

Compositional and conformational variability in CryoEM and CryoET: structural biology in context

Steve Ludtke

NOTE: This talk makes extensive use of movies. The YouTube video is likely a better resource for the material.

Baylor College of Medicine Charles C. Bell Jr., Professor of Structural Biology Biochemistry and Molecular Biology Deputy Director, Advanced Technical Cores Director, CryoEM/CryoET Core

Baylor College of Medicine advanced technology CORES

Baylor College of Medicine

VERNA & MARRS MCLEAN DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

• NMR

- local structure, specific distances, local dynamics
- X-ray Crystallography
 - high resolution structures, often non-native
- CryoEM
 - intermediate high resolution structure, in-vitro flexibility
- CryoET + CryoFIB
 - low intermediate resolution structure, 3-D variability, cellular context
- Super-resolution Fluorescence (dynamic localization/co-localization)

• NMR

- · local structure, specific distances, local dynamics
- X-ray Crystallography
 - high resolution structures, often non-native

Alphafold -----

- CryoEM
 - intermediate high resolution structure, in-vitro flexibility
- CryoET + CryoFIB
 - low intermediate resolution structure, 3-D variability, cellular context
- Super-resolution Fluorescence (dynamic localization/co-localization)

• NMR

- · local structure, specific distances, local dynamics
- X-ray Crystallography
 - high resolution structures, often non-native

Alphafold —

CryoEM

ok... • it's pretty decent.

Positive and • intermediate - high resolution structure, in-vitro flexibility negative impacts?

- CryoET + CryoFIB
 - low intermediate resolution structure, 3-D variability, cellular context
- Super-resolution Fluorescence (dynamic localization/co-localization)

• NMR

- · local structure, specific distances, local dynamics
- X-ray Crystallography
 - high resolution structures, often non-native

Alphafold —

ok... • CryoEM → Still needed for info on complexes & flexibility/dynamics it's pretty decent.

Positive and • intermediate - high resolution structure, in-vitro flexibility

- negative impacts?
 - CryoET + CryoFIB -----> Still needed to observe native structures, observe native assembly, etc.
 - low intermediate resolution structure, 3-D variability, cellular context
 - Super-resolution Fluorescence (dynamic localization/co-localization)

EMAN2 Deep Learning Strategies

- Cellular Annotation/Particle Picking
 - Identify localized features in images or tomograms
 - Convolutional neural network
- Deep Learning Gaussian Mixture Model
 - Particle Based Conformational and Compositional Variability
 - Conventional dense neural network (similar to autoencoder)

Comprehensive structure and functional adaptations of the yeast nuclear pore complex

Christopher W. Akey,^{1,18,*} Digvijay Singh,^{2,18} Christna Ouch,^{1,3,18} Ignacia Echeverria,^{4,12,18} Ilona Nudelman,⁵ Joseph M. Varberg,⁹ Zulin Yu,⁹ Fei Fang,⁶ Yi Shi,⁶ Junjie Wang,⁷ Daniel Salzberg,⁴ Kangkang Song,³ Chen Xu,³ James C. Gumbart,⁸ Sergey Suslov,² Jay Unruh,⁹ Sue L. Jaspersen,^{9,10} Brian T. Chait,⁷ Andrej Sali,^{4,13,14} Javier Fernandez-Martinez,^{5,16,17,*} Steven J. Ludtke,^{11,*} Elizabeth Villa,^{2,15,*} and Michael P. Rout^{5,19,*} ¹Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA ²Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA ³Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA

⁴Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA ⁵Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA

⁶Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA

⁷Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA

⁸School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

⁹Stowers Institute for Medical Research, Kansas City, MO, USA

¹⁰Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA

¹¹Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA

¹²Department of Cellular and Molecular Pharmacology, San Francisco, San Francisco, CA 94158, USA

¹³Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA

¹⁴Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA

¹⁵Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA

¹⁶Present address: Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain

¹⁷Present address: Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain

¹⁸These authors contributed equally

¹⁹Lead contact

Cell. (2022) 185, 361-378.e25.

Single Particle CryoEM

7-11 Å resolution

ThermoFisher Aquilos 2 Cryo FIB/SEM with EasyLift

FIB = Focused Ion Beam SEM = Scanning Electron Microscope

Used for:

- cutting 100-500 nm cellular lamella
- tissue lift-out
- automatic slice-and-view
- Cryo-SEM imaging
- Platinum sputter coater
- Platinum GIS deposition
- Gallium FIB

To be purchased this year:

- iFLM (widefield fluorescence)*
- EM-ICE high pressure freezer

S. cerevisiae Nuclear Pore Complex ~52 MDa, ~30 unique Nups ~550 total proteins in complex

Digvijay Singh Villa Lab

500 nm

Subtomogram Averaging in EMAN2

Chen M, Bell JM, Shi X, Sun SY, Wang Z, Ludtke SJ. A complete data processing workflow for cryo-ET and subtomogram averaging. *Nature Methods*. 2019; 16(11) 1161-1168. PMC6858567.

+ recent developents

Courtesy J.M. Bell

-60° -45° -30°

Courtesy J.M. Bell

3D Fourier reconstruction

Courtesy J.M. Bell

6/20 Ludtke

S. cerevisiae Nuclear Pore Complex ~52 MDa, ~30 unique Nups ~550 total proteins in complex

Digvijay Singh Villa Lab

3 Orthogonal Views Traditional Classification (subtomogram)

		В	ack	to Si	ngle	Part	icle	Anal	ysis		
							and a second				
Fatty	Acid S	/nthase									

Single View CryoEM Average

150 Å

Fatty Acid Synthase, ~30 Å motion

150 Å

GMM Acknowledgements

Muyuan Chen

We thank the NIH for its support: R01GM080139.

Chen, M. and Ludtke, S. J., Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. (2021). *Nature Meth.* 18, 930-936.

Gaussian representation

Particle-projection comparison

Model projection

Particle-projection Fourier ring correlation (FRC)