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3D structure reconstruction

Goal

Determine the atomic structure of a macromolecule such as a protein.

Biological knowledge:
Sequence of amino-acid residues and
chemical composition.

Extremely complex task due to the large
number of atoms.

Deep Learning techniques (AlphaFold).

Cryo-EM dataset:

Very noisy 2D images and unknown
orientations.

Maximum likelihood approach (Sigworth,
1998).

RELION, Scheres, 2012.
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Heterogeneous structures

Many biological macromolecules are flexible and may be found in different
conformations.

Goal: Determine the set of possible conformationsM and construct a map

Φ :M−→ S

where S is the space of molecular structures.
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Heterogeneous structures

Many biological macromolecules are flexible and may be found in different
conformations.

Goal: Determine the set of possible conformationsM and construct a map

Φ :M−→ S

where S is the space of molecular structures.

Continuous heterogeneity: M⊂ Rq is a connected manifold of dimension > 0.

M Φ

Φ

Φ
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Single particle cryo-EM with continuous heterogeneity

Image formation in cryo-EM: The formation of the image in cryo-EM is often
modelled as

Yi = hi ∗ T (Riui ) + ξi for i = 1, 2, . . . ,N

with N ∼ 104−7,

ui ∈ L2(R3) represents the electrostatic potential of a single particle in a specific
conformation.
Ri ∈ SO(3) determines the orientation of the particle.

T : L2(R3)→ L2(R2) is the parallel beam ray transform.
hi∗ denotes the convolution with the point spread function (PSF).

ξi is Gaussian noise.

T (·) CTF+ noise

Heterogeneous dataset: Each cryo-EM image contains the macromolecule
in a different conformation.
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Some existing methods in heterogeneous cryo-EM

Variational Autoencoders (VAE): the conformation of the particle is
encoded in the so-called latent space.

CryoDRGN: Zhong,Bepler,Berger,Davis, 2021

Image taken from Zhong et al., CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks, 2021.

Deep Mind: Rosenbaum et al., 2021

Image taken from Rosenbaum et al., Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs,

2021.
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Some existing methods in heterogeneous cryo-EM

Principal component analysis reconstruction:
- P. A. Penczek. Variance in three-dimensional reconstructions from projections, 2002.

- P. A. Penczek, M. Kimmel, and C. M. Spahn. Identifying conformational states of macromolecules by eigenanalysis of resampled
cryo-EM images, 2011.

- J. Andén, E. Katsevich, and A. Singer. Covariance estimation using conjugate gradient for 3D classification in cryo-EM, 2015.

- J. Andén and A. Singer. Structural variability from noisy tomographic projections, 2018.

Estimate the mean volume µ̂ ∈ RN×N×N as the maximum likelihood
estimator, using the row data.

Estimate the covariance matrix Σ ∈ RN3×N3
as

Σ̂ = argmin
n∑

i=1

∣∣∣(Yi − Pi µ̂)(Yi − Pi µ̂)T − Pi ΣPT
i − Λ

∣∣∣2
Compute the principal eigenvectors of Σ̂ that we denote by

V1,V2, . . . ,Vq ∈ RN×N×N .

Compute the coordinates for the PCA β̂i ∈ Rq of each particle as

Ui = µ̂+

q∑
j=1

Vj β̂i,j
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Problem formulation

What we have:
Low-dimension representation of the conformation (PCA components,
latent space ...).

Pose estimation of the particles.

Atomic structure of a conformation.

Other structural properties like secondary structures.

Goal: Determine how the given 3D structure is deformed into the other
conformations.

· · ·
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Problem formulation

Structural assumption

Let us assume that the macromolecule of interest can be modelled as a
chain, or discrete curve.

The distance between consecutive (pseudo)atoms is constant. (1)

For instance a protein backbone with a single chain of amino-acid residues.

We use a Gaussian model to estimate the molecule density

Z := (z1, z2, . . . , zm) ∈ R3m 7−→ U(Z) :=
m∑

i=1

γi G(zi , σi ) ∈ L2(R3).

where m is the number of atoms in the chain.
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Problem formulation

Structural assumption

Let us assume that the macromolecule of interest can be modelled as a
chain, or discrete curve.

The distance between consecutive (pseudo)atoms is constant. (1)

For instance a protein backbone with a single chain of amino-acid residues.

