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Linear Sketches
• Many algorithms are obtained 

using linear sketches:
– Input: represented by x
– Sketching: compress x into Sx

• S=sketch matrix
– Computation: on Sx

• Examples:
– Compressed sensing
– Dimensionality reduction  (e.g., 

Johnson-Lindenstrauss lemma)
– Streaming algorithms
– ….
– Linear algebra (regression, 

low-rank approximation,..)
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Linear Sketches, ctd.
• S is almost always a random 

matrix
– Independent Gaussians, 

random partial Fourier, random 
sparse,...

– Pros: simple, efficient, worst-
case guarantees

– Cons: does not adapt to data
• Why not learn S from 

examples ?
– Dimensionality  reduction:  

e.g., PCA
– Compressed sensing

• Autoencoders: x → Sx →x’
– Linear algebra ? This talk

⇥

⇥

⇥

⇥

=

=

=

=

Input 
Signal

Parallel Convolutions
(First Convolutional Layer)

Convolutional Layers

Measurements

X

Y = �X
or

Y = �(X)

(Linear)

(Nonlinear)

Convolutional Layers

Reconstructed 
Signal

X̂

Mousavi-Patel-Baraniuk, 2015
….



Singular Value Decomposition (SVD)
Any matrix A = U  Σ V,  where:
• U has orthonormal columns
• Σ is diagonal
• V has orthonormal rows

Rank-k approximation: Ak = Uk Σk Vk

Equivalently: Ak = argminrank-k matrices B ||A-B||F

Low Rank Approximation



• Instead of 
Ak = argminrank-k matrices B ||A-B||F

output a rank-k matrix A’, so that
||A-A’||F ≤ (1+ε) ||A-Ak||F

• More efficient than computing exact Ak 

• Sarlos’06, Liberty et al ‘07, Clarkson-
Woodruff’09,13; Halko et al’11,…

• See Woodruff’14 for a survey
• Most of these algorithms use linear 

sketches SA
• S can be dense (partial Fourier) or sparse 

(0/+1/-1)
• We focus on sparse S

Approximate Low Rank 
Approximation



Sarlos-ClarksonWoodruff
• Streaming algorithm (two passes over A):

– Compute SA (first pass)
– Compute orthonormal V that spans rowspace

of  SA
– Compute AVT (second pass)
– Return SCW(S,A):= [AVT]k V

• Space:
– Suppose that A is n x d, S is m x  n
– Then SA is m x d, AVT is n x m
– Space proportional to m
– Theory: m = O(k/ε)

• Can we achieve lower m with learned 
matrix S ?



Learning-Based Low-Rank Approximation
[Indyk-Vakilian-Yuan, NeurIPS’19]

• Sample matrices A1...AN 
• Find S that minimizes the following loss function

!
!

||𝐴! −𝑆𝐶𝑊(𝑆, 𝐴!)||"

• Use S in SCW in future computation
• “Details”:

– Use sparse matrices S
• Random support, optimize values

– Minimize loss using SGD in Pytorch
• Need to differentiate loss w.r.t. S
• Represent SVD as a sequence of power-method 

applications (each is differentiable)
• Use random matrix as a starting point

𝑺 =
𝜌! 𝜌" 0 0 0 𝜌# 0
0 0 0 𝜌$ 0 0 𝜌%
0 0 𝜌& 0 𝜌' 0 0



Evaluation
• Datasets (collections of matrices)

– Videos: MIT Logo, Friends, Eagle
– Hyperspectral images (HS-SOD)
– TechTC-300

• 200/400 training,  100 testing
• Optimize the matrix S using testing 

matrices
• Compute the recovery error over test 

matrices
∑! ||𝐴! −𝑆𝐶𝑊(𝑆, 𝐴!)||" - ||𝐴! − 𝐴! #||"

• Compare to random matrices S



Results
k=10

Tech MIT LogoHyper



Fallback  option
• Learned matrices work  (much) better, but  

no guarantees per matrix
• Solution: combine learned S with random

rows R
• Fact: augmenting R with additional 

(learned) matrix  S cannot  increase the 
error of SCW

• The algorithm inherits worst-case  
guarantees from R



Mixed matrices - results

k m Sketch Logo Hyper Tech

10 20 Learned 0.1 0.52 2.95
10 20 Mixed 0.2 0.78 3.73
10 20 Random 2.09 2.92 7.99

10 40 Learned 0.04 0.28 1.16
10 40 Mixed 0.05 0.34 1.31
10 40 Random 0.45 1.12 3.28



Questions
• We showed learned sketches can  improve 

the accuracy/measurement tradeoff for low-
rank approximation

• Can retain some guarantees by mixing 
random and learned rows

• Issues:
– Training time is long
– Other guarantees:

• Sampling complexity: how many matrices are needed 
to learn the sketch matrix S ?

• Provably minimize the loss function ?



