
1

Vesicle micro-hydrodynamics

Petia M. Vlahovska

Max-Planck Institute of Colloids and Interfaces, Theory Division

CM06 workshop I “Membrane Protein Science and Engineering”
IPAM, UCLA, 27 march 2006

future contact:
from August 1st at the Thayer School of Engineering, Dartmouth College
permanent email: petia@aya.yale.edu



2

Outline

Vesicles in equilibrium

Vesicles in flow: deformation does matter! 
Motivation: cell hydrodynamics

Examples:
deformation in unbounded flow
migration in wall-bounded flow
“parachutes” in microchannels
(rheology of suspensions)

Theory: 
simulations: boundary integral method 
analytical: small deformation expansion

Vesicle adhesion
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Vesicles: equilibrium

a ~ 10-100 µm

free energy
(Helfrich)

bending stretching

mean curvature=1/R1+1/R2

bending modulus

bilayer thickness d ~ 5 nm

TBκκ 10≈

surface tension

volume 
conservation

area 
conservation

A   area
V volume
∆p pressure jump across the membrane
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Seifert, Adv.Phys. 46 (1997)

Reduced volume
(‘excess’ area)

Vesicles: equilibrium shapes
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Fahraeus effect

Motivation: cell hydrodynamics 

layer depleted  of red blood cells near the wall

Cell traffic between blood stream and tissues 

• inflammatory response
• tumor metastasis
• formation of atherosclerotic plaques 

(A. Viallat, Grenoble)

decrease in blood apparent viscosity
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inflammatory response (healing an injury)

Motivation: cell hydrodynamics 

blood flow

(white blood cell)
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vesicle deformation?
orientation?
stationary shapes?
flow-induced shape transitions?

Vesicle dynamics in flow: unbounded shear 1

low shear rates: tank-treading

Kantsler and Steinberg, PRL 95 (2005)

The shape is not given a priori !

φ+ =

Seifert, Eur. Phys. J. B 8 (1999)
Misbah, PRL 96 (2006)

shear
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transition to tumbling?

Kantsler and  Steinberg, PRL 96 (2006)

Vesicle dynamics in flow: unbounded shear 2

theory (Misbah) a=0.5

“breathing” vesicle? 

high shear rate: tumbling

φ

high shear rate, high viscosity contrast λ
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vesicle detachment ? ↔ cell adhesion

Vesicle dynamics in flow: near a wall

Abkarian et  al. PRL 88 (2002), Biophys. J. 89 (2005)

side view
microscope

lift force?
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Vitkova et  al. Europhys. Lett. (2004)

Vesicle dynamics in flow: microchannel

vesicle “parachutes” ? ↔ RBC in capillaries

shapes?
shape transitions?

flow

Noguchi and Gompper , PNAS 102(40) (2005)
(see supplemental info)

discocyte – parachute transformation:
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Deformable “objects” in flow

Vesicles:

Drops: compressible interface, surface tension rules

a free-surface boundary problem

incompressible interface, bending stresses rule
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Drop dynamics in flow

Flow:
Drop deforms
→ nonuniform curvature

capillary stresses

Equilibrium:
Drop shape is spherical
Surfactant distribution is uniform

Surfactant is redistributed
→ gradients in surface tension 

Marangoni stresses

Vesicles – what’s new?

area changes (compressible interface)

Laplace’s equation
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Vesicle dynamics in flow

shape deforms
→ nonuniform curvature 

capillary stresses

vesicle is “rough” fluctuations

bending stresses

area is conserved 
incompressible interface

Laplace’s equation

Equilibrium:
shape need not to be spherical

Flow:

→ gradients in effective tension 
Marangoni stresses
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vesicle dynamics: time scales 

“distorting”

“restoring”

convection by the extensional component of the flow

capillary relaxation

rotation
(gets to be important at high λ )

shear extension rotation

bending relaxation

viscosity ratio

relaxation driven by interfacial tension gradients
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Dimensionless parameters 

Capillary number

Marangoni parameter

rotation parameter

interplay of different time scales ⇒ complex dynamics

relaxation
distortion Bending parameter
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Dimensionless parameters 

Capillary number

‘elastic vesicle’ regime (area not conserved)

bending number

=flow strength
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Problem formulation: governing equations

λ

Stokes flow

shape evolution

Boundary conditions:

continuity of velocity across the membrane

viscosity ratio

i=in, out
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Problem formulation: stress boundary condition

hydrodynamics stress balanced by interfacial stresses

capillary bending Marangoni

lipid conservationarea conservation

incompressible surface: compressible surface:

& more
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Problem solution: general

Green’s function 
(Oseen tensor)

point force solution
(stokeslet)

unbounded flow, single particle

integral representation for the velocity

flow at infinity

(integration along the particle surface)

stokes equation is linear 
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Problem solution
Small deformations: Analytical solutions

perturbation expansions for small deviation from spherical shape
(quasi-spherical vesicle)

strong bending/strong tension/weak flow:

θ, φ spherical coordinates

r



21

Problem solution

boundary integral method

ellipsoid
red color signifies the magnitude
of the bending stresses

bending stresses
adaptive remeshing

Large distortions:    Numerical simulations

viscosity ratio λ=1

Cristini et al.  Phys. Fluids 10 (1998)
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strong flow Ca=0.5
Be=0 (no bending)

Be=10
Be=0.1 

Bending effects on deformation

same drop!

endtime=10
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0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

Bending effects on deformation

No bending stiffness

symbols: BIM simulations
lines:       small deformation theory

Be=0.1

bending
------------
tension

= flow strength

D

Deformation parameter (ellipsoid)
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spherical neutrally-buoyant particle does not drift !

Effects of the wall: particle migration

linear

reversing the flow

Stokes flow  equations

Why do red blood cells go away from the wall?
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Particle migration away from a wall in shear flows

deformed drop surfactant-covered, spherical drop

far-away from the wall nonlinear effect

close to the wall – lubrication type analysis, numerical simulations….
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Problem solution

image system

f

-f

stokeslet

wall-bounded flow

singularities formalism

fluid (shear free surface)

rigid wall
-2hf 4h2f

stokeslet
doublet

source 
doublet
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Vesicle detachment

image drop

reflection

flow

BIM simulation (shear free surface)

experiment:
side view microscope
vesicle on a glass substrate
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Vesicle migration velocity

Bending stiffness decreases migration velocity

Be=0.1

BIM simulations: preliminary results

t , h1.1 1.18

h

Be=0

time?
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Vesicle  adhesion

Gruhn and Lipowsky PRE 71 (2005)
idea: compare vesicle shapes for different reduced volumes

Experiment 1:
Side-view observation with the phase-contrast microscope

reflection

Materials: DOPC, DOPC+DOPG, DOPC+cholesterol

A non-destructive method to obtain  adhesion strength and bending rigidity.
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Vesicle  adhesion

DOPC:DOPG 9:1 DOPC:Cholesterol 8:2

Experiment 2: side-view observation with the confocal microscope

D=70 microns

(weakly adhering)

Data for DOPC:DOPG on a glass substrate

increase in bending rigidity less deformation

substrate 
(approximately)
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Summary

vesicle = deformable “drop” with bending stiffness
BIM simulations and small deformation analytical theory quantify:

* deformation in unbounded flow
* migration in wall-bounded flow

Future work

include membrane incompressibility
study: flow-induced shape transformations

budding
lift of adherent vesicles 
near-contact motion …
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