We use a Gaussian model to estimate the molecule density

Z := (z1, z2, . . . , zm) ∈ R3m 7−→ U(Z) :=
m∑

i=1

γi G(zi , σi ) ∈ L2(R3).

where m is the number of atoms in the chain.

Problem:

minimize
N∑

i=1

‖T (U(Zi ))− Yi‖L2

s.t. Zi satisfies (1) ∀i.
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Problem formulation

Structural assumption

Let us assume that the macromolecule of interest can be modelled as a
chain, or discrete curve.

The distance between consecutive (pseudo)atoms is constant. (1)

For instance a protein backbone with a single chain of amino-acid residues.

We use a Gaussian model to estimate the molecule density

Z := (z1, z2, . . . , zm) ∈ R3m 7−→ U(Z) :=
m∑

i=1

γi G(zi , σi ) ∈ L2(R3).

where m is the number of atoms in the chain.

This doesn’t work

Too many parameters to estimate: 3mN.

The images Yi are too noisy.

We are not using the relation between the different structures.
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Problem formulation

Relation between structures

Let us assume that we have access to the atomic model of a conformation of
the molecule Z0 ∈ R3m.

Any other structure Zi in the dataset can be obtained from Z0 as

Zi = (Ri ◦ Di )Z0

where

Ri is a rigid transformation, that we know from the pose estimation.

Di is a deformation of the structure, which preserves property (1), and
we don’t know.
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Problem formulation

For any point cloud Z = (z1, . . . , zm) ∈ R3m satisfying the discrete curve
condition (1) there exists δ > 0 and

(ẑ,T1,T2, . . . ,Tm−1) ∈ R3 × (S2)m−1

such that {
zj+1 = zj + δTj j ∈ {1, . . . ,m − 1}
with zj0 = ẑ ∈ R3

Any point cloud Z = (z1, . . . , zm) ∈ R3m can be represented by
(ẑ,T1,T2, . . . ,Tm−1).

Any translation can be written as

(ẑ,T1,T2, . . . ,Tm−1) −→ (ẑ + ∆z,T1,T2, . . . ,Tm−1)

What about rotations and deformations?
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Frenet-Serret formulas

Let x(·) ∈ C2([0, L];R3) be a smooth curve in R3 parametrized by its
arclength.

Then x(·) solves
x ′(s) = T (s) s ∈ [0, L]
F ′(s) = r(s)F (s) s ∈ [0, L]

with x(s0) = ẑ ∈ R3 and F (s0) = F̂ ∈ SO(3).

where

F (s) =

T (s)
N(s)
B(s)

 ∈ SO(3) F̂ =

 x ′(s0)
x ′′(s0)/‖x ′′(s0)‖
T (s0)× N(s0)


and

r(s) =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 ∈ so(3) for some (κ(·), τ(·)) : [0, L]→ R2.
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Frenet-Serret formulas

Let x(·) ∈ C2([0, L];R3) be a smooth curve in R3 parametrized by its
arclength.

Then x(·) can be represented by the initial condition

(ẑ, F̂ ) ∈ R3 × SO(3)

and the curvature and the torsion

κ : [0, L]→ R and τ : [0, L]→ R.

Rigid transformations of x(·) can be obtained by

(ẑ, F̂ ) 7−→ (ẑ + t ,RF̂ ) for some t ∈ R3 and R ∈ SO(3)

Any length-preserving deformation of x(·) of the curve can be obtained
by

(κ(·), τ(·)) 7−→ (κ(·) + ∆κ(·), τ(·) + ∆τ(·))

for some (∆κ(·),∆τ(·)) : [0, L]→ R2.
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Discrete Frenet-Serret Frames

Let Z = (z1, . . . , zm) ∈ R3m be a point cloud satisfying

‖zi+1 − zi‖ = δ > 0 ∀i ∈ {1, . . . ,m},

then 
zj+1 = zj + δTj j ∈ {1, . . . ,m − 1}
Fj+1 = RjFj j ∈ {1, . . . ,m − 2}
with zj0 = ẑ ∈ R3 and Fj0 = F̂ ∈ SO(3).

where

Fj =

Tj

Nj

Bj

 ∈ SO(3)

with
Tj =

zj+1 − zj

δ
Bj =

Tj × Tj+1

‖Tj × Tj+1‖
Nj =

Bj × Tj

‖Bj × Tj‖
.
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Problem formulation

