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• case study: wireless communication network

– communication network with nodes connected by wireless links

– multiple flows, from source to destination nodes

– total traffic on each link limited by link capacity

– link capacity is function of communication resource variables such as
power, bandwidth, which are limited

goal: find optimal operation of network, i.e., do simultaneous routing
and resource allocation (SRRA)

• basic idea: exploit problem structure via duality

– vertical decomposition (dualize coupling constraints between layers)

– horizontal decomposition (dualize local constraints among neighbors)
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Outline

• the simultaneous routing and resource allocation (SRRA) problem

– network flow/routing
– communication resource allocation
– formulation of SRRA
– examples

• solution via dual decomposition (vertical decomposition)

– formulation of the dual problem
– subgradient method
– analytic center cutting-plane method (ACCPM)

• distributed algorithms for subproblems (horizontal decomposition)

– flow routing
– resource allocation
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Network topology

• directed graph with nodes
N = {1, . . . , n}, links L = {1, . . . ,m}

• O(i): set of outgoing links at node i
I(i): set of incoming links at node i

1

2

3

4

5

6

7

1

2

3

4

5

• incidence matrix A ∈ Rn×m

aik =




1, if k ∈ O(i)
−1, if k ∈ I(i)

0, otherwise

1 2 3 4 5 6 7

1 −1 1 0 1 1 0 0
2 1 −1 −1 0 0 0 0
3 0 0 1 −1 0 −1 1
4 0 0 0 0 −1 1 0
5 0 0 0 0 0 0 −1

IPAM Workshop, 4/18/02 3



Network flow model

• multiple source/destination pairs

• identify flows by destinations d ∈ D ⊆ N
– s(d) ∈ Rn: s

(d)
i flow from node i to node d

– x(d) ∈ Rm: x
(d)
k flow on link k, to node d

• flow conservation laws

∑
k∈O(i)

x
(d)
k −

∑
k∈I(i)

x
(d)
k = s

(d)
i

or Ax(d) = s(d)

1

2

3

4

5

6

7

1

2

3

4

5

s
(5)
2

s
(5)
3

s
(5)
5

x
(5)
4

x
(5)
7

IPAM Workshop, 4/18/02 4



Multicommodity network flow problem

• network flow constraints

Ax(d) = s(d), flow conservation law
x(d) � 0, nonnegative flows

tk =
∑

d∈D x
(d)
k , total traffic on link k

tk ≤ ck, capacity constraints

• one traditional optimal routing problem: with s, c fixed, minimize
convex separable function of t, e.g., average or total delay

minimize Dtot =
∑

k

tk
ck − tk
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• another traditional formulation: with c fixed, maximize sum of concave
utility functions over source flows:

maximize Utot =
∑

d

∑
i6=d

U
(d)
i (s(d)

i )

• optimization based congestion control (Kelly et al, Low et al, ...)

maximize
∑
r∈R

Ur(sr)

subject to
∑

r∈S(l)

sr ≤ cl, , l ∈ L

– adjust sr with fixed routing table; only have capacity constraints
– TCP running at a faster time scale than IP

• many solution methods, including distributed algorithms by duality
(will come back to this later)
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Communications model and assumptions

now we consider effect of communication resources (e.g., power,
bandwidth) on capacity of the links

θk: vector of communication resources for link k, e.g., θk = (Pk, Wk)

capacity of link k given by ck = φk(θk), where φk is concave, increasing

communication resource limits:

Cθ � b, θ � 0

e.g., limits on total transmit power at node, total bandwidth over groups
of nodes
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Example: Gaussian broadcast channel with FDMA

• communications variables θk = (Pk, Wk), Pk, Wk ≥ 0

• ck = φk(Pk, Wk) = Wk log2(1 + Pk
NkWk

)

• total power and bandwidth constraints on each outgoing link:

∑
k∈O(i)

Pk ≤ P
(i)
tot

∑
k∈O(i)

