Laser phase-contrast transmission electron microscopy and associated computational opportunities

Petar Petrov UC Berkeley

Los Angeles, CA November 15, 2022

Part III: Recent Experimental Progress

Part I Laser-Based Phase Contrast

Biological specimens are weak-phase objects

A 90° phase shift enables phase contrast imaging

 Scattered and "unscattered" beams $\psi = e^{ikz}$ are spatially separated Specimen in the diffraction plane plane $\psi = e^{ikz} e^{i\varphi(x,y)}$ Tune their phases $= e^{ikz} [1 + i\varphi(x, y) + \cdots]$ separately with a phase plate • First implemented by +90° Zernike for optical microscopy (1942) Diffraction $\psi = e^{ikz} [i + i\varphi(x, y) + \cdots]$ plane Experimentally $= ie^{ikz} [1 + \varphi(x, y) + \cdots]$ challenging in electron microscopy • Proposal: Boersch Contrast! (1947) Volta phase plate: Danev (2014) Image plane Electron $|\psi|^2 = 1 + 2\varphi(x, y) + \cdots$ detector

"Volta" phase contrast is elegant, but...

• Volta phase plate has been the most successful to date

Time

- Poorly-understood mechanism
- Phase shift is not stable over time
- Film scatters away ~20% of electrons
 - Loss is worst at high spatial frequencies

The laser phase plate (LPP)

- Electrons are phase-shifted by light via stimulated Compton scattering
 - Electron feels a ponderomotive potential $\propto E^2$

Advantages:

- Stable, controllable phase shift
- No material in the electron beam
- 90° phase shift of 300 kV electrons requires extreme light intensity ~400 GW/cm²

The laser phase plate (LPP)

Light is **amplified** and **tightly focused** by a high-NA cavity

- Input: ~15 W continuous-wave 1064 nm laser
- Power amplification: ~7000×
- Beam waist: 8.5 μm (NA ~0.05)

Contrast transfer function (CTF) of the LPP

- CTF describes information transfer at each spatial frequency
- LPP significantly enhances low-frequency contrast

Contrast transfer function (CTF) of the LPP

- First cut-on frequency determined by laser wavelength λ_{laser}
- Second cut-on frequency determined by laser waist w₀
- Not unique to the LPP:
 - High-frequency oscillations due to defocus, spherical aberration
 - High-frequency attenuation due to standard coherence envelope

2 µm

90°

∩°

Part II

Assorted Computational Opportunities

- 1. Tomography
- 2. Spherical aberration correction
- 3. Focal series
- 4. High-resolution template matching
- 5. Exit wave reconstruction
- 6. Image de-ghosting

1. The LPP can improve electron tomography

Cryo-electron tomography (cryo-ET) enables volumetric reconstruction

Challenges:

- Electron "budget" is spread thin across N images: $N = \pi \frac{D}{d}$
- **Defocus-based contrast causes a tradeoff** between high and low (spatial) frequency information

- Enhanced contrast reduces minimum dose per image
- LPP enhances low frequencies without sacrificing high ones

Bracewell, *Aust. J. Phys.* **9** (1956) Crowther et al., *Nature* **226** (1970)

2. Aberration-corrected phase contrast TEM has a very localized point spread function

- Spherical aberration correction ($C_s = 0$) increases z-dependence of the point spread function ($\mathcal{F}^{-1}[CTF]$) but causes contrast inversion at z = 0
- Phase plate removes this contrast inversion, tightly localizes signal in 3D
 - Sharpens foreground, reduces background
 - Approaches diffraction-limited performance

Petrov et al., J. Struct. Biol. 214 (2022)

X - V

2. Simulations demonstrate improved contrast and ¹⁴ point resolution

- Simulations of myoglobin at highest-contrast *z* position reveal the benefits of aberration-corrected laser phase plate imaging
 - All atoms have negative contrast
 - Note: continuum model of solvent simulated here

3. Focal series may be a useful paradigm

- Focal series are well established in fluorescence microscopy
 - Utilize strong z-dependence of the point spread function to reject background
 - Scan only defocus value, not stage tilt
 - Borrow deconvolution tools from fluorescence microscopy
 - Replace Crowther limit with Shannon limit (~63% of Crowther)

$$N = 2\frac{D}{d}$$

3. Focal series versus tilt series

	Tilt series	Focal series
Missing wedge	Yes	No
Sampling limit	Crowther	~0.63× Crowther
Scanning	Stage tilt	Objective defocus
Background	High (z projection)	Low (optical sectioning)
Radiation damage	Varies with spatial frequency	Varies with axial position

- Anticipate low background and high stability
- Obtain high-resolution information from thin axial section
- May reduce *z*-dependence of radiation damage with an interleaved approach
 - Analogous to dose-symmetric tilt series
- Combine focal series with low-resolution tilt series as in hybrid scheme