Any Z = (z1, . . . , zm) ∈ R3m satisfying (1) can be written as
zj+1 = zj + δe3Fj j ∈ {1, . . . ,m − 1}
Fj+1 = RjFj j ∈ {1, . . . ,m − 2}
with zj0 = ẑ ∈ R3 and Fj0 = F̂ ∈ SO(3).

for some (ẑ, F̂ ) ∈ R3 × SO(3) and sequence of rotation matrices
{Rj}m−2

j=1 ∈ SO(3)m−2, that we parametrize by using the Euler angles

Rj = R(θj , ψj ) :=

cosψj cos θj cosψj sin θj − sinψj

− sin θj cos θj 0
sinψj cos θj sinψj sin θj cosψj


Parameter space

P := R3 × SO(3)× [−π, π]m−2 × [−π, π]m−2

(ẑ, F̂ ) ∈ R3 × SO(3) determines the pose of the particle;

(Θ,Ψ) ∈ [−π, π]m−2 × [−π, π]m−2 determines the conformation.

Carlos Esteve-Yagüe Spectral decomposition of atomic structures in heterogeneous cryo-EM



Spectral decomposition

Goal: Construct a map from the manifold of conformations to the dihedral
angles.

(Θ,Ψ) :M−→ [−π, π]m−2 × [−π, π]m−2

Approach:

Θ(m) := Θ0 +
K−1∑
k=0

akφk (m) and Ψ(m) := Ψ0 +
K−1∑
k=0

bkφk (m), for m ∈M,

where

φ0(·), φ1(·), φ3(·), . . . are the first eigenfunctions of the Laplace-Beltrami
operator onM.

The vectors Θ0 ∈ [−π, π]m−2 and Ψ0 ∈ [−π, π]m−2 are the rotation
angles of the given known conformation.
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Spectral decomposition

Goal: Construct a map from the manifold of conformations to the dihedral
angles.

(Θ,Ψ) :M−→ [−π, π]m−2 × [−π, π]m−2

Approach:

Θ(m) := Θ0 +
K−1∑
k=0

akφk (m) and Ψ(m) := Ψ0 +
K−1∑
k=0

bkφk (m), for m ∈M,

where

φ0(·), φ1(·), φ3(·), . . . are the first eigenfunctions of the Laplace-Beltrami
operator onM.

The vectors Θ0 ∈ [−π, π]m−2 and Ψ0 ∈ [−π, π]m−2 are the rotation
angles of the given known conformation.

Under the assumption thatM is a compact connected manifold, {φk (·)}∞k=0
form an orthonormal basis of L2(M).
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Spectral decomposition

Goal: Construct a map from the manifold of conformations to the dihedral
angles.

(Θ,Ψ) :M−→ [−π, π]m−2 × [−π, π]m−2

Approach:

Θ(m) := Θ0 +
K−1∑
k=0

akφk (m) and Ψ(m) := Ψ0 +
K−1∑
k=0

bkφk (m), for m ∈M,

where

φ0(·), φ1(·), φ3(·), . . . are the first eigenfunctions of the Laplace-Beltrami
operator onM.

The vectors Θ0 ∈ [−π, π]m−2 and Ψ0 ∈ [−π, π]m−2 are the rotation
angles of the given known conformation.

Using the eigenfunctions associated to the smallest eigenvalues allows us to
only capture low-frequency deformations.
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Spectral decomposition

Goal: Construct a map from the manifold of conformations to the dihedral
angles.

(Θ,Ψ) :M−→ [−π, π]m−2 × [−π, π]m−2

Approach:

Θ(m) := Θ0 +
K−1∑
k=0

akφk (m) and Ψ(m) := Ψ0 +
K−1∑
k=0

bkφk (m), for m ∈M,

where

φ0(·), φ1(·), φ3(·), . . . are the first eigenfunctions of the Laplace-Beltrami
operator onM.

The vectors Θ0 ∈ [−π, π]m−2 and Ψ0 ∈ [−π, π]m−2 are the rotation
angles of the given known conformation.

Prior knowledge about the rigidity of certain parts of the macromolecule
(secondary structures) may be used to set some of the coefficients (ak ,bk )
equal to zero.
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Approximated spectral decomposition

We need to estimate two elements:

The eigenfunctions φk (·) of the Laplace-Beltrami operator onM.