Followups

Reference Algorithm Comments
[Indyk-Vakilian-Yuan, NeurIPS’19] IVY Described earlier
[Ailon-Leibovich-Nair, UAI’21] Butterfly LRA Learns partial Fourier-like matrix 

instead of random sparse matrix
[Liu-Liu-Vakilian-Wan-
Woodruff’20]

Multisketch
LRA

Learns locations of non-zero entries, 
not just values

[Indyk-Wagner-Woodruff, 
NeurIPS’21]

Few-shot 
LRA

Faster but less accurate training

[Bartlett-Indyk-Wagner, COLT’22] Lower bound Lower bound for sample complexity



Faster training
Legend:
• IVY (2019)
• Butterfly (2021)
• Few shot 

algorithms (2021)
• Few shot + IVY 

(2021)

Training time (seconds)

Error on 
test set

“Logo” dataset



Sampling complexity

• Can we provably learn good algorithms from past inputs?
• Gupta & Roughgarden (2016):

– View as statistical learning problem
– Prove upper bounds on fat shattering dimension (real-

valued analog VC dimension)
⇒ PAC-learning generalization bounds on number of 

training samples

• This work: Bounds for data-driven numerical linear algebra 
algorithms



Data-Driven Algorithms: Setting

A loss minimization problem:
• Inputs: 𝑥 ∈ 𝑋
• Algorithms: ℒ = 𝐿!: 𝜌 ∈ ℝ" , parameterized by 𝜌 ∈ ℝ"

• Losses: Identify 𝐿! with a map 𝐿!: 𝑋 → 0,1 that maps inputs to 
losses
– 𝐿! 𝑥 is the loss of solving for 𝑥 with parameters 𝜌

Our case: The low-rank approximation (LRA) problem
• Inputs: 𝑋 is the set of matrices 𝑨 ∈ ℝ"×" with 𝑨 $ = 1
• Algorithms: ℒ = 𝐿𝑺: 𝑺 ∈ ℝ&×" , parameterized by auxiliary 

matrices 𝑺 ∈ ℝ&×"

• Loss: 𝐿𝑺 𝑨 = 𝑨− 2𝑨𝑺 $
', where 2𝑨𝑺 is the LRA of 𝑨 computed with 

aux. matrix 𝑺



Statistical Learning and ERM
Statistical learning: Suppose we have a distribution 𝐷 over 𝑋
• Goal: Estimate the best parameters for 𝐷

𝜌∗ = argmin!∈ℝ!𝔼+∈, 𝐿! 𝑥

• Method: Draw 𝑠 samples 𝑥-, … , 𝑥.~𝐷 and use Empirical Risk 
Minimization (ERM)

>𝜌 = argmin!∈ℝ!
1
𝑠?/0-

1
𝐿! 𝑥/

• We say ℒ = 𝐿!: 𝜌 ∈ ℝ" is (𝜖, 𝛿)-learnable with 𝑠 samples (by ERM) 
if

Pr
+",…,+#~,

𝔼+∈, 𝐿5! 𝑥 ≤ 𝔼+∈, 𝐿!∗ 𝑥 + 𝜖 ≥ 1 − 𝛿

• Question: What is the smallest number of samples 𝑠 that suffices?



VC-Dimension and Fat 
Shattering Dimension

Definition: Let ℒ be a family of functions 𝑋 → 0,1 . 
• A set 𝑥!, … , 𝑥( ∈ 𝑋 is shattered by ℒ if for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ

s.t.:
𝐿 𝑥) = 1 ⇔ 𝑖 ∈ 𝐼.

• The VC-dimension VCdim(ℒ) of ℒ is the size of the largest shattered set.

Definition: Let ℒ be a family of functions 𝑋 → 0,1 . Let 𝛾 ≥ 0.
• A set 𝑥!, … , 𝑥( ∈ 𝑋 is 𝛾-fat shattered by ℒ if there are thresholds 𝑟!, … , 𝑟( ∈

ℝ, such that for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ s.t.:
𝑖 ∈ 𝐼 ⇒ 𝐿 𝑥) > 𝑟) + 𝛾 and    𝑖 ∉ 𝐼 ⇒ 𝐿 𝑥) < 𝑟) − 𝛾

• The 𝛾-fat shattering dimension fat*(ℒ) of ℒ is the size of the largest 𝛾-
fat shattered set.

Classical learning theory: The sample complexity of 𝜖, 𝛿 -learning ℒ (by 
ERM) is proportional to the 𝛾-fat shattering dimension with 𝛾 = Θ 𝜖 .



Our Results
Theorem – Fat shattering dimension of SCW:
• Upper bound: The 𝜖-fat shattering dimension of learned 

SCW is
𝑂 𝑛 ⋅ 𝑚 + 𝑘 log ⁄𝑛 𝑘 + log ⁄1 𝜖 ,

with 𝑨 ∈ ℝM×M, 𝑺 ∈ ℝO×M, and low rank 𝑘.
• Lower bound: The 𝜖-fat shattering dimension of learned 

SCW is Ω 𝑛 , if 𝜖 < ⁄1 (2 𝑘).
• Techniques apply to other data-driven linear algebra 

algorithms.



Proof Overview
Starting point – the Goldberg-Jerrum (1995) theorem (informal 
statement):
• Suppose we can compute the loss of a set of 𝑛 parameters on a 

given input, in time 𝑡, using only arithmetic operations and if
statements.

• Then, the fat shattering dimension is 𝑂(𝑛𝑡).

Proof strategy:
1. Refine the Goldberg-Jerrum framework

– Use more refined complexity measures than the running time.
2. Design an approximation algorithm for the SCW loss using only 

arithmetic operations and if statements, which is efficient under the 
refined complexity measures.

– SCW needs two subroutines: 
• Orthogonal projection
• Best rank-𝑘 approximation 



Conclusions
• We showed learned sketches can  

improve the accuracy/measurement 
tradeoff for low-rank approximation

• Can retain some guarantees by mixing 
random and learned rows

• Training still takes time but doable
• Bounds on sampling complexity
• Questions:

– Provably minimize the loss function ?



More about learning-based 
algorithms

• A 2021 workshop on 
learning-based algorithms, 
organized by Foundations 
of Data Science Institute 
(FODSI)

• Talks available at 
https://www.youtube.com/c/MIFODS

Thank
s!