Wk ≤ W
(i)
tot

i
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Communication resource allocation problem

maximize weighted sum of capacities, subject to resource limits

maximize
∑

k wkck =
∑

k wkφk(θk)
subject to Cθ � b, θ � 0

• convex problem

• special methods for particular cases, e.g., waterfilling for variable
powers, fixed bandwidth

maximize
∑

k wkck =
∑

k wkφk(Pk)
subject to

∑
k Pk ≤ Ptotal, Pk ≥ 0
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Simultaneous routing and resource allocation

separable convex objective function fnet(x, s, t) + fcomm(θ)

minimize fnet(x, s, t) + fcomm(θ)
subject to Ax(d) = s(d), flow conservation

x(d) � 0, nonnegative flows

tk =
∑

d∈D x
(d)
k , total traffic on links

tk ≤ φk(θk), capacity constraints

Cθ � b, θ � 0 resource limits

• a convex optimization problem with variables x, s, t, θ

• when communication resource allocation θ is fixed, get convex
multicommodity flow problem
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Examples

Minimum total power/bandwidth SRRA:

• source-sink vectors s(d) given

• SRRA objective function: wTθ, wi =
{

1 θi is a power variable,
0 otherwise

variation: minimum total required bandwidth

Maximum utility SRRA:

• total utility given by U(s) =
∑

d

∑
i6=d

U
(d)
i (s(d)

i )

IPAM Workshop, 4/18/02 11



An example with FDMA
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• total transmit power at each node: P
(i)
tot = 1

• total bandwidth, over all links in network: Wtot = 11

• receiver noise spectral densities: Nk = 0.1

• objective: maximize sum of flows: s
(6)
1 + s

(5)
2
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Optimal routing & resource allocation
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• left: allocate power and bandwidth evenly across links, then optimize

flow; get s
(6)
1 + s

(5)
2 = 1.27

• right: solve SRRA problem (46 variables); get s
(6)
1 + s

(5)
2 = 8.22

SRRA gives significant performance improvement, sparse optimal routes
(load/utility dependent topology: choose an effienent subgraph)
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Solution methods

• real-world problems: hundreds of nodes, thousands of links

• general methods for convex problems: interior point methods

• can exploit structure in problem:

– A, and often C, are very sparse
– most constraints are local

• for real-world implementation: distributed algorithms
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A larger example

S1

S2

S3

S4

S5

• 50 nodes, 340 links

• 5 destination nodes, 20 source/destination pairs

• 2060 variables (1720 flow variables, 340 power variables)
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• generate random network topology

– nodes uniformly distributed on a square
– two nodes communicate if distance smaller than threshold
– randomly choose source and destination nodes

• bandwidth allocation fixed; only allocate transmit power pk

• total power limit at each node
∑

k∈O(i)

pk ≤ pi
tot

• power path loss model Pk = pkK

(
d0

dk

)2

• noise power Ni uniformly distributed on [N, N ]

• source utility function U(s) =
∑

d

∑
i6=d

log s
(d)
i
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Optimal routes
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aggregate flow
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Comparison with uniform power allocation

i d = 1 d = 2 d = 3 d = 4 d = 5

1 -2.26 1.03 0.88 1.01 1.37

2 0.56 -13.95 1.73 9.59 5.92

3 0.54 2.07 -6.61 1.97 4.14

4 0.54 6.70 1.55 -16.34 4.20

5 0.62 4.15 2.45 3.77 -15.63

Table 1: Source-sink flows s
(d)
i with fixed capacity

routing (uniform power allocation), total utility: 12.77

i d = 1 d = 2 d = 3 d = 4 d = 5

1 -3.88 1.11 0.92 1.12 1.13

2 1.03 -16.05 2.93 6.98 6.97

3 0.84 2.69 -9.43 2.69 2.77

4 0.96 4.80 2.46 -18.23 4.80

5 1.05 7.45 3.12 7.44 -15.67

Table 2: Source-sink flows s
(d)
i with simultaneous

routing and resource allocation, total utility: 17.27
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Outline

• the simultaneous routing and resource allocation (SRRA) problem

– network flow/routing
– communication resource allocation
– formulation of SRRA
– examples

• solution via dual decomposition (vertical decomposition)

– formulation of the dual problem
– subgradient method
– analytic center cutting-plane method (ACCPM)

• distributed algorithms for subproblems (horizontal decomposition)

– flow routing
– resource allocation
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Exploiting structure via dual decomposition

structure of SRRA problem

• objective separable in network flow and communications variables

• only capacity constraints couple x, s, t and θ

dual decomposition (Lagrange relaxation)