The coefficients ak ∈ Rm−2 and bk ∈ Rm−2 for all k = 0, 1, . . . ,K − 1.

Bad news: we do not know the manifoldM
We use a known technique in manifold learning, used in Moscovich et al. ,
Inverse problems, 2020.

We use the low-dimension representation of the conformation in each particle

{βi}n
i=1 ⊂ Rq , where n is the number of cryo-EM images.

to construct a symmetric weighted graph with n nodes and weights given by

wij := γ exp

(
−‖βi − βj‖2

2σ2

)
for all (i, j) ∈ {1, 2, . . . , n}2.
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Approximated spectral decomposition

Once we have the similarity matrix W ∈ (R+)n×n we construct the associated
normalized graph Laplacian

L := D−1/2(D −W )D−1/2

where D is the n × n diagonal matrix given by Dii =
∑n

j=1 Wij .

Let φ(0), φ(1), . . . ∈ Rn be the ordered eigenvectors of the Laplacian matrix L.

Known result about the graph Laplacian

LetM⊂ Rq be a connected compact manifold and for any n ∈ N, let {βi}n
i=1

be a sampling of a uniformly distributed random variable onM.
Then, for any k ≥ 0, the eigenvector φ(k) converges in probability to the k -th
eigenfunction φk (·) of a linear differential operator inM, i.e.

sup
i=1,...,n

|
√

nφ(k)
i − φk (βi )| → 0 almost surely as n→∞.

(see (von Luxburg, Belkin, Bousquet, 2004) and (Belkin, Niyogi, 2008)
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Approximated spectral decomposition

Once we have the similarity matrix W ∈ (R+)n×n we construct the associated
normalized graph Laplacian

L := D−1/2(D −W )D−1/2

where D is the n × n diagonal matrix given by Dii =
∑n

j=1 Wij .

Let φ(0), φ(1), . . . ∈ Rn be the ordered eigenvectors of the Laplacian matrix L.

Approximated spectral decomposition

Θi (A) = Θ0+
K−1∑
k=0

akφ
(k)
i = Θ0+AΦi and Ψi (B) = Ψ0+

K−1∑
k=0

bkφ
(k)
i = Ψ0+BΦi

where

A = [a0, a1, . . . , aK−1] ∈ R(m−2)×K and B = [b0,b1, . . . ,bK−1] ∈ R(m−2)×K

and the vectors Φi ∈ RK for i = 1, 2, . . . , n are given by

Φi = (φ
(0)
i , φ1

i , . . . , φ
(K−1)
i ) ∈ RK
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Tomographic reconstruction

We need to estimate two elements:

The eigenfunctions φk (·) of the Laplace-Beltrami operator onM.

The coefficients ak ∈ Rm−2 and bk ∈ Rm−2 for all k = 0, 1, . . . ,K − 1.

We formulate a minimisation problem in which we compare the atomic model
predicted for each particle with the cryo-EM images.

Recall that the atomic model can be represented by the parameters

(Θ,Ψ, ẑ, F̂ ) ∈ [−π, π]m−2 × [−π, π]m−2 × R3 × SO(3)

{(ẑi , F̂i )}n
i=1 ∈ (R3 × SO(3))n can be obtained from the pose estimation

of the particles.

Θi ∈ [−π, π]m−2 and Ψi ∈ [−π, π]m−2 are estimated as

Θi (A) = Θ0 + AΦi and Ψi (B) = Ψ0 + BΦi

with A ∈ R(m−2)×K and B ∈ R(m−2)×K are matrices to be estimated.

We need to estimate 2(m − 2)K parameters.
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Tomographic reconstruction

For every A ∈ R(m−2)×K and B ∈ R(m−2)×K we define

Γi (A,B) := Z(Θi (A),Ψi (B), ẑi , F̂i ) = [z1, z2, . . . , zm] ∈ R3m

where Z(Θ,Ψ, ẑ, F̂ ) is the solution to the discrete dynamical system
introduced above.

For any i = 1, 2, . . . , n, the estimated density of the i-th particle is given by

Ûi (A,B) =
∑

zj∈Γi (A,B)

γjG(zj , σj ).

