IPAM Cells and Materials: At the Interface between Mathematics, Biology and Engineering

Tutorial 1, The Cells

Dr. Toshikazu Hamasaki Dept. Bioengineering, UCLA

Human Body: Levels of Organization

A human body consists of :

- Cells (live or dead)
- Extracellular Matrix e.g. Basal lamina, Collagen ...
- Extracellular Fluid (ECF) e.g. Blood plasma, Lymph, CSF ...

- Organismic Level -one living individual.
- System Level collection of related organs with a common function *Digestive system* sometimes an organ is part of more than one system *Pancreas – digestive, endocrine*
- Organs grouping of 2 or more tissue types into a recognizable structure w/ a specific function.
- <u>Tissue</u>

4 basic tissue types -- epithelium, muscle, connective tissue, nerve tissue

- <u>Cellular</u> smallest living unit of the body
- <u>Chemical</u> atomic and <u>molecular</u> level

Amplification of an activity through the levels *e.g.* Muscle activities

Amplification of an activity through the levels *e.g.* Muscle activities

Contraction

Actomyosin interaction

Each cycle produces $5(\sim 10)$ nm step. A head cycles no more than 20 /Sec (in physiological conditions).

Shortening of sarcomere

Molecular assembly Cell assembly Tissue assembly

Cell (Human cell) = smallest <u>**living unit</u> of the body**</u>

Minimal common components

- Cell (plasma) membrane The boundary that separates ionic constituents (environment)
- Membrane proteins
- Cytoplasm

Proteins, other molecules, ions, water

Cytoskeleton

Various size, shape, components, organization, function, life span

Some cells are partially to completely missing organelles (such as red blood cells)

Plasma Membrane separates the cell from the environment ("Barrier")

Lipid Bi-layer Hydrophobic Barrier

Ions (Na⁺, K⁺, Ca²⁺ etc.) : Impermeable Water : Permeable (poorly) O₂, CO₂ : Permeable

[More on membranes : next lecture]

Intracellular Environment

Energy from ATP is used for (nearly) all the processes that maintain cell's 'LIFE'.

Ionic imbalance (particularly, Na⁺ and K⁺) b/w inside and outside a cell, created by membrane ionic pumps, ion exchangers and channels, establishes resting <u>membrane potential</u>. This is used to drive other process (such as molecule import), as well as for information processing (*e.g.* nerve cells).

Cells

Prokaryotic cell (Bacteria) **Simple organization**

No membrane-bound organelle No nucleus Primitive cytoskeleton Bacterial flagella

Generally smaller in size (than an eukaryotic cell)

E. ,

microbium

Ribosomes Bacterial ribosomes are smaller than eukaryotic ribosomes, but serve the same functionprotein synthesis from an RNA message.

Prokaryotic cell No membrane-bound

organelle No nucleus Primitive cytoskeleton Bacterial flagella

Complex organization inside cell :

Various <u>organelles;</u> Nucleus Mitochondria Cytoskeleton

Eukaryotic cell: Subcellular Organization

Eukaryotic cells

Various cell types; shape, size, intracellular organizations, <u>polarization</u> – Functions These three cells all belong to "Intestinal Epithelial Cell" groups

Small Intestine (Absorptions)

Pancreatic Acinar cell (Digestive enzyme production)

Liver Hepatocyte (Metabolism, protein production, Bile secretion etc)

Characteristic	Prokaryotic cell	Eukaryotic cell
Size	Generally small (1–10 μ m)	Generally large (5–100 μ m)
Genome	DNA with nonhistone protein; genome in nucleoid, not surrounded by membrane	DNA complexed with histone and nonhistone proteins in chromosomes; chromosomes in nucleus with membranous envelope
Cell division	Fission or budding; no mitosis	Mitosis including mitotic spindle; centrioles in many species
Membrane-bounded organelles	<u>Absent</u>	Mitochondria, chloroplasts (in plants, some algae), endoplasmic reticulum, Golgi complexes, lysosomes (in animals), etc.
Nutrition	Absorption; some photosynthesis	Absorption, ingestion; photosynthesis in some species
Energy metabolism	<u>No mitochondria</u> ; oxidative enzymes bound to plasma membrane; great variation in metabolic pattern	Oxidative enzymes packaged in mitochondria; more unified pattern of oxidative metabolism
Cytoskeleton	None ((Exists during cell division)	Complex, with microtubules, intermediate filaments, actin filaments
Intracellular movement	None (?)	Cytoplasmic streaming, endocytosis, phagocytosis, mitosis, vesicle transport

Source: Modified from Hickman, C.P., Roberts, L.S., & Hickman, F.M. (1990) Biology of Animals, 5th edn, p. 30, Mosby-Yearbook, Inc., St. Louis, MO.

