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How are generative models used in inverse problems?

1. Train generative model to output signal class:

2. Directly optimize over range of generative model via empirical risk:

min
z2Rk

����(G(z))� �(x0)
���

2
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How can generative models used in inverse problems?
Deep Compressive Sensing

min
z2Rk

���AG(z)� Ax0
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Recovery guarantee for sparse signals

Fix k -sparse vector x0 2 Rn.
Let A 2 Rm⇥n be a random gaussian matrix with m = ⌦(k log n).

min kxk1
s.t. Ax = Ax0

(L1)

Theorem (Candes, Romberg, Tao. 2004. Donoho, 2004.)
The global minimizer of (L1) is x0 with high probability.
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Inspiration: Recovery Theory for Compressed Sensing 
with Sparse Priors



Deep Compressive Sensing

min
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Compressed Sensing with Generative Models

Bora, Jalal, Dimakis, Price 2017
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Random generative priors allow rigorous recovery
guarantees

Let: G : Rk ! Rn

G(z) = relu(Wd . . . relu(W2relu(W1z)) . . .)

Given: Wi 2 Rni⇥ni�1 , A 2 Rm⇥n
, y := AG(z0) 2 Rm

Find: x0

I Expansivity: Let ni > cni�1 log ni�1

I Gaussianicity: Let Wi and A have iid Gaussian entries.

I Biasless: No bias terms in G.

Expansive Gaussian Model for Generative Priors



Compressive sensing with random generative prior has a
provably convergent subgradient descent algorithm

Theorem (Huang, Heckel, Hand, Voroninski)
Let d � 2. If

1. G is gaussian and sufficiently expansive,

2. m = ⌦(kd log(⇧d

i=1ni),

3. measurements have sufficiently small noise

then w.h.p. a subgradient descent with a twist

converges to within the noise level of z0.
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Deterministic Condition for Recovery

A matrix W 2 Rn⇥k satisfies the Weight Distribution Condition with
constant ✏ if for all x , y 6= 0 2 Rk ,

�����

nX

i=1

1wi ·x>01wi ·y>0 · wiw
T

i
� Qx ,y

�����  ✏, with Qx ,y =
⇡ � ✓

2⇡
I +

sin ✓

2⇡
Mx̂$ŷ .

Here, wT

i
is the i th row of W ; Mx̂$ŷ 2 Rk⇥k is the matrix such that x̂ 7! ŷ ,

ŷ 7! x̂ , and ẑ 7! 0 for all z 2 ({x , y})?; ✓ = \(x , y).
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Deterministic Condition used in Recovery Proofs 
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[59] introduced a specific subgradient algorithm that provably
converges. It was additionally established in [52] that under
the above-mentioned assumptions of expansivity and random
weights, the desired deterministic properties are satisfied with
high probability. The assumptions made were then relaxed in
various subsequent works [31], [69], [26], several of which
we will discuss in Section II-E.

1) Model for G: We consider a generator G : Rk
! Rn

given by a d-layer fully connected neural network with ReLU
activations and no bias terms. That is,

G(z) = relu(Wd . . . relu(W2 relu(W1z)) . . .), (21)

where relu(·) = max{·, 0} applies entry-wise, Wi 2

Rni⇥ni�1 for i = 1, . . . , d, and n0 = k and nd = n.
2) Deterministic conditions used in the analysis: Here we

present two useful deterministic conditions on the genera-
tive model and measurement model. The results to follow
will show that these deterministic conditions are sufficient
for certain recovery guarantees, and are satisfied with high
probability for i.i.d. Gaussian distributions on G and A.

The first condition is the Weight Distribution Condition
(WDC), which applies to individual weight matrices Wi.

