, 6>=0

economic interpretation

IPAM Workshop, 4/18/02
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Solving the subproblems

multicommodity flow problem: standard, efficient algorithms exist

resource allocation problem

® Structure

— objective often separable
— most constraints are local
— few global constraints, e.g., total bandwidth

e second-level dual decomposition

— relax global resource constraints
— subproblems local (at nodes, links)
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Hierarchical dual decomposition

SRRA

'

relax capacity constraints

/ \
MCNF RA

/ relax global resource constraints

decoupled single-commodity / / ‘ \
flow problems S

subproblems at each node

subproblems can be solved in parallel, distributed algorithms also exist
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Solving SRRA via the dual

e strong duality from constraint qualification
e dual function often nonsmooth (primal objective not strict convex),
recovering feasible primal optimal solution is not straightfoward

— add small regularization terms (strict convex)
— augmented Lagrangian, proximal bundle method
— ergodic sequences
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Solving SRRA*

non-smooth convex optimization problem, two class of methods

e subgradient (supergradient) methods (Shor, ...)
e cutting plane methods, e.g., ACCPM (Goffin, Vial, Luo, Ye, ...)

all need supergradient information

for SRRA™ problem
maximize g(\)
subjectto A >0

the supergradient A(\) is readily given by h(\) = t*(\) — ¢(0*(N))

IPAM Workshop, 4/18/02
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Subgradient methods

for k=1,2,3,..., find supergradient h(¥)

\(k+1) ( AR L a,kh(k))

+
where step size aj satisfies
O
ak>0, ak—>0, E ap — 00,
k=1
c
for example, ap = Z

e update price (dual variable) locally at each link; distributed algorithm
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Dual objective versus number of iterations

Dual objective versus number of iterations
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Analytic center cutting-plane method (ACCPM)

o for k=1,2,3,..., compute g()\(’“>) and supergradient A%, so

g(N) < g(A®) + P (A =AW
each is a linear inequality in the epigraph space (g()\), \) € R™*!

e at step k, they form a polyhedron (the localization set)

pk) — {z ’ a DT, <pW =1,k z€ RmH}

the optimal solution z* = (g(A*), A\*) lies inside this polyhedron
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e compute the analytic center of P (k)

k
2D — arg maxz log(b\V — aWT2)
i=1

o choose \**t1) as the query point; compute g(Ak+1)) and pF+1)

e refine the localization set by adding a halfspace constraint passing
through z**1) (can have deeper cut)
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Dual objective versus number of iterations

Dual objective versus number of iterations
100 T T T T
— dual objective

—— upper bound for primal |

80

|
EAN
o

T

|

|
(o2}
o

T

|

-100 I I I I
0 50 100 150 200 250

Number of iterations

IPAM Workshop, 4/18/02



Parallel ACCPM running on multiple processors

Compute AC A
(ScaLAPACK)

Routing and RA

(Sparse solver)
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Combine results to obtain subgradient h
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Subgradient methods versus ACCPM

Dual objective versus number of iterations
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e subgradient methods: slow convergence, but fully distributed
e ACCPM: fast convergence, but needs centralized coordination

e hybrid algorithms possible (77)
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Outline

e the simultaneous routing and resource allocation (SRRA) problem

— network flow/routing

— communication resource allocation
— formulation of SRRA
— examples

e solution via dual decomposition (vertical decomposition)

— formulation of the dual problem
— subgradient method
— analytic center cutting-plane method (ACCPM)

e distributed algorithms for subproblems (horizontal decomposition)

— flow routing
— resource allocation
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Distributed routing algorithm

single commodity flow routing problem

minimize >, f(s;) + Mz
subjectto Ax=s, x>0

relax flow conservation law at each node by introducing Lagrange
multiplier p;, the dual problem:

maximize q(p)

where the dual function

:mfo )+ M2 +pf(Ax — )

x>0

IPAM Workshop, 4/18/02
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subgradient of ¢(p) in the coordinate of p3 is given by the “surplus”
g3 = S$3 + X13 1+ T23 — T34 — T35

coordinate ascent: fix other p;’s, adjust p3 and its incident flow variables
to make g3 = 0 (many variations, Bertsekas et al, ...)

e for shortest path problem, exactly the same as distributed Bellman-Ford
algorithm: dual variable as cost-to-go value function

e clectical circuit analogy: KVL and KCL
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Distributed algorithms for resource allocation
consider a simple version

n
maximize Z fi(x;)
i=1

subjectto x1+ 22+ -4+ 2, <T

where f;'s are concave utility function, T’ is the total resource

e the dual algorithm (pricing)

Let z;(\) = arg max( f;(x;) — Ax;)

Ly

update price AT =+« (Z x;(N) — T)
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e a primal algorithm

shadow price  A\;(z;) = f/(x;)

1
llocati ;= Ai(xi) —— ) Ailz
reallocation T, 51:+oz< () nzz: (x ))

e a center-free algorithm (Ho et al, 1980)

shadow price  \;(x;) = f!(x;)

reallocation lej_ = x; + oy -1 (Ai(zi)

— )\z'—l(xz'—l))
0t i1 (Ai(Ti) — Nig1(Tig1))

variations: communicate shadow prices not only with neighbors

theme: convexity makes all sorts of things possible ...
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Some insight on the dual problem

e naturally decoupled simple constraints (R or R.)
e coordinate ascent method for dual problem
maximize QZ<p’L> — Q<p17 ceo sy Pi—1,DPis Pit1,y - - - 7pm>

with P1;---yPi—1yPi+15---9Pm fixed

e for networked system, maximization of ¢;(p;) often only need
information from a few neighbors, e.g., p;—1 and p; 11

suitable for distributed algorithms
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Coordinate ascent for primal and dual

P2a

primal dual
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Summary

e model and assumptions for wireless data networks

— capacitated multicommodity flow model
— capacity constraints concave in communications variables
— communications resource limits

e SRRA: convex optimization problem

e efficiently solved via dual decomposition; subgradient method, ACCPM

e distributed algorithms for solving subproblems

e extensions

— asynchronous distributed algorithms
— dynamic routing and resource allocation

IPAM Workshop, 4/18/02

43



Essential idea

exploit structure of networked system via duality

e vertical decomposition (dualize coupling constraints between layers)

e horizontal decomposition (dualize local constraints among neighbors)

often working at different time scale
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