4. The LPP can improve high-resolution template ¹⁷ matching

 Cross-correlograms C_j obtained by correlation of a micrograph I with templates T_j

$$C_j = \mathcal{F}^{-1}\left[\mathcal{F}[I] \cdot \mathcal{F}[T_j]\right]$$

- Phase plate improves detection SNR ~3× relative to defocus
- Removal of low-frequency structural noise due to other particles improves detection
 - Low-resolution tomograms enable background subtraction

4. Low-resolution tomograms enable background subtraction

18

		-	
Untilted image	Tilt series		Background subtraction
High-resolution information			 Project tomogram onto <i>x-y</i> plane Subtract projection from untilted image
	Axial (z) information		
Low-resolution information	Low-resolution information		
(a)			
	(e)) X	-0 -0 -50 <u>10 nm</u> -100

5. The LPP enables exit wave reconstruction

• Zernike phase plates enable full reconstruction of the wave function from two images (in the weak scattering limit: μ , ϕ both small)

• The LPP can approximate this:

- These methods work best at zero defocus and with C_s correction
 - Accurate low-defocus imaging is a research endeavor

6. The LPP diffracts electrons into ghost images

- Laser standing wave acts as a phase grating
- Diffraction of electrons generates weak "ghost" images

- Ghost spacing is $\frac{2\lambda_e f_{obj}}{\lambda_{laser}}$, or 74 nm in our instrument
- Relativistic reversal of the ponderomotive potential can eliminate standing wave structure
 - Ghosts perfectly eliminated
 - Cut-on frequency of phase plate is ~20× higher

6. Ghost images are reduced by crossed phase plates

- Planned "crossed LPPs" reduce ghost intensity 3-4×
- Cavity power requirements reduced by 50%
- Two-image sequence can reduce ghosts >250× just by summing intensity

Part III Recent Experimental Progress

Laser phase plate in the lab

- FEI Titan 80-300 equipped with transfer optics module
- 50 W fiber amplifier and breadboards for mode-matching, beam monitoring
 - LPP circulating power >100 kW after amplification
- Feedback electronics stabilize laser frequency, mode position, cavity length

Design of the laser phase plate

- Vacuum-compatible (10⁻⁷ mbar)
- Non-magnetic (Al, Ti, ...)
- Super-polished mirrors (~1 Å rms roughness), surface figure <λ/100

The LPP enables phase-contrast TEM

defocus is 1.5 μm in both images

Turnbaugh et al., Rev. Sci. Instrum. 92 (2021)

Proteasome reconstruction with laser phase contrast

- Reconstructed 20S proteasome core particle (~680 kDa)
 - RELION 3.1 workflow
 - Resolution (FSC): 3.8 Å
 - Total particles: 4789
 - B-factor: 131 Å²

• Electron beam periodically aligned to laser using deflectors:

Turnbaugh et al., Rev. Sci. Instrum. 92 (2021)

Recent experimental challenges

A few hurdles...

- 1. Transfer optics increased aberrations (spherical, chromatic)
 - \rightarrow Installed gun monochromator
- 2. Ice contamination rate limited imaging time (~30 min)
 - \rightarrow Added extra vacuum pump on the column
 - \rightarrow Inserted objective aperture in the back focal plane
- 3. Thermal magnetic field noise blurred images
 - \rightarrow Enlarged the LPP electron beam hole

Thermal magnetic field noise decoheres electron beam

- Thermal fluctuations in aluminum cavity mount (and titanium column liner tube...) induce magnetic field noise, reduce coherence envelope
 - Systems with transfer optics are particularly sensitive $\ensuremath{\mathfrak{S}}$

Uhlemann et al., *Phys. Rev. Lett.* **111** (2013) Uhlemann et al., *Ultramicroscopy* **151** (2014) 28

New instrument coming soon

The future of laser phase-contrast cryo-EM

LPP development:

- Crossed phase plates
- Aberration correction
- In-focus imaging
- LPP-specific processing
- Cavity miniaturization

Cryo-EM experimental design:

- Reduced exposure time
- Tomography
 - Fewer tilts?
 - Focal series?
- Template matching
 - Background subtraction
- Exit wave reconstruction

Acknowledgements

LPP Team

- Holger Müller
- Bob Glaeser
- Jeremy Axelrod
- Jonathan Remis
- Shahar Sandhaus

Alumni

- Osip Schwartz
- Sara Campbell
- Carter Turnbaugh
- Jeske Dioquino

Collaborators

- Eva Nogales (Berkeley)
- Yifan Cheng (UCSF)
- Zanlin Yu (UCSF)
- Thermo Fisher Scientific/FEI

