Signal Recovery with Generative Priors

Collaborators: V. Voroninski, W. Huang, O. Leong, R. Heckel, J. Cocola, B. Joshi Funding: National Science Foundation

Paul Hand

Northeastern University

Examples of inverse problems

 $-A(x_0)$

How can generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

Bora, Jalal, Dimakis, Price 2017

$$G(z)) - A(x_0) \Big\|^2$$

Recovery Theory with Random Generative Priors for Multiple Inverse Problems

 Compressed Sensing **Deterministic Conditions and Probabilistic Recovery Guarantee**

 Other Inverse Problems Denoising, Compressive Phase Retrieval, Spiked Matrix Recovery

 Advances to the Theory **Convolutional Structure, Expansivity**

Recovery Theory with Random Generative Priors for Multiple Inverse Problems

 Compressed Sensing Deterministic Conditions and Probabilistic Recovery Guarantee

 Other Inverse Problems Denoising, Compressive Phase Retrieval, Spiked Matrix Recovery

 Advances to the Theory **Convolutional Structure, Expansivity**

Inspiration: Recovery Theory for Compressed Sensing with Sparse Priors

Fix k-sparse vector $x_0 \in \mathbb{R}^n$. Let $A \in \mathbb{R}^{m \times n}$ be a random gaussian matrix with $m = \Omega(k \log n)$.

min s.t.

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.) The global minimizer of (L1) is x_0 with high probability.

$$\|x\|_1$$
$$Ax = Ax_0$$

(L1)

Compressed Sensing with Generative Models

Bora, Jalal, Dimakis, Price 2017

$$G(z) - Ax_0 \Big\|^2$$

Geometric picture of signal recovery with a low-dimensional generative prior

Expansive Gaussian Model for Generative Priors

- Let: $G: \mathbb{R}^k \to \mathbb{R}^n$ Given: $W_i \in \mathbb{R}^{n_i \times n_{i-1}}, A \in \mathbb{R}^{m \times n}, y := AG(z_0) \in \mathbb{R}^m$ Find: x_0
- **Expansivity**: Let $n_i > cn_{i-1} \log n_{i-1}$
- **Gaussianicity**: Let W_i and A have iid Gaussian entries.
- **Biasless**: No bias terms in G.

 $G(z) = \operatorname{relu}(W_d \dots \operatorname{relu}(W_2 \operatorname{relu}(W_1 z)) \dots)$

Compressive sensing with random generative prior has a provably convergent subgradient descent algorithm

Theorem (Huang, Heckel, Hand, Voroninski) Let $d \ge 2$. If

1. *G* is gaussian and sufficiently expansive,

2. $m = \Omega(kd \log(\prod_{i=1}^{d} n_i)),$

3. measurements have sufficiently small noise then w.h.p. a subgradient descent with a twist converges to within the noise level of z_0 .

Deterministic Condition used in Recovery Proofs

A matrix $W \in \mathbb{R}^{n \times k}$ satisfies the Weight Distribution Condition with constant ϵ if for all $x, y \neq 0 \in \mathbb{R}^k$,

$$\left\|\sum_{i=1}^n \mathbf{1}_{w_i \cdot x > 0} \mathbf{1}_{w_i \cdot y > 0} \cdot w_i w_i^T - Q_{x,y}\right\| \le \epsilon, \text{ with } Q_{x,y} = \frac{\pi - \theta}{2\pi} I + \frac{\sin \theta}{2\pi} M_{\hat{x} \leftrightarrow \hat{y}}.$$

Here, w_i^T is the *i*th row of W; $M_{\hat{x}\leftrightarrow\hat{y}}\in\mathbb{R}^{k\times k}$ is the matrix such that $\hat{x}\mapsto\hat{y}$, $\hat{y} \mapsto \hat{x}$, and $\hat{z} \mapsto 0$ for all $z \in (\{x, y\})^{\perp}$; $\theta = \angle (x, y)$.

all $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \mathbf{z}_4 \in \mathbb{R}^k$, it holds that

$$\langle \mathbf{A}(G(\mathbf{z}_1) - G(\mathbf{z}_2)), \mathbf{A}(G(\mathbf{z}_3) - G(\mathbf{z}_4)) \rangle - \langle G(\mathbf{z}_1) - G(\mathbf{z}_2), G(\mathbf{z}_3) - G(\mathbf{z}_4) \rangle | \leq \epsilon \|G(\mathbf{z}_1) - G(\mathbf{z}_2)\|_2 \|G(\mathbf{z}_3) - G(\mathbf{z}_4)\|_2.$$
(23)

$$\langle G(\mathbf{z}_{1}) - G(\mathbf{z}_{2}) \rangle, \mathbf{A}(G(\mathbf{z}_{3}) - G(\mathbf{z}_{4})) \rangle - \langle G(\mathbf{z}_{1}) - G(\mathbf{z}_{2}), G(\mathbf{z}_{3}) - G(\mathbf{z}_{4}) \rangle | \leq \epsilon \|G(\mathbf{z}_{1}) - G(\mathbf{z}_{2})\|_{2} \|G(\mathbf{z}_{3}) - G(\mathbf{z}_{4})\|_{2}.$$
(23)

signals) with respect to the range of G.

