IPAM Cells and Materials: At the Interface between Mathematics, Biology and Engineering

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation

> Dr. Toshikazu Hamasaki Dept. Bioengineering, UCLA

Formation of supramolecular complex

Amplification during transcription and/or translation sometimes takes place.

Gene expression and its regulation are not included in this tutorial → Please take Molecular Biology classes elsewhere

(A) (A) (A)

Not all the proteins in a genome are expressed all the time:

Proteins always required for cell to 'LIVE'

'House keeping' proteins

- (Cell dies if these proteins are lost)
 - *e.g.* Glycolysis enzymes, Na⁺ channel, Na⁺/K⁺-ATPase histone, actin, tubulin,

Always produced (genes always expressed) ? feedback reg ?

- Proteins produced 'on demand' or ' in response to'. Hormones (e.g. pituitary hormones), Neurotransmitters Digestive enzymes
 - Differentiation, Development (incl. Cell divisions) Not only more proteins, but also a new set of proteins will be expressed.

Some proteins are made in larger numbers: Digestive enzymes, Mucins (mucus proteins), Casein (milk protein) Immunoglobulins, Peptide hormones, Extracellular matrix proteins (collagen etc) Keratin (skin, hair, nail)

Proteins in a cell

Volume of a prototypical mammalian cell : $5 \ge 5 \ge 4 \ (\mu m) = 1 \ge 10^{-16} \ m^3 = 1 \ge 10^{-13} \ l$ Concentration of actin (probably the most abundant protein) in cytoplasm: 100 μ M (10⁻⁴ M) $1 = 6 \ge 10^{23}$ molecules / lSo, 100 μ M = 6 $\ge 10^{19} \ l$

Thus, the amount of actin molecule in the cell would be 10^6 (one actin filament with 1 µm length contains ~450 actins) The other cytoskeletal protein, tubulin ($\alpha\beta$ -tubulin dimer), also the major protein in cells, exists only ~ 10 µM. (10⁵ tubulins) (one microtubule with 1 µm length contains ~220 tubulin dimers) (Normally, cells contain 100s, if not 1000s of these filaments.)

Cells have most of other cytoplasmic proteins in concentration of nM (10– 9 M) or so (1 nM in the cell would be 60 molecules).

Very Brief Information regarding Transcription Eukaryoric genes ('transcription unit') include INTRONS. Introns are the nuclear sequences that are usually not used to construct mRNAs. Splicing of the primary RNA transcript (which includes portion from the introns) will yield mature mRNA.

Gene sequence ≠ peptide sequence in a protein (Nucleotide sequence in a chromosome: GENOMIC SEQUENCE)

Many genes have larger introns than exons

Messenger RNA structure Eukaryotic mRNA has additional 5' CAP and 3' poly-A tail

Bacterial mRNA could have one than one coding sequences (for different proteins), whereas each eukaryotic mRNA (almost certainly) codes only one protein.

mRNA splicing mechanism makes multiple versions (varieties) of mRNA from certain gene (primary RNA transcript). These different mRNAs are translated into different proteins.

Codon; translation from genetic messages (DNA, mRNA) to peptide sequence

Translation from series of 3-letter-word of four-letter language (mRNA) into twenty-letter language (peptide)

First letter of codon (5° end)								
Second letter of codon								
¥	U		C		ŀ	۱		G
U	υυ υ υυ ር	Phe Phe	ບc U ບc C	Ser Ser	UA U UAC	Tyr Tyr	UG U UG C	Cys Cys
	UU A UU G	Leu Leu	UC A UC G	Ser Ser	UAA UAG	Stop Stop	UGA UGG	Stop Trp
c	сบ บ сบ с	Leu Leu	сс U сс С	Pro Pro	CAU CAC	His His	CG U CG C	Arg Arg
	CU A CU G	Leu Leu	сс А сс G	Pro Pro	CA A CA G	Gln Gln	CG A CG G	Arg Arg
A	AU U AU C	lle lle	АС U АС C	Thr Thr	AAU AAC	Asn Asn	AG U AG C	Ser Ser
	AUA AUG	lle Met	АС А АС G	Thr Thr	АА А АА G	Lys Lys	AG A AG G	Arg Arg
G	GU U GU C	Val Val	GC U GC C	Ala Ala	GA U GA C	Asp Asp	GG U GG C	Gly Gly
	GU A GU G	Val Val	GC A GC G	Ala Ala	GA A GA G	Glu Glu	GG A GG G	Gly Gly