Definition 2 (Weight Distribution Condition (WDC) [52]). A
matrix W 2 R⇥` satisfies the Weight Distribution Condition
with constant ✏ if, for all non-zero u,v 2 R`, it holds that

�����

X

i=1

1wi·u>01wi·v>0 · wiw
T

i
� Qu,v

�����
2

 ✏,

with Qu,v =
⇡ � ✓

2⇡
I +

sin ✓

2⇡
Mu,v, (22)

where wT

i
2 R` is the i-th row of W; ✓ is the angle

between u and v; Mu,v 2 R`⇥` is the matrix that maps
u

kuk2
7!

v
kvk2

, v
kvk2

7!
u

kuk2
, and t 7! 0 for all t orthogonal

to span({u,v}); and 1S is the indicator function on S.

This condition can be viewed as a generalization of an
approximate isotropy condition; for example, if u = v, the
condition states that

P


i=1 1wi·u>01wi·v>0 · wiwT

i
is close

to 1
2I. The indicator functions in the summation arise from

taking the derivative of the ReLU function.
The second condition is the Range Restricted Isometry

Condition (RRIC), which applies to the pair (G,A).

Definition 3 (Range Restricted Isometry Condition (RRIC)
[52]). A matrix A 2 Rm⇥n satisfies the Range Restricted
Isometry Condition with respect to G with constant ✏ if, for
all z1, z2, z3, z4 2 Rk, it holds that

���hA(G(z1) � G(z2)),A(G(z3) � G(z4))i

� hG(z1) � G(z2), G(z3) � G(z4)i
���

 ✏kG(z1) � G(z2)k2kG(z3) � G(z4)k2. (23)

This condition states that A acts like an isometry when
acting on pairs of secant directions (i.e., differences of two
signals) with respect to the range of G.

3) Favorable landscape for compressive sensing with gra-
dient algorithm under deterministic conditions: Under the
deterministic conditions given above, it can be established
that the loss landscape is favorable for optimization. Consider
a signal given by x⇤ = G(z⇤) for some z⇤, and let the
measurement vector be y = Ax⇤ + ⌘ with i.i.d. Gaussian
⌘. We are interested in the optimization problem

min
z

f(z), f(z) := kAG(z) � yk
2
2. (24)

The following result shows that under the WDC and RRIC,
f does not have any spurious local minima outside of z and
a negative multiple of z. Here and subsequently, when we
write poly(d), we mean that the result holds true when this is
replaced by d

c for a suitable constant c > 0 (possibly differing
in each occurrence). In addition, we let Dvf(z) denote the
directional derivative with direction v 2 Rk, and let B(z, r)
denote the radius-r ball centered at z.

Theorem 5. (Favorable Optimization Landscape [53, Thm. 4])
Fix ✏ > 0 such that K1poly(d)✏1/4  1, and let d � 2.
Suppose that G is such that Wi satisfies the WDC with
constant ✏ for all i = 1, . . . , d, and that A satisfies the RRIC
with respect to G with constant ✏. Then, for all non-zero z and
z⇤, there exists vz,z⇤ 2 Rk such that the one-sided directional
derivatives of f satisfy

D�vz,z⇤ f(z) < �K3

p
✏ poly(d)

2d
max

�
kzk2, kz

⇤
k2

 
,

(25)

Dtf(0) < �
1

8⇡2d
kz⇤k2,

8t 6= 0, z 62 {0} [ B(z⇤, K2poly(d)✏1/4kz⇤k2)

[ B(�⇢z⇤, K2poly(d)✏1/4kz⇤k2), (26)

where ⇢ = ⇢d is a positive number that converges to 1 as
d ! 1, and K1, K2, and K3 are universal constants.

While the above expressions are somewhat technical, the
simple idea is that except for points close to z⇤ and �⇢z⇤,
we have a negative upper bound on the directional derivative,
which precludes spurious minima. Moreover, the radius around
z⇤ and �⇢z⇤ becomes arbitrarily small as ✏ decreases.

There is an explicit formula for vz,z⇤ , given by

vz,z⇤ =

(
rf(z) differentiable at z,
lim�#0 rf(z + �z0) otherwise,

(27)

where z0 can be arbitrarily chosen such that G is differentiable
at z + �z0 for sufficiently small �. Such a z0 exists by the
piecewise linearity of G, and can be generated randomly with
probability one.