• relax coupling capacity constraints by introducing Lagrange multipliers

• decompose SRRA into two subproblems, both highly structured,
efficient algorithms exist for each (dual decomposition again)

• subproblems coordinated by master dual problem
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The SRRA problem

minimize fnet(x, s, t) + fcomm(θ)
subject to Ax(d) = s(d), flow conservation

x(d) � 0, nonnegative flows

tk =
∑

d∈D x
(d)
k , total traffic on links

tk ≤ φk(θk), capacity constraints

Cθ � b, θ � 0 resource limits
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Dual decomposition

• introduce multiplier λ ∈ Rm
+ only for coupling constraints

L(x, s, t, θ, λ) = fnet(x, s, t) + fcomm(θ) + λ
T
(t − φ(θ))

=

�

fnet(x, s, t) + λ
T
t

�

+

�

fcomm(θ) − λ
T
φ(θ)

�

,

• dual function

g(λ) = inf

�

L(x, s, t, θ, λ)

���� Ax(d) = s(d), x(d) � 0,

P

d∈D x(d) = t

Cθ � b, θ � 0

�

= gnet(λ) + gcomm(λ)

gnet(λ) = inf

�

fnet(x, s, t) + λTt

����Ax(d) = s(d), x(d) � 0,

X

d∈D
x(d) = t

�

gcomm(λ) = inf

n
fcomm(θ) − λ

T
φ(θ)

��� Cθ � b, θ � 0

o
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The dual problem SRRA?

• master dual problem (coordinate capacity prices)

maximize g(λ) = gnet(λ) + gcomm(λ)
subject to λ � 0

• network flow subproblem (evaluate gnet(λ))

minimize fnet(x, s, t) + λT t
subject to Ax(d) = s(d), x(d) � 0

t =
∑

d∈D x(d)

• resource allocation subproblem (evaluate gcomm(λ))

minimize fcomm(θ) − λTφ(θ)
subject to Cθ � b, θ � 0

economic interpretation
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Solving the subproblems

multicommodity flow problem: standard, efficient algorithms exist

resource allocation problem

• structure

– objective often separable
– most constraints are local
– few global constraints, e.g., total bandwidth

• second-level dual decomposition

– relax global resource constraints
– subproblems local (at nodes, links)
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Hierarchical dual decomposition

SRRA

relax capacity constraints

MCNF RA

decoupled single-commodity
flow problems

relax global resource constraints

subproblems at each node

. . .
. . .

subproblems can be solved in parallel, distributed algorithms also exist
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Solving SRRA via the dual

• strong duality from constraint qualification

• dual function often nonsmooth (primal objective not strict convex),
recovering feasible primal optimal solution is not straightfoward

– add small regularization terms (strict convex)
– augmented Lagrangian, proximal bundle method
– ergodic sequences
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Solving SRRA?

non-smooth convex optimization problem, two class of methods

• subgradient (supergradient) methods (Shor, ...)

• cutting plane methods, e.g., ACCPM (Goffin, Vial, Luo, Ye, ...)

all need supergradient information

for SRRA? problem
maximize g(λ)
subject to λ � 0

the supergradient h(λ) is readily given by h(λ) = t?(λ) − φ(θ?(λ))
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Subgradient methods

for k = 1, 2, 3, . . ., find supergradient h(k)

λ(k+1) =
(
λ(k) + akh

(k)
)

+

where step size ak satisfies

ak ≥ 0, ak → 0,

∞∑
k=1

ak = ∞,

for example, ak =
c

k

• update price (dual variable) locally at each link; distributed algorithm
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Dual objective versus number of iterations
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Analytic center cutting-plane method (ACCPM)

• for k = 1, 2, 3, . . ., compute g(λ(k)) and supergradient h(k), so

g(λ) ≤ g(λ(k)) + h(k)T (λ − λ(k))

each is a linear inequality in the epigraph space (g(λ), λ) ∈ Rm+1

• at step k, they form a polyhedron (the localization set)

P(k) =
{

z
∣∣∣ a(i)Tz ≤ b(i), i = 1, . . . , k, z ∈ Rm+1

}

the optimal solution z? = (g(λ?), λ?) lies inside this polyhedron
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• compute the analytic center of P (k)

z(k+1) = arg max
z

k∑
i=1

log(b(i) − a(i)Tz)

z(k+1)

P(k)
z(k+1)

P(k+1)

• choose λ(k+1) as the query point; compute g(λ(k+1)) and h(k+1)

• refine the localization set by adding a halfspace constraint passing
through z(k+1) (can have deeper cut)
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Dual objective versus number of iterations
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Parallel ACCPM running on multiple processors

. . .

