
Learning-Based Low-Rank
Approximations

Joint work with Peter Bartlett, Tal Wagner, David Woodruff, Ali Vakilian, Yang Yuan

Piotr Indyk

Linear Sketches
• Many algorithms are obtained

using linear sketches:
– Input: represented by x
– Sketching: compress x into Sx

• S=sketch matrix
– Computation: on Sx

• Examples:
– Compressed sensing
– Dimensionality reduction (e.g.,

Johnson-Lindenstrauss lemma)
– Streaming algorithms
– ….
– Linear algebra (regression,

low-rank approximation,..)

0

50

100

150

200

250

0 20 40 60 80 100 120

Regression

Linear Sketches, ctd.
• S is almost always a random

matrix
– Independent Gaussians,

random partial Fourier, random
sparse,...

– Pros: simple, efficient, worst-
case guarantees

– Cons: does not adapt to data
• Why not learn S from

examples ?
– Dimensionality reduction:

e.g., PCA
– Compressed sensing

• Autoencoders: x → Sx →x’
– Linear algebra ? This talk

⇥

⇥

⇥

⇥

=

=

=

=

Input
Signal

Parallel Convolutions
(First Convolutional Layer)

Convolutional Layers

Measurements

X

Y = �X
or

Y = �(X)

(Linear)

(Nonlinear)

Convolutional Layers

Reconstructed
Signal

X̂

Mousavi-Patel-Baraniuk, 2015
….

Singular Value Decomposition (SVD)
Any matrix A = U Σ V, where:
• U has orthonormal columns
• Σ is diagonal
• V has orthonormal rows

Rank-k approximation: Ak = Uk Σk Vk

Equivalently: Ak = argminrank-k matrices B ||A-B||F

Low Rank Approximation

• Instead of
Ak = argminrank-k matrices B ||A-B||F

output a rank-k matrix A’, so that
||A-A’||F ≤ (1+ε) ||A-Ak||F

• More efficient than computing exact Ak

• Sarlos’06, Liberty et al ‘07, Clarkson-
Woodruff’09,13; Halko et al’11,…

• See Woodruff’14 for a survey
• Most of these algorithms use linear

sketches SA
• S can be dense (partial Fourier) or sparse

(0/+1/-1)
• We focus on sparse S

Approximate Low Rank
Approximation

Sarlos-ClarksonWoodruff
• Streaming algorithm (two passes over A):

– Compute SA (first pass)
– Compute orthonormal V that spans rowspace

of SA
– Compute AVT (second pass)
– Return SCW(S,A):= [AVT]k V

• Space:
– Suppose that A is n x d, S is m x n
– Then SA is m x d, AVT is n x m
– Space proportional to m
– Theory: m = O(k/ε)

• Can we achieve lower m with learned
matrix S ?

Learning-Based Low-Rank Approximation
[Indyk-Vakilian-Yuan, NeurIPS’19]

• Sample matrices A1...AN
• Find S that minimizes the following loss function

!
!

||𝐴! −𝑆𝐶𝑊(𝑆, 𝐴!)||"

• Use S in SCW in future computation
• “Details”:

– Use sparse matrices S
• Random support, optimize values

– Minimize loss using SGD in Pytorch
• Need to differentiate loss w.r.t. S
• Represent SVD as a sequence of power-method

applications (each is differentiable)
• Use random matrix as a starting point

𝑺 =
𝜌! 𝜌" 0 0 0 𝜌# 0
0 0 0 𝜌$ 0 0 𝜌%
0 0 𝜌& 0 𝜌' 0 0

Evaluation
• Datasets (collections of matrices)

– Videos: MIT Logo, Friends, Eagle
– Hyperspectral images (HS-SOD)
– TechTC-300

• 200/400 training, 100 testing
• Optimize the matrix S using testing

matrices
• Compute the recovery error over test

matrices
∑! ||𝐴! −𝑆𝐶𝑊(𝑆, 𝐴!)||" - ||𝐴! − 𝐴! #||"

• Compare to random matrices S

Results
k=10

Tech MIT LogoHyper

Fallback option
• Learned matrices work (much) better, but

no guarantees per matrix
• Solution: combine learned S with random

rows R
• Fact: augmenting R with additional

(learned) matrix S cannot increase the
error of SCW

• The algorithm inherits worst-case
guarantees from R

Mixed matrices - results

k m Sketch Logo Hyper Tech

10 20 Learned 0.1 0.52 2.95
10 20 Mixed 0.2 0.78 3.73
10 20 Random 2.09 2.92 7.99

10 40 Learned 0.04 0.28 1.16
10 40 Mixed 0.05 0.34 1.31
10 40 Random 0.45 1.12 3.28

Questions
• We showed learned sketches can improve

the accuracy/measurement tradeoff for low-
rank approximation

• Can retain some guarantees by mixing
random and learned rows

• Issues:
– Training time is long
– Other guarantees:

• Sampling complexity: how many matrices are needed
to learn the sketch matrix S ?

• Provably minimize the loss function ?