First latter of soday (Flowd)

AUG (Met): Initiation codon UAA, UAG, UGA: Stop codon

TABLE 27-3 Degeneracy of the Genetic Code

Amino acid	Number of codons	Amino acid	Number of codons
Met	1	Tyr	2
Trp	1	lle	3
Asn	2	Ala	4
Asp	2	Gly	4
Cys	2	Pro	4
GIn	2	Thr	4
Glu	2	Val	4
His	2	Arg	6
Lys	2	Leu	6
Phe	2	Ser	6

Some amino acids are coded w/ many codons, others a 1~2

Different DNA nucleotide sequences (Genomic Sequences) could code same protein (amino acid sequence)

Note: Mitochondrion codons are different from main genome

TABLE 1 Known Variant Codon Assignments in Mitochondria

	Codons*				
	AGA				
	UGA	AUA	AGG	CUN	CGG
Normal code assignment	Stop	lle	Arg	Leu	Arg
Animals					
Vertebrates	Trp	Met	Stop	+	+
Drosophila	Trp	Met	Ser	+	+
Yeasts					
Saccharomyces cerevisiae	Trp	Met	+	Thr	+
Torulopsis glabrata	Trp	Met	+	Thr	?
Schizosaccharomyces pombe	Trp	+	+	+	+
Filamentous fungi	Trp	+	+	+	+
Trypanosomes	Trp	+	+	+	+
Higher plants	+	+	+	+	Trp
Chlamydomonas reinhardtii	?	+	+	+	?

*N indicates any nucleotide; +, codon has the same meaning as in the normal code; ?, codon not observed in this mitochondrial genome.

Mitochondrion has their own genes (genes for some of their own proteins <not all of them>)

Mitochondrion genes are strictly "Maternal" So, your genes are come from your Mom's nuclear genes, your Mom's mitochondrial genes and your Dad's nuclear genes.

Aminoacyl transfer RNA (tRNA) : The translators It has codon message and corresponding amino acid

Protein synthesis process (at the first major step) is elongation of polypeptide chain at Carboxi-terminus of the elongating chain .

peptide bond in glycylalanine

Each protein (polypeptide chain) is synthesized from its amino end (N-end) to C-end, (and the amino acid chain is 'primary' protein structure) according to the code of mRNA (from 5' end to 3' end), and this is done with ribosomes.

Ribosome (Polyribosome; Polysome) Polypeptide synthesis factory

Ribosome Assembly

In eukaryotic cells, ribosome subunits are assembled in nucleus, more specifically, in NUCLEOLUS.

Ribosomal proteins are synthesized in cytoplasm, and shipped into nucleolus.

Ribosomal RNAs (rRNAs) are transcribed at site.

Assembled each subunit then will be exported from nucleus into cytoplasm, where they function.

Functionally Important features of Ribosome

Translation (or, polypeptide elongation) takes place at ribosome. Three major distinctive steps of translation:

- 1. Initiation
- **2. Elongation**
- **3. Termination**

2. Polypeptide (PP) elongation

STEP 1: Elongating PP with AA-tRNA attached at its C-end is on 'P' site on ribosome. 'E' site is free. An another AAtRNA with matched mRNA codon comes into 'A' site.

STEP 2: Large ribosome subunit shifts its position, and condensation reaction takes place to attach polypeptide chain into a new peptide came with the AA-tRNA. (Now 'E' site and 'P' site are occupied.) Linkage between previously attached tRNA (3) is broken.

STEP 3: The Large subunit shifts back. (Now 'A' site is aligned back with mRNA.) tRNA at 'E' site is released from complex.

The process repeats (with each amino acid added to the polypeptide chain.)