TISSUE Cell organizations and Extracellular Matrix

Cells are attached each other via junctional complex *e.g.* Epithelial tissue

Cells are surrounded by extracellular matrix (Basal Lamina) and connected each other

e.g. Muscle tissue, Nervous Tissue

Cells are scattered within the extracellular matrix

e.g. Connective tissues, Cartilage, Bone

Extracellular matrix

ORGAN A Self-Closing unit, consists of tissues

Tissue: may consist of one type of cells, or various types of cells (together with extracellular matrix).

Different cells (types) within a tissue

Same origin (stem cell) \rightarrow different differentiation paths (1)

 \rightarrow different stages of a differentiation (2)

Different origin (3)

e.g. Tracheal epithelium

(Pseudostratified columnar ciliated epithelium)

Ciliated cell Goblet cell Basal cell (precursor to either ciliated or goblet cell) Brush cell Diffuse endocrine cell

Tissue: may consist of one type of cells, or various types of cells (together with extracellular matrix).

Different cells (types) within a tissue

Same origin (stem cell) \rightarrow different differentiation paths (1) \rightarrow different stages of a differentiation (2)

Different origin (3)

e.g. Skin

(Stratified squamous epithelium)

Different types of cells (functions): Keratinocyte Melanocyte (produces melanin granules) Langerhans cell Markel's cell

Single cell type (Keratinocyte) in different stages (layers)

 $B \rightarrow S \rightarrow G \rightarrow C \rightarrow (skin \ surface)$

How to visualize cells and Subcellular Components

Prototypical mammalian cell

Organelles are not placed randomly throughout a cell; they are organized and localized (polarized).

Microvilli

Endosomes (Phagosomes) Exocytic vesicles

Lysosomes

Cell Polarization

Positions of cellular components (organelles, plasma membrane substructures) are not randomly (uniformly) arranged throughout the cell;
→ many cell types take <u>unique shape.</u>

• The shape of a cell, in many cases, is held by internal cytoskeletal proteins (actin filaments, intermediate filaments and microtubules.)

Subcellular specialization

Arrangement of the cellular structures not only reflects the cell shape, but also <u>unique</u> <u>function(s)</u> within particular region(s) of the cell.

Different surface – Different protein structures – Different role (activity) Cell junctions play key roles separating the surfaces (in Epithelial tissues)

Cell Polarization -- Subcellular specialization

e.g. a secretory cell

Exocytosis takes place only on the cell's apical surface

Note the locations of rER and Golgi vesicles

Positions of the organelles, as well as the direction of transport of the secretory vesicles are determined by network of cytoskeleton (actin filaments, microtubules and intermediate filaments).

Receptors / channels / pumps on the plasma membrane, in many cells, are also localized onto particular side (apical, basal, lateral.)

Cell polarization in epithelial tissues

Strategic localization of Cellular component;

Epical vs Basolateral surface

Different surface

- Different protein compositions
- Different role (activity)

Cell junctions play key roles separating the surfaces

Prototypical epithelial cell

Epithelial cell polarization Small intestine

Basolateral vs Apical surfaces : Different <u>functions</u>

Membrane proteins, receptors, channels Exocytosis/endocytosis

Epithelial cell polarization Small intestine

Specific sets of plasma membrane proteins / secretory proteins are transported to their <u>correct destination</u> by intracellular transport mechanisms.