Note that the dependence on 2d in the bounds is an artifact
of the underlying scaling of f(z), and does not indicate a
vanishingly small derivative. Roughly speaking, the ReLU
activation functions zero out around half of its arguments.
Hence, while Wi has spectral norm approximately one, the
rows of Wi that are retained by the ReLU will have spectral
norm approximately 1

2 . Thus, f(z) itself is on the order of
2�d under the RRIC and WDC for appropriately small ✏.



Compressive sensing with random generative prior has a
provably convergent subgradient descent algorithm

Theorem (Huang, Heckel, Hand, Voroninski)
Let d � 2. If

1. G is gaussian and sufficiently expansive,

2. m = ⌦(kd log(⇧d

i=1ni),

3. measurements have sufficiently small noise

then w.h.p. a subgradient descent with a twist

converges to within the noise level of z0.
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Compressive sensing with random generative prior has
favorable geometry for optimization

Theorem (Huang, Hand, Heckel, Voroninski, 2017)

Assume that
1. the WDC and RRIC hold with ✏  C/poly(d),

2. the measurement noise is su�ciently small.
Then a subgradient algorithm with a twist converges
to within the noise level of z0.



Weight Distribution Condition holds w.h.p. if a matrix is 
sufficiently expansive

Proof Requires Concentration of Discontinuous Matrix-Valued Random
Functions

Lemma: Fix ✏. Let W 2 Rn⇥k
have i.i.d. N (0, 1/n) entries. If n > ck log k, then

with probability at least 1� 8ne��k
, we have for all x, y 6= 0 2 Rk

,

�����
1

n

nX

i=1

1wi·x>01wi·y>0 · wiw
T
i � E[· · · ]

�����  ✏

The constants depend polynomially on ✏.



Range Restricted Isometry Condition holds w.h.p.  
if a matrix is sufficiently expansive

RIP-like property and control of subspaces

Lemma (Baraniuk et al. 2008)

Let A 2 Rm⇥n
have iid N (0, 1/m) entries. Fix ✏. Fix a subspace

T ⇢ Rn
of dimension 2k < m. With probability at least

1� (c1/✏)2ke��1✏m,

|hAx,Ayi � hx, yi|  ✏kxk2kyk2, 8x, y 2 T

To establish RRIC:

I Apply lemma to all subspaces given by ReLU patterns

I kW t
+,xA

tAW+,y �W t
+,xW+,yk  ✏ 8x, y whp if m & k log n
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Our formulation: Deep Phase Retrieval

min
z2Rk

���|AG(z)|� |Ax0|
���
2

Compressive Phase Retrieval with Generative Models

Hand, Leong, Voroninski 2018



Comparison on MNISTCompressive Phrase Retrieval on MNIST

Hand, Leong, Voroninski 2018



Deep Phase Retrieval outperforms Sparse Phase Retrieval in
low-measurement regime for test images

Deep phase retrieval can outperform sparse phase 
retrieval in the low measurement regime

Hand, Leong, Voroninski 2018



Compressive phase retrieval from generic measurements is possible at
optimal sample complexity

1. # measurements = ⌦(k), up to log factors

2. network layers are su�ciently expansive

3. A and weights of G have i.i.d. Gaussian entries

Theorem (Hand, Leong, Voroninski)

The objective function has a strict descent direction in latent space outside of two small
neighborhoods of the minimizer and a negative multiple thereof, with high probability.

Compressive phase retrieval from generic measurements 
is possible at optimal sample complexity