2 GTP hydrolysis requires with one peptide addition (The position shift of ribosomal subunits is called Translocation)

1. Initiation

Initiation begins with binding of special AA-tRNA^{MET} (Initiator tRNA), together with initiation factors to smaller ribosome subunit. (Note at this time two subunits of ribosome are dissociated.)

Initiator tRNA :

Bacteria, Mitochondria, Chloroplasts: N-formylmethionyl-tRNA^{fMet} (fMet-tRMA^{fMet})

Eukaryotes: Special Met-tRNA^{Met}

So, The first amino acid in given protein is ALWAYS Methionine !(?) NOT Necessarily TRUE! Many proteins (especially, secretory proteins) undergo maturation, where Met may be removed.

1. Initiation (2)

Elongation continues

Termination

Ribosomes

- Q. How many ribosomes in a cell?
- A. About 15,000 (in E. coli cell) (Protein synthesis-related proteins makes up about 1/3 of total E. coli proteins!)

- Q. How fast does the peptide elongation undergo?
- A. ~20 peptides / sec (~2kD / sec) (in E. coli at 37°C; this is incredibly faster than most other cells)
 - \rightarrow It takes minutes to make a protein!

Secondary structure formation takes place as soon as the amino acid chain stretch is formed and out from ribosome.

Polypeptide maturation

Many proteins require external aid (molecular chaperone, chperonin) to for tirtialy 3-D structure.

Overview of sorting of nuclear-encoded proteins in eukaryotic cells

Proteins made with free ribosomes in cytoplasm

Cytoplasmic proteins Soluble enzymes Metabolic enzymes Glycolytic enzymes Cytoskeletan Proteins Actin, Tubulin, Keratin Myosin, Kinesin, Dynein **Nuclear Proteins Transported into nucleus** w/ specific mechanism **Mitochondrial proteins Transported into mitochondria** w/ specific mechanism **Peroxizomal proteins Transported into peroxizomes** w/ specific mechanism

Proteins targeted to nucleus have special sequence, and specific mechanism brings them into nucleus.

Protein Targeting: Mitochondrial Proteins

Mitochondorial proteins have special peptide sequence(s) "Signal Sequence" on their N-terminal end, that is recognized by protein import mechanism (protein complex) located on outside on the mitochondorial membranes.

Depending on the location of protein, different signal sequence/import mechanism will be employed.

Protein Targeting: Mitochondrial Proteins

Protein Synthesis for Secretory Pathway Organelles involved in Protein Synthesis for secretory proteins (incl. digestive enzymes, immunoglobulins, peptide hormones, peptide neurotransmitters, extracellular matrix proteins), plasma membrane proteins, ER, Golgi, lysosomal proteins

Key Issues:

Targeting signal for rough Endoplasmic Reticulum (rER) entry and the import mechanism Protein glycosylation Protein modifications Protein transport

Proteins made with ER-associated ribosomes

ER, Golgi proteins

Plasma Membrane Proteins Channels, pumps, receptors Adhesion proteins MHC, Glycocalix

Phagosomal / Lysosomal Proteins Digesting Enzymes Pumps

<u>Proteins released to outside the cell</u> Extracellular Matrix Proteins Collagen, Fibronectin...

Albumin, Cofactors, Fibrinogen...

Immunoglobulin (IgG, IgM...)

- Peptide Hormones, Peptide Neurotransmitters Insulin, Growth Hormone
- **Digestive Enzymes (Zymogens) Pepsinogen, Ribonuclease**

Mucus proteins (Mucins), Milk proteins

Post-translational modification (Glycosylation)

Same ribosomes (Eukaryotic type ribosomes) are used for either cytoplasmic protein synthesis or protein synthesis on rER

Certain proteins* are translated by ribosomes at cytoplasmic surface of rER; they have specific 'signal sequence (peptide sequence)' at their N-terminus, that will let the synthesized polypeptide to go into the lumen of rER (Cistern) through specific 'pore'.

