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Examples of inverse problems




How can generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

min ||A(G(Z)) — A(Xp) 2
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Inspiration: Recovery Theory for Compressed Sensing
with Sparse Priors

Fix k-sparse vector xp € R”.
Let A € R™" be a random gaussian matrix with m = Q(k log n).

min | X||1
S.t. Ax = AXp

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.)
The global minimizer of (L1) is xo with high probability.
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Compressed Sensing with Generative Models
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Geometric picture of signal recovery
with a low-dimensional generative prior
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Expansive Gaussian Model for Generative Priors

Let: G:R*—R"

G(z) =relu(Wy...relu(Waorelu(Wiz)) .. .)
Given: W; € R™"*"i-1 A ¢ R™*" ¢y := AG(z9) € R™
Find: 2

» Expansivity: Let n; > cn;_1logn;_1
» Gaussianicity: Let W, and A have iid Gaussian entries.

» Biasless: No bias terms in (.



Compressive sensing with random generative prior has a
provably convergent subgradient descent algorithm

Theorem (Huang, Heckel, Hand, Voroninski)

Letd > 2. If .
1. G is gaussian and sufficiently expansive, -\
2. m= Q(kdlog(N9_.n;), N
3. measurements have sufficiently small noise | \

\
.
. . . | ‘
then w.h.p. a subgradient descent with a twist L/ \ j
converges to within the noise level of z,. | Z \]




Deterministic Condition used in Recovery Proofs

A matrix W € R™¥ satisfies the Weight Distribution Condition with
constant ¢ if for all x, y # 0 € RX,

n n

. | T — 0 sin &
E :1Wi‘X>O1 wey>0 - WiW) — Qxy|l < €, with Q) = / M.
=1

27T 27T

Here, w/ is the ith row of W; M;..; € R***is the matrix such that X — ¥,
y—=X,andz— Oforall ze ({x,y})"; 0 = Z(x,y).




Definition 3 (Range Restricted Isometry Condition (RRIC)
[52]). A matrix A € R™*" satisfies the Range Restricted
Isometry Condition with respect to G with constant € if, for
all z1,2z9,25,24 € R”, it holds that

(A(G(2z1) — G(22)), A(G(23) — G(24)))

)
—(G(21) — G(22),G(23) — G(24))
< €|G(z1) = G(22)2]|G(23) — G(24)]2-  (23)

This condition states that A acts like an 1sometry when
acting on pairs of secant directions (1.e., differences ot two
signals) with respect to the range of G.



Theorem (Huang, Hand, Heckel, Voroninski, 2017)

Assume that
1. the WDC and RRIC hold with ¢ < C/poly(d),

2. the measurement noise is sufficiently small.

Then a subgradient algorithm with a twist converges
to within the noise level of z;.




Weight Distribution Condition holds w.h.p. if a matrix is
sufficiently expansive

Lemma: Fix €. Let W € R™** have i.i.d. N(0,1/n) entries. If n > cklogk, then
with probability at least 1 — 8ne~ 7% we have for all r,y #+ 0 & R*.

n

T x
E Lip;z>0Lw; >0 - wiw; —E[--- ||| < e
i—1

The constants depend polynomially on e.



Range Restricted Isometry Condition holds w.h.p.
If a matrix is sufficiently expansive

Lemma (Baraniuk et al. 2008)

Let A € R™*™ have iid N (0,1/m) entries. Fix e. Fix a subspace
T C R"™ of dimension 2k < m. With probability at least
1 — (Cl/e)zke—fylem,

(Az, Ay) — (v, y)| < ellzl2|lyll2, Ve,yeT

To establish RRIC:
» Apply lemma to all subspaces given by RelLU patterns

> |WE JATAW,L - WL Wy || < e Va,y whp if m 2 klogn
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Compressive Phase Retrieval with Generative Models

Generative model Image
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Compressive Phrase Retrieval on MNIST
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Deep phase retrieval can outperform sparse phase
retrieval in the low measurement regime
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Compressive phase retrieval from generic measurements
Is possible at optimal sample complexity

1. # measurements = 2(k), up to log factors
2. network layers are sufficiently expansive

3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

The objective function has a strict descent direction in latent space outside of two small
neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Landscape of Objective Function
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Sparsity appears to fail in Compressive Phase Retrieval

m non-linear
measurements

Open problem: there is no known efficient algorithm to recover
s-sparse xg from O(s) generic measurements



Geometric picture of signal recovery
with a low-dimensional generative prior
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No Statistical-Computational Gap in Spiked Matrix Models
with Generative Network Priors T

Jorio Cocola "*(2, Paul Hand '* and Vladislav Voroninski > SPIKED WIGNER MATRIX RECOVERY
WITH A DEEP GENERATIVE PRIOR

Let: G :R* — R” generative network.
Let: vy, = G(x,) for some unknown z, € R¥.

Given: G.
Given: Noisy matrix B = v, y,. + ocH € R**",
with H from a Gaussian Orthogonal Ensemble.

Estimate: v,.

To estimate y,, [8] proposes to find the latent code & that minimizes the reconstruction error

~ . 1
b = arg min fpiea(w) = 5| M — G@)G()" 3

Yy = G(I),
where
* in the spiked Wishart model M = BY B/N — o°1,;
* 1n the spiked Wigner model M = B.
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Invertibility of Convolutional Generative
Networks from Partial Measurements
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2.1 Notation and Assumptions
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Figure 2: Illustration of a single transposed convolution operation. f; ; stands for it filter kernel

for the 5" input channel. z and x denote the input and output signals, respectively. (a) The
standard transposed convolution represented as linear multiplication. (b) With proper row and column
permutations, the permuted weight matrix has a repeating block structure.



Weakening Expansivity Assumption

> N, > N1 1og T;—1 pOly(d) Hand and Vorninski, 2019

» n; > n;_1 poly(d) Daskalakis et al., 2020

> n; > 5'kpoly(d) Joshi et al., 2021

» n; > kpoly(d) Cocola, 2022



Signhal Recovery Under Generative Priors

 There is a recovery theory for generative priors for multiple inverse problems
* Generative priors may outperform sparsity priors for a variety of problems
* (Generative priors could provide tighter representations of natural images

* (Generative priors can be optimally exploited for some nonlinear problems
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