Hand, Leong, Voroninski 2018



Sparsity appears to fail in Compressive Phase Retrieval

Open problem: there is no known e�cient algorithm to recover

s-sparse x0 from O(s) generic measurements

Sparsity appears to fail in Compressive Phase Retrieval
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Deep neural networks provide state-of-the-art performance for image denoising, where the goal is to
recover a near noise-free image from a noisy observation. The underlying principle is that neural networks
trained on large data sets have empirically been shown to be able to generate natural images well from a
low-dimensional latent representation of the image. Given such a generator network, a noisy image can
be denoised by (i) finding the closest image in the range of the generator or by (ii) passing it through
an encoder-generator architecture (known as an autoencoder). However, there is little theory to justify
this success, let alone to predict the denoising performance as a function of the network parameters.
In this paper, we consider the problem of denoising an image from additive Gaussian noise using the
two generator-based approaches. In both cases, we assume the image is well described by a deep neural
network with ReLU activations functions, mapping a k-dimensional code to an n-dimensional image. In
the case of the autoencoder, we show that the feedforward network reduces noise energy by a factor of
O(k/n). In the case of optimizing over the range of a generative model, we state and analyze a simple
gradient algorithm that minimizes a non-convex loss function and provably reduces noise energy by
a factor of O(k/n). We also demonstrate in numerical experiments that this denoising performance is,
indeed, achieved by generative priors learned from data.

Keywords: deep neural networks; denoising.

1. Introduction

We consider the denoising problem, where the goal is to remove noise from an unknown image or signal.
In more detail, our goal is to obtain an estimate of an image or signal y∗ ∈ Rn from a noisy measurement

y = y∗ + η.

Here, η is unknown noise, which we model as a zero-mean white Gaussian random variable with
covariance matrix σ 2/nI. Image denoising relies on generative or prior assumptions on the image y∗,

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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F.3 Spiked Matrix Recovery with a Generative Prior

Consider a generative network G : Rk ! Rn as in (2). The spiked Wishart matrix recovery with a
generative prior is formulated as follows.

SPIKED WISHART MATRIX RECOVERY
WITH A DEEP GENERATIVE PRIOR

Let: G : Rk ! Rn generative network.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G.
Given: Noisy matrix B = u y?

T + �Z 2 RN⇥n, with u ⇠ N (0, IN )
and Z with i.i.d. N (0, 1) entries.

Estimate: y?.

Similarly, the spiked Wigner matrix recovery with a generative prior is formulated as follows.

SPIKED WIGNER MATRIX RECOVERY
WITH A DEEP GENERATIVE PRIOR

Let: G : Rk ! Rn generative network.
Let: y? = G(x?) for some unknown x? 2 Rk.

Given: G.
Given: Noisy matrix B = y? y?

T + �H 2 Rn⇥n,
with H from a Gaussian Orthogonal Ensemble.

Estimate: y?.

To estimate y?, [8] proposes to find the latent code x̂ that minimizes the reconstruction error

x̃ = arg min
x2Rx

fspiked(x) :=
1

2
kM �G(x)G(x)T k2F ,

y? ⇡ G(x̃),

where

• in the spiked Wishart model M = B
T
B/N � �

2
In;

• in the spiked Wigner model M = B.

As shown in [9] Algorithm 1 with inputs fspiked, appropriate ↵ and arbitrary initial point x0, estimates
in polynomial time the signal y? with rate-optimal dependence on the noise level or sample complexity.
In particular, this shows that the absence of a computational-statistical gap in spiked matrix recovery
with an expansive (random) generative network prior. The proof uses the fact that for G satisfying
the WDC the bounds in Proposition C.1, C.2, C.3 and C.4 hold. Since these bounds hold under the
weaker R2WDC we can directly extend the results in [9] to non-expansive generative networks G
satisfying Assumptions B.

G An example of a contractive generative network

In this section we give an example of a generative network as in (2) satisfying the conditions (12)
and (17), and with contractive layers.

Let d � 2 and C̄✏ := max( eC✏, 16c�1
✏ /log(2)). Then consider a d-layer generative network G such

that for i 2 [d]
ni := C̄✏ · k · d(2d� i) · ↵,

26

Cocola, Hand, Voroninski 2021.  Improved in Cocola 2022.
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Abstract: We provide a non-asymptotic analysis of the spiked Wishart and Wigner matrix models
with a generative neural network prior. Spiked random matrices have the form of a rank-one signal
plus noise and have been used as models for high dimensional Principal Component Analysis (PCA),
community detection and synchronization over groups. Depending on the prior imposed on the
spike, these models can display a statistical-computational gap between the information theoretically
optimal reconstruction error that can be achieved with unbounded computational resources and the
sub-optimal performances of currently known polynomial time algorithms. These gaps are believed
to be fundamental, as in the emblematic case of Sparse PCA. In stark contrast to such cases, we show
that there is no statistical-computational gap under a generative network prior, in which the spike
lies on the range of a generative neural network. Specifically, we analyze a gradient descent method
for minimizing a nonlinear least squares objective over the range of an expansive-Gaussian neural
network and show that it can recover in polynomial time an estimate of the underlying spike with a
rate-optimal sample complexity and dependence on the noise level.