Specific rER-targeted Signal Sequence is used to direct polypeptide into rER

Protein Synthesis at rough-ER (rER)

```
site
Human influenza
                                                        Met Lys Ala Lys Leu Leu Val Leu Leu Tyr Ala Phe Val Ala Gly Asp Gin --
virus A
Human
                   Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly Pro Asp Pro Ala Ala Ala Phe Val---
preproinsulin
Bovine
growth
hormone Met Met Ala Ala Gly Pro Arg Thr Ser Leu Leu Leu Ala Phe Ala Leu Leu Cys Leu Pro Trp Thr Gln Val Val Gly Ala Phe ---
Bee
                               Met Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile Ser Tyr Ile Tyr Ala Ala Pro ---
promellitin
Drosophila glue
                           Met Lys Leu Leu Val Val Ala Val Ile Ala Cys Met Leu Ile Gly Phe Ala Asp Pro Ala Ser Gly Cys Lys ---
proteín
```

cleavage

These proteins that are produced at rER have special amino acid sequence called '<u>signal sequence</u>' at their N-terminus at the synthesis (above).

Protein Synthesis at rough-ER (rER)

The complex are now able to bind to Ribosome receptor on the surface of ER $(3\rightarrow 4)$.

The peptide chain is inserted into Peptide translocation complex, and peptide elongation resumes (6). SRP is dissociated from the ribosome and recycled (5).

Variations in protein translocation across rER membrane Secretory proteins

Signal sequence at N-terminus

Variations in protein translocation across rER membrane Transmembrane proteins

Signal sequence at N-terminus

Variations in protein translocation across rER membrane Transmembrane proteins Signal sequence in the middle

Variations in protein translocation across rER membrane (2) Multipass transmembrane proteins

Molecular chaperon assists protein translocation

(Most of) Proteins are Glycosylated Addition of common *N*-linked Oligosccharide to Asn

N-linked oligosaccharide is added to many proteins in the rER

Dol = Dolichol

= Mannose

Checking the state of protein folding

If the protein is not properly folded, glycosyl transferase reattach glucose at the end of the oligosaccharide, and the protein is remained in ER (until the proper job is done).

Misfolded proteins are degraded at Cytoplasm.

Many plasma membrane proteins become anchored via GPI into plasma membrane.

GPI: Glycosylphosphatidylinositol. These proteins face EXTERNALLY on the plasma membrane. The anchor is cleavable (at plasma membrane by an enzyme).

GPI –anchored proteins are accumulated at lipid raft.

Proteins synthesized at rER undergo maturation at Golgi apparatus

Coated vesicles transfer contents b/w ER, Golgi, and other membranes

Only correctly folded proteins are transferred from rER to Golgi.

(rER) Protein segregation
→ vesicle formation (w/COPII)
→ coat removal → vesicle
fusion to form Vesicular
Tubular Cluster

Modifications to *N*-linked oligosaccharides are completed in the Golgi complex

Some proteins also modified w/ O-linked oligosaccharide.

Proteolytic processing in maturation

Mannose 6-phosphate residues : lysosomal Target Signal

Some proteins are sorted from the Golgi complex to the apical or basolateral plasma membrane

Protein Degradation Mechanism

of additional ubiquitin

Protein lifespan

No convincing generalized theory exist. (or there is no such rules)

(In general), isolated, highly purified proteins are more likely unstable than those in assembled complex.

In the native environment, there must be many molecules (from other proteins to ions, smaller organic molecules etc) that contribute protein stabilities.

Note: We (microtubule biochemists) know that tubulin (which is very unstable as unassembled state; requires molecular chaperon for correct folding) molecules can be repaired to correct its shape by chaperon. *H TABLE 27–9Relationship between ProteinHalf-Life and Amino-Terminal Amino Acid Residue

Amino-terminal residue	Half-life*				
Stabilizing					
Met, Gly, Ala, Ser, Thr, Val	>20 h				
Destabilizing					
lle, Gln	~30 min				
Tyr, Glu	~10 min				
Pro	~7 min				
Leu, Phe, Asp, Lys	~3 min				
Arg	~2 min				

*Half-lives were measured in yeast for the β -galactosidase protein modified so that in each experiment it had a different amino-terminal residue. (See Chapter 9 for a discussion of techniques used to engineer proteins with altered amino acid sequences.) Half-lives may vary for different proteins and in different organisms, but this general pattern appears to hold for all organisms.