Finally, we project apply the forward operator to the estimated densities

Ŷi (A,B) := CTF ◦ T (Ûi (A,B)

Carlos Esteve-Yagüe Spectral decomposition of atomic structures in heterogeneous cryo-EM



Tomographic reconstruction

The matrices of coefficients A and B are estimated by means of the following
minimisation problem:

[Â, B̂] = argmin
A,B

1
n

n∑
i=1

‖Ŷi (A,B)− Yi‖2
2.

where Ŷi (A,B) = F [Ûi (A,B)] is the cryo-EM forward operator applied to the
estimated electrostatic potential.

For each particle i ∈ {1, . . . , n}, the parameters (Θi ,Ψi ) ∈ [−π, π]2(m−2)

determining the conformation are then estimated as

Θi (Â) = Θ0 + ÂΦi and Ψi (B̂) = Ψ0 + B̂Φi .

We use SGD to approximate a solution.

We initialise the parameters A and B by setting them equal to zero, so
that the prediction of the atomic model is the same for all the particles
(the given known conformation).
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Numerical experiments
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2D structure

We consider a two-dimensional structure consisting of a discrete curve with
m = 149 points and inter-atomic distance δ = 4.

zj+1 = zj + δe2Fj j ∈ {1, . . . ,m − 1}
Fj+1 = R(θj )Fj j ∈ {1, . . . ,m − 2}
with zj0 = ẑ ∈ R2 and Fj0 = F̂ ∈ SO(2).

The structure consists of a flexible box and two moving arms.
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2D structure

Given information:
A known conformation

A cryo-EM dataset with 1D noisy tomographic projections: 4000 images

SNR =
182.63
2500

= 0.073.
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2D structure

In order to construct the graph Laplacian we use the low-resolution (64× 64)
2D images of the dataset.

We can therefore construct the graph Laplacian and compute the first
eigenvectors φ(0), φ(1), . . . , φ(K−1) ∈ R4000.

We now need to compute the coefficients in the matrix A

Θi (Â) = Θ0 + ÂΦi

here Θ0 are the rotation angles of the known conformation and Φi are i-th
component of the first K eigenvectors.

Carlos Esteve-Yagüe Spectral decomposition of atomic structures in heterogeneous cryo-EM



2D structure

We use SGD to estimate the matrices of parameter

[A,B] ∈
[
R(m−2)×K

]2
, initializing with [A,B] = [0, 0].

In this case we do estimate all the angles θj in the structure, even those
which are constant over the conformations.
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2D structure
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[A,B] ∈
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, initializing with [A,B] = [0, 0].

In this case we do estimate all the angles θj in the structure, even those
which are constant over the conformations.

Carlos Esteve-Yagüe Spectral decomposition of atomic structures in heterogeneous cryo-EM



2D structure

Using the knowledge about the length of the arms and the sides of the
box:

In this case we only need to estimate the angles θj which are not constant in
all the conformations. The rows in A corresponding to the other angles are
set to 0.
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3D structure

We consider a protein backbone with 214 C-α atoms. We use an MD
trajectory of the adenylate kinase with 102 frames.

We generated a dataset with 4000 particles randomly selected from the 104
frames, each one rotated by an element of SO(3) randomly selected.

The cryo-EM contains 4000 noisy tomographic projections of the particles.

SNR ≈ 0.01
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3D structure

In order to construct the graph Laplacian we use the low-resolution
(16× 16× 16) 3D volumes of the particles in the dataset.

We can therefore construct the graph Laplacian and compute the first
eigenvectors φ(0), φ(1), . . . , φ(K−1) ∈ R4000.

We now need to compute the coefficients in the matrices A and B

Θi (Â) = Θ0 + ÂΦi and Ψi (B̂) = Ψ0 + B̂Φi

here Θ0 and Ψ0 are the rotation angles of the known conformation (first
conformation in the molecular trajectory) and the vectors Φi are formed by
the i-th component of the first K eigenvectors.
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3D structure
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Conclusions and perspectives

Conclusions:
We propose a strategy to combine a low-dimension representation of the
conformations and prior knowledge about the structure to recover the
estimate the deformations of a given atomic structure.

In our approach we can exploit knowledge about secondary structures to
reduce the number of parameters to be estimated.

Numerical experiments show that the method works in toy examples.

Problems and future perspectives:
Further develop the method to be applicable to more realistic scenarios.

The conformation may affect the pose estimation.

Study the limitations of the method, since applying SGD over SO(3) may
converge to local minima.

Adapt the method to more complex structures (no necessarily a single
chain).
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