Keywords: spiked matrix models; generative networks; rank-one matrix recovery; statistical-
computational gap

1. Introduction
One of the fundamental problems in statistical inference and signal processing is

the estimation of a signal given noisy high dimensional data. A prototypical example is
provided by spiked matrix models where a signal y! ∈ Rn is to be estimated from a matrix
Y taking one of the following forms:
• Spiked Wishart Model in which Y ∈ RN×n is given by:

Y = u y!T + σZ , (1)

where σ > 0, u ∼ N (0, IN), Zij are i.i.d. from N (0, 1), and u and Z are independent;
• Spiked Wigner Model in which Y ∈ Rn×n is given by:

Y = y!y!T + νH (2)

where ν > 0, H ∈ Rn×n is drawn from a Gaussian Orthogonal Ensemble GOE(n), that is,
Hii ∼ N (0, 2/n) for all 1 ≤ i ≤ n and Hij = Hji ∼ N (0, 1/n) for 1 ≤ j < i ≤ n.
In the last 20 years, spiked random matrices have been extensively studied, as they

serve as a mathematical model for many signal recovery problems such as PCA [1–4],
synchronization over graphs [5–7] and community detection [8–10]. Furthermore, these
models are archetypal examples of the trade-off between statistical accuracy and compu-
tational efficiency. From a statistical perspective, the objective is to understand how the

Entropy 2021, 23, 115. https://doi.org/10.3390/e23010115 https://www.mdpi.com/journal/entropy



Recovery Theory with Random Generative Priors 
for Multiple Inverse Problems

• Compressed Sensing 
Deterministic Conditions and Probabilistic Recovery Guarantee  

• Other Inverse Problems 
Denoising, Compressive Phase Retrieval, Spiked Matrix Recovery  

• Advances to the Theory 
Convolutional Structure, Expansivity  



Invertibility of Convolutional Generative

Networks from Partial Measurements

Fangchang Ma*

MIT
fcma@mit.edu

Ulas Ayaz
˚

MIT
uayaz@mit.edu
uayaz@lyft.com

Sertac Karaman

MIT
sertac@mit.edu

Abstract

The problem of inverting generative neural networks (i.e., to recover the input latent
code given partial network output), motivated by image inpainting, has recently
been studied by a prior work that focused on fully-connected networks. In this
work, we present new theoretical results on convolutional networks, which are more
widely used in practice. The network inversion problem is highly non-convex, and
hence is typically computationally intractable and without optimality guarantees.
However, we rigorously prove that, for a 2-layer convolutional generative network
with ReLU and Gaussian-distributed random weights, the input latent code can be
deduced from the network output efficiently using simple gradient descent. This
new theoretical finding implies that the mapping from the low-dimensional latent
space to the high-dimensional image space is one-to-one, under our assumptions.
In addition, the same conclusion holds even when the network output is only
partially observed (i.e., with missing pixels). We further demonstrate, empirically,
that the same conclusion extends to networks with multiple layers, other activation
functions (leaky ReLU, sigmoid and tanh), and weights trained on real datasets.

1 Introduction

In recent years, generative models have made significant progress in learning representations for
complex and multi-modal data distributions, such as those of natural images [10, 18]. However,
despite the empirical success, there has been relatively little theoretical understanding into the
mapping itself from the input latent space to the high-dimensional space. In this work, we address the
following question: given a convolutional generative network2, is it possible to “decode” an output
image and recover the corresponding input latent code? In other words, we are interested in the
invertibility of convolutional generative models.