Definition 3 (Range Restricted Isometry Condition (RRIC) [52]). A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ satisfies the Range Restricted Isometry Condition with respect to G with constant ϵ if, for

This condition states that A acts like an isometry when acting on pairs of secant directions (i.e., differences of two

Theorem (Huang, Hand, Heckel, Voroninski, 2017)

Assume that 1. the WDC and RRIC hold with $\epsilon \leq C/\operatorname{poly}(d)$, 2. the measurement noise is sufficiently small. Then a subgradient algorithm with a twist converges to within the noise level of z_0 .

Weight Distribution Condition holds w.h.p. if a matrix is sufficiently expansive

Lemma: Fix ϵ . Let $W \in \mathbb{R}^{n \times k}$ have i.i.d. $\mathcal{N}(0, 1/n)$ entries. If $n > ck \log k$, then with probability at least $1 - 8ne^{-\gamma k}$, we have for all $x, y \neq 0 \in \mathbb{R}^k$,

$$\sum_{i=1}^{n} 1_{w_i \cdot x > 0} 1_{w_i \cdot y > 0} \cdot w_i w_i^T - \mathbb{E}[\cdots] \bigg\| \le \epsilon$$

The constants depend polynomially on ϵ .

Range Restricted Isometry Condition holds w.h.p. if a matrix is sufficiently expansive

Lemma (Baraniuk et al. 2008) $T \subset \mathbb{R}^n$ of dimension 2k < m. With probability at least $1-(c_1/\epsilon)^{2k}e^{-\gamma_1\epsilon m}$,

To establish RRIC:

Apply lemma to all subspaces given by ReLU patterns

Let $A \in \mathbb{R}^{m \times n}$ have iid $\mathcal{N}(0, 1/m)$ entries. Fix ϵ . Fix a subspace

 $|\langle Ax, Ay \rangle - \langle x, y \rangle| \le \epsilon ||x||_2 ||y||_2, \quad \forall x, y \in T$

 $||W_{+,x}^t A^t A W_{+,y} - W_{+,x}^t W_{+,y}|| \le \epsilon \ \forall x, y \text{ whp if } m \gtrsim k \log n$

Recovery Theory with Random Generative Priors for Multiple Inverse Problems

 Compressed Sensing **Deterministic Conditions and Probabilistic Recovery Guarantee**

 Other Inverse Problems Denoising, Compressive Phase Retrieval, Spiked Matrix Recovery

 Advances to the Theory **Convolutional Structure, Expansivity**

Compressive Phase Retrieval with Generative Models

Hand, Leong, Voroninski 2018

$$\left| \mathcal{F}(z) \right| - \left| A x_0 \right| \right|^2$$

Compressive Phrase Retrieval on MNIST

Fienup (200 m)

1400-201	1988 A. 1988	- 1965 a 18	- 1992-1997 - 199
KARD -	1990 C.1863	56924.403	10.001533
10.23 A	1102651	17. M. 17. 17. 18	61.00.383
			- 4000000
AR DORROOM	0704140a14	NAME OF BRIDE	- 200 CONFER

Gerchberg Saxton (200 m)

승규가 .			
949.43d -			162657
203646	1946655	22 16 16 16	1239-124

Wirtinger Flow (200 m)

Hand, Leong, Voroninski 2018

SPARTA (200 m)

1997	1002.03	1200	0.000	3180-197	- Elikole
10.555		1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 2996 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 - 2096 -	1983) 1983)		- 28333
1999년	103293			14.55	3.3343

70 CC C D 00	2424-0460	二字 たんき パート	ECHORAD MID	21.00.000=01.0	16 S 26 S 27 S

11:52337		4,532,034	유가에 잡다	202022	- 영화 문화
	성상상값	영영사망	문양값이 관련		- 30503
20.07 S	전망물었	2016년 1월		1466.202	- 1256488.67 - 29566000
19.22523.5	1111255/06.0	1-25-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	100000	200012020	- 18,233,233

Deep phase retrieval can outperform sparse phase retrieval in the low measurement regime

Hand, Leong, Voroninski 2018

Compressive phase retrieval from generic measurements is possible at optimal sample complexity

1. # measurements = $\Omega(k)$, up to log factors

- 2. network layers are sufficiently expansive
- 3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

Hand, Leong, Voroninski 2018

The objective function has a strict descent direction in latent space outside of two small neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Sparsity appears to fail in Compressive Phase Retrieval

Open problem: there is no known efficient algorithm to recover s-sparse x_0 from O(s) generic measurements

Geometric picture of signal recovery with a low-dimensional generative prior

Information and Inference: A Journal of the IMA (2020) **00**, 1–35 doi:10.1093/imaiai/iaaa011