Major Functions of organelles

Protein synthesis and export

– rough Endoplasmic Reticulum (rER), Golgi Apparatus Membrane lipid synthesis – smooth ER Endocytosis, breakdown – endosome, phagosome, lysosome Energy and metabolism – Mitochondrion, peroxizome Genetic Information – Nucleus Many Ornagelles would take more than one function: *e.g.* Calcium storage – ER (SR), Mitochondrion

Golgi

centrosome with

pair of centrioles

intermediate

apparatus filaments

chromatin (DNA)

nuclear pore

nucleolus

plasma

membrane

nucleus

extracellular matrix

vesicles

lysosome

mitochondrion

endoplasmic

reticulum

nuclear envelope

microtubule

5 µm

actin

filaments

peroxisome

ribosomes

in cytosol

Membrane-bound Organelles

rER (rough Endoplasmic Reticulum) : Protein synthesis and modification (Plasma membrane proteins, secretory proteins etc)

Lumen: Cistern(a) (environment of cisterna is, in many aspects, similar to outside cell; e.g. ion concentrations)

continuous: Nuclear envelop – rER – sER

Smooth ER Lipid Synthesis and Metabolism (Fat metabolism) Steroid Hormone Synthesis Glycogen breakdown (liver) Sarcoplasmic Reticulum (Muscle cells; Ca²⁺ storage)

Protein Synthesis and Transport

Golgi Apparatus: Sorting, modifications and concentration in protein synthesis cis Golgi Network → cis Golgi →

trans Golgi → TGN (Trans-golgi Network)

Each compartment is not continuous to the next one.

rER → Golgi complex → secretory vesicles → vesicle (organelle) membrane proteins → vesicle with membrane proteins → plasma membrane proteins → lysosomes (incl. Enzymes)

Examples of membrane trafficking

Receptor-mediated Endocytosis Intake of small objects, proteins etc

0.1 μm

Receptor-mediated Endocytosis

Examples of membrane trafficking and Organelles

Double membrane system Cristae (inner membrane-folding) Matrix (Inside inner membrane

– where ATP is synthesized)

Contains DNA (in the matrix) for some of its own components This DNA is strictly maternal (from oocyte)

ATP synthesis Amino acid metabolism

Mitochondrion

Mitochondria – its dynamic nature

Although mitochondria may seem small vesicles (especially on many textbook illustrations; above), they may be long, twisted (?) sausage-like shape. The shape changes dynamically. They divides, or, fuses together all the time, independently from the cell cycle (cell division).

Mitochondrion

ATP production (Oxydative phosphorylation, citric acid cycle)

Mitochondrion Rotation of ATP synthase (a.k.a. F_0F_1 ATPase)

1 turn of the rotor required 3 H+ movements across membrane (= 1 ATP synthesis) .

Alternatively, rotation of the rotor can be produced by uncoupling F_0 and F_1 subunits, and adding ATP. (In this case, ATP hydrolysis takes place.)

Cytoskeleton and Molecular Motors

Protein fibers

Assembled from monomer subunits. (SELF ASEEMBLY)

Holds cell's structural integrity

"Track" for biomolecular motors (Actin filaments, Microtubules)

Dynamic changes during Various cellular activities (Actin filaments, Microtubules)

Cytoskeleton and Molecular Motors

Microfilaments (a.k.a Actin filaments, F-actions, Thin filaments) (Muscles)

Intermediate filaments

Cell type-dependent Keratin Neurofilaments etc

Intermediate filament

INTERMEDIATE FILAMENTS Actin filaments and Intermediate filaments are associated with plasma membrane via anchoring proteins, and they are associated with junctions and adhesion molecules.

Prototypical epithelial cell

Cytoskeleton and Molecular Motors

Microtubule-based Organelles Centrosome Mitotic Spindle

Cilium and Flagellum

Nuclear Envelopes

Double-membrane (just like collapsed bags) Contentious to ER

Nuclear pores

Gates to get into/exit from nucleus to cytoplasm

Nucleolus

the site of ribosome subunit assembly

Nucleus

Chromosomes (Genes) Gene Expression Transcription (DNA → Messenger RNA (mRNA) active chromosomes – extended chromatin inactive chromosomes – condensed chromatin

Nucleus

Nucleolus

the site of ribosome subunit assembly Ribosomes = Protein synthesis machinery

Eukaryotic RIBOSOME components

4 ribosomal RNAs > 80 proteins