The impact of the network inversion problem is two-fold. Firstly, the inversion itself can be applied
in image in-painting [21, 17], image reconstruction from sparse measurements [14, 13], and image
manipulation [22] (e.g., vector arithmetic of face images [12]). Secondly, the study of network
inversion provides insight into the mapping from the low-dimensional latent space to the high-
dimensional image space (e.g., is the mapping one-to-one or many-to-one?). A deeper understanding
of the mapping can potentially help solve the well known mode collapse3 problem [20] during the
training in the generative adversarial network (GAN) [7, 16].

˚Both authors contributed equally to this work. Ulas Ayaz is presently affiliated with Lyft, Inc.
2Deep generative models typically use transposed convolution (a.k.a. “deconvolution”). With a slight abuse

of notation we refer to transposed convolutional generative models as convolutional models.
3Mode collapse refers to the problem that the Generator characterizes only a few images to fool the

discriminator in GAN. In other words, multiple latent codes are mapped to the same output in the image space.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

(a subset of the rows of an identity matrix), and then the observed pixels are y˛ “ Ax˛ P Rm.
Consequently, the inversion problem given partial measurements can be described as follows:

Let: z˛ P Rn0 ,W1 P Rn1ˆn0 ,W2 P Rn2ˆn1 , A P Rmˆn2

Given: A,W1,W2 and observations y˛ “ AGpz˛q
Find: z˛ and x˛ “ Gpz˛q

Since x˛ is determined completely by the latent representation z˛, we only need to find z˛. We
propose to solve the following optimization problem for an estimate ẑ:

ẑ “ argmin
z

Jpzq, where Jpzq “ 1

2
}y˛ ´ AGpzq}2 (3)

This minimization problem is highly non-convex because of G. Therefore, in general a gradient
descent approach is not guaranteed to find the global minimum z˛, where Jpz˛q “ 0.

2.1 Notation and Assumptions
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Figure 2: Illustration of a single transposed convolution operation. fi,j stands for ith filter kernel
for the jth input channel. z and x denote the input and output signals, respectively. (a) The
standard transposed convolution represented as linear multiplication. (b) With proper row and column
permutations, the permuted weight matrix has a repeating block structure.

We vectorize the input signal to 1D signal. The feature at the ith layer consists of Ci channels, each
of size Di. Therefore, ni “ Ci ¨ Di. At any convolutional layer, let fi,j denotes the kernel filter
(each of size `) for the ith input channel and the jth output channel. For simplicity, we assume the
stride to be equal to the kernel size l. All filters can be concatenated to form a large block matrix Wi.
For instance, an example of such block matrix W1 for the first layer is shown in Figure 2(a). Under
our assumptions, the input and output sizes at each deconvolution operation can be associated as
Di`1 “ Di`.

Let DvJpxq be one-sided directional derivative of the objective function Jp¨q along the direction
v, i.e., DvJpxq “ limtÑ0`

Jpx`tvq´Jpxq
t . Let Bpx, rq be the Euclidean ball of radius r centered at

x. We omit some universal constants in the inequalities and use Á✏ (if the constant depends on a
variable ✏) instead.

3 Main Results

In this section, we present our main theoretical results regarding the invertibility of a 2-layer convolu-
tional generative network with ReLUs. Our first main theoretical contribution is as follows: although
the problem in (3) is non-convex, under appropriate conditions there is a strict descent direction
everywhere, except in the neighborhood of z˛ and that of a negative multiple of z˛.
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Weakening Expansivity Assumption

I ni � ni�1 log ni�1 poly(d) Hand and Vorninski, 2019

I ni � ni�1 poly(d) Daskalakis et al., 2020

I ni � 5ik poly(d) Joshi et al., 2021

I ni � k poly(d) Cocola, 2022



Signal Recovery Under Generative Priors

• There is a recovery theory for generative priors for multiple inverse problems 


• Generative priors may outperform sparsity priors for a variety of problems


• Generative priors could provide tighter representations of natural images


• Generative priors can be optimally exploited for some nonlinear problems 
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