. . .

p1

p1

p2

p2

p3

p3

pn

pn

Broadcast dual variable λ

Combine results to obtain subgradient h

Compute AC λ

(ScaLAPACK)

Routing and RA

(Sparse solver)
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Subgradient methods versus ACCPM
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ACCPM: dual objective
ACCPM: upper bound
subgradient method c=0.2
subgradient method c=0.1

• subgradient methods: slow convergence, but fully distributed

• ACCPM: fast convergence, but needs centralized coordination

• hybrid algorithms possible (??)
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Outline

• the simultaneous routing and resource allocation (SRRA) problem

– network flow/routing
– communication resource allocation
– formulation of SRRA
– examples

• solution via dual decomposition (vertical decomposition)

– formulation of the dual problem
– subgradient method
– analytic center cutting-plane method (ACCPM)

• distributed algorithms for subproblems (horizontal decomposition)

– flow routing
– resource allocation
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Distributed routing algorithm

single commodity flow routing problem

minimize
∑

i f(si) + λTx
subject to Ax = s, x � 0

relax flow conservation law at each node by introducing Lagrange
multiplier pi, the dual problem:

maximize q(p)

where the dual function

q(p) = inf
x�0

∑
i

f(si) + λTx + pT (Ax − s)
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subgradient of q(p) in the coordinate of p3 is given by the “surplus”

g3 = s3 + x13 + x23 − x34 − x35

coordinate ascent: fix other pi’s, adjust p3 and its incident flow variables
to make g3 = 0 (many variations, Bertsekas et al, ...)

• for shortest path problem, exactly the same as distributed Bellman-Ford
algorithm: dual variable as cost-to-go value function

• electical circuit analogy: KVL and KCL
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Distributed algorithms for resource allocation

consider a simple version

maximize
n∑

i=1

fi(xi)

subject to x1 + x2 + · · · + xn ≤ T

where fi’s are concave utility function, T is the total resource

• the dual algorithm (pricing)

Let xi(λ) = arg max
xi

(fi(xi) − λxi)

update price λ+ = λ + α

(∑
i

xi(λ) − T

)
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• a primal algorithm

shadow price λi(xi) = f ′
i(xi)

reallocation x+
i = xi + α

(
λi(xi) − 1

n

∑
i

λi(xi)

)

• a center-free algorithm (Ho et al, 1980)

shadow price λi(xi) = f ′
i(xi)

reallocation x+
i = xi + αi,i−1 (λi(xi) − λi−1(xi−1))

+αi,i+1 (λi(xi) − λi+1(xi+1))

variations: communicate shadow prices not only with neighbors

theme: convexity makes all sorts of things possible ...
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Some insight on the dual problem

• naturally decoupled simple constraints (R or R+)

• coordinate ascent method for dual problem

maximize qi(pi) = q(p1, . . . , pi−1, pi, pi+1, . . . , pm)

with p1, . . . , pi−1, pi+1, . . . , pm fixed

• for networked system, maximization of qi(pi) often only need
information from a few neighbors, e.g., pi−1 and pi+1

suitable for distributed algorithms

IPAM Workshop, 4/18/02 41



Coordinate ascent for primal and dual

x1

x2

f(x) = const

primal

p1

p2

q(p) = const

dual
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Summary

• model and assumptions for wireless data networks

– capacitated multicommodity flow model
– capacity constraints concave in communications variables
– communications resource limits

• SRRA: convex optimization problem

• efficiently solved via dual decomposition; subgradient method, ACCPM

• distributed algorithms for solving subproblems

• extensions

– asynchronous distributed algorithms
– dynamic routing and resource allocation
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Essential idea

exploit structure of networked system via duality

• vertical decomposition (dualize coupling constraints between layers)

• horizontal decomposition (dualize local constraints among neighbors)

often working at different time scale
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