Rate-optimal denoising with deep neural networks

REINHARD HECKEL[†] Department of Electrical and Computer Engineering, Rice University, Houston, Texas [†]Corresponding author. Email: rh43@rice.edu

WEN HUANG School of Mathematical Sciences, Xiamen University, Xiamen, China

PAUL HAND Department of Mathematics and Khoury College of Computer Science, Northeastern University, Boston, Massachusetts

> VLADISLAV VORONINSKI Helm.ai, Menlo Park, California USA

[Received on 6 October 2019; revised on 31 March 2020; accepted on 2 April 2020]

AND

Article No Statistical-Computational Gap in Spiked Matrix Models with Generative Network Priors[†]

Jorio Cocola ^{1,} * ¹ , Paul Hand ^{1,2} and Vladislav Voroninski ³		
	Let:	G
	Let:	y_{\star}
	Given:	G.
	Given:	No wi
	Estimate:	y_{\star}
	To estimate y_{\star} , [3	3] pı

where

Cocola, Hand, Voroninski 2021. Improved in Cocola 2022.

SPIKED WIGNER MATRIX RECOVERY WITH A DEEP GENERATIVE PRIOR

: $\mathbb{R}^k \to \mathbb{R}^n$ generative network. $= G(x_{\star})$ for some unknown $x_{\star} \in \mathbb{R}^{k}$.

oisy matrix $B = y_{\star} y_{\star}^{T} + \sigma \mathcal{H} \in \mathbb{R}^{n \times n}$, ith \mathcal{H} from a Gaussian Orthogonal Ensemble.

roposes to find the latent code \hat{x} that minimizes the reconstruction error

$$\tilde{x} = \arg\min_{x \in \mathbb{R}^x} f_{\text{spiked}}(x) := \frac{1}{2} \|M - G(x)G(x)^T\|_F^2,$$
$$y_{\star} \approx G(\tilde{x}),$$

• in the spiked Wishart model $M = B^T B / N - \sigma^2 I_n$; • in the spiked Wigner model M = B.

Recovery Theory with Random Generative Priors for Multiple Inverse Problems

 Compressed Sensing **Deterministic Conditions and Probabilistic Recovery Guarantee**

 Other Inverse Problems Denoising, Compressive Phase Retrieval, Spiked Matrix Recovery

 Advances to the Theory **Convolutional Structure, Expansivity**

Invertibility of Convolutional Generative Networks from Partial Measurements

Fangchang Ma* MIT

fcma@mit.edu

Ulas Ayaz* MIT uayaz@mit.edu uayaz@lyft.com Sertac Karaman MIT sertac@mit.edu

Figure 2: Illustration of a single transposed convolution operation. $f_{i,j}$ stands for i^{th} filter kernel for the j^{th} input channel. z and x denote the input and output signals, respectively. (a) The standard transposed convolution represented as linear multiplication. (b) With proper row and column permutations, the permuted weight matrix has a repeating block structure.

Weakening Expansivity Assumption

 $n_i ≥ n_{i-1} \log n_{i-1} \operatorname{poly}(d)$ $n_i ≥ n_{i-1} \operatorname{poly}(d)$ $n_i ≥ 5^i k \operatorname{poly}(d)$ $n_i ≥ k \operatorname{poly}(d)$

Hand and Vorninski, 2019 Daskalakis et al., 2020 Joshi et al., 2021 Cocola, 2022

Signal Recovery Under Generative Priors

- There is a recovery theory for generative priors for multiple inverse problems
- Generative priors may outperform sparsity priors for a variety of problems
- Generative priors could provide tighter representations of natural images
- Generative priors can be optimally exploited for some nonlinear problems

S

References

Deep Compressive Sensing

- Bora et al. 2017 *ICML* \bullet
- Hand and Voroninski 2019 IEEE Trans IT \bullet
- Huang et al. 2021 J. Fourier Anal. App. \bullet

Other Inverse Problems

- Denoising: \bullet Heckel et al. 2020 - Information and Inference
- Phase Retrieval: \bullet Hand, Leong, and Voroninski 2018 - NeurIPS
- Spiked Matrix Recovery: Aubin et al. 2020 - IEEE Trans IT Cocola et al. 2020 - *NeurIPS, Entropy*
- Blind Demodulation: \bullet Hand and Joshi 2018 - NeurIPS

Generalization of Assumptions

- **Convolutional Generators** Ma, Ayaz, and Karaman 2018 - NeurIPS
- Better Expansivity Condition Daskalakis et al. 2020 - NeurIPS
- Non-Expansive Priors with Different Algorithm Joshi et al. 2021 - NeurIPS
- Non-Expansive Priors Cocola 2022 - NeurIPS

Review Articles

- Lucas et al. 2018 IEEE Sig. Proc. Mag.
- Ongie et al. 2020 IEEE JSAIT
- Scarlett et al. 2022 IEEE JSAIT