Followups

Reference Algorithm Comments
[Indyk-Vakilian-Yuan, NeurIPS’19] IVY Described earlier
[Ailon-Leibovich-Nair, UAI’21] Butterfly LRA Learns partial Fourier-like matrix

instead of random sparse matrix
[Liu-Liu-Vakilian-Wan-
Woodruff’20]

Multisketch
LRA

Learns locations of non-zero entries,
not just values

[Indyk-Wagner-Woodruff,
NeurIPS’21]

Few-shot
LRA

Faster but less accurate training

[Bartlett-Indyk-Wagner, COLT’22] Lower bound Lower bound for sample complexity

Faster training
Legend:
• IVY (2019)
• Butterfly (2021)
• Few shot

algorithms (2021)
• Few shot + IVY

(2021)

Training time (seconds)

Error on
test set

“Logo” dataset

Sampling complexity

• Can we provably learn good algorithms from past inputs?
• Gupta & Roughgarden (2016):

– View as statistical learning problem
– Prove upper bounds on fat shattering dimension (real-

valued analog VC dimension)
⇒ PAC-learning generalization bounds on number of

training samples

• This work: Bounds for data-driven numerical linear algebra
algorithms

Data-Driven Algorithms: Setting

A loss minimization problem:
• Inputs: 𝑥 ∈ 𝑋
• Algorithms: ℒ = 𝐿!: 𝜌 ∈ ℝ" , parameterized by 𝜌 ∈ ℝ"

• Losses: Identify 𝐿! with a map 𝐿!: 𝑋 → 0,1 that maps inputs to
losses
– 𝐿! 𝑥 is the loss of solving for 𝑥 with parameters 𝜌

Our case: The low-rank approximation (LRA) problem
• Inputs: 𝑋 is the set of matrices 𝑨 ∈ ℝ"×" with 𝑨 $ = 1
• Algorithms: ℒ = 𝐿𝑺: 𝑺 ∈ ℝ&×" , parameterized by auxiliary

matrices 𝑺 ∈ ℝ&×"

• Loss: 𝐿𝑺 𝑨 = 𝑨− 2𝑨𝑺 $
', where 2𝑨𝑺 is the LRA of 𝑨 computed with

aux. matrix 𝑺

Statistical Learning and ERM
Statistical learning: Suppose we have a distribution 𝐷 over 𝑋
• Goal: Estimate the best parameters for 𝐷

𝜌∗ = argmin!∈ℝ!𝔼+∈, 𝐿! 𝑥

• Method: Draw 𝑠 samples 𝑥-, … , 𝑥.~𝐷 and use Empirical Risk
Minimization (ERM)

>𝜌 = argmin!∈ℝ!
1
𝑠?/0-

1
𝐿! 𝑥/

• We say ℒ = 𝐿!: 𝜌 ∈ ℝ" is (𝜖, 𝛿)-learnable with 𝑠 samples (by ERM)
if

Pr
+",…,+#~,

𝔼+∈, 𝐿5! 𝑥 ≤ 𝔼+∈, 𝐿!∗ 𝑥 + 𝜖 ≥ 1 − 𝛿

• Question: What is the smallest number of samples 𝑠 that suffices?

VC-Dimension and Fat
Shattering Dimension

Definition: Let ℒ be a family of functions 𝑋 → 0,1 .
• A set 𝑥!, … , 𝑥(∈ 𝑋 is shattered by ℒ if for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ

s.t.:
𝐿 𝑥) = 1 ⇔ 𝑖 ∈ 𝐼.

• The VC-dimension VCdim(ℒ) of ℒ is the size of the largest shattered set.

Definition: Let ℒ be a family of functions 𝑋 → 0,1 . Let 𝛾 ≥ 0.
• A set 𝑥!, … , 𝑥(∈ 𝑋 is 𝛾-fat shattered by ℒ if there are thresholds 𝑟!, … , 𝑟(∈

ℝ, such that for every 𝐼 ⊂ 1,… , 𝑠 , there is 𝐿 ∈ ℒ s.t.:
𝑖 ∈ 𝐼 ⇒ 𝐿 𝑥) > 𝑟) + 𝛾 and 𝑖 ∉ 𝐼 ⇒ 𝐿 𝑥) < 𝑟) − 𝛾

• The 𝛾-fat shattering dimension fat*(ℒ) of ℒ is the size of the largest 𝛾-
fat shattered set.

Classical learning theory: The sample complexity of 𝜖, 𝛿 -learning ℒ (by
ERM) is proportional to the 𝛾-fat shattering dimension with 𝛾 = Θ 𝜖 .

Our Results
Theorem – Fat shattering dimension of SCW:
• Upper bound: The 𝜖-fat shattering dimension of learned

SCW is
𝑂 𝑛 ⋅ 𝑚 + 𝑘 log ⁄𝑛 𝑘 + log ⁄1 𝜖 ,

with 𝑨 ∈ ℝM×M, 𝑺 ∈ ℝO×M, and low rank 𝑘.
• Lower bound: The 𝜖-fat shattering dimension of learned

SCW is Ω 𝑛 , if 𝜖 < ⁄1 (2 𝑘).
• Techniques apply to other data-driven linear algebra

algorithms.

Proof Overview
Starting point – the Goldberg-Jerrum (1995) theorem (informal
statement):
• Suppose we can compute the loss of a set of 𝑛 parameters on a

given input, in time 𝑡, using only arithmetic operations and if
statements.

• Then, the fat shattering dimension is 𝑂(𝑛𝑡).

Proof strategy:
1. Refine the Goldberg-Jerrum framework

– Use more refined complexity measures than the running time.
2. Design an approximation algorithm for the SCW loss using only

arithmetic operations and if statements, which is efficient under the
refined complexity measures.

– SCW needs two subroutines:
• Orthogonal projection
• Best rank-𝑘 approximation

Conclusions
• We showed learned sketches can

improve the accuracy/measurement
tradeoff for low-rank approximation

• Can retain some guarantees by mixing
random and learned rows

• Training still takes time but doable
• Bounds on sampling complexity
• Questions:

– Provably minimize the loss function ?

More about learning-based
algorithms

• A 2021 workshop on
learning-based algorithms,
organized by Foundations
of Data Science Institute
(FODSI)

• Talks available at
https://www.youtube.com/c/MIFODS

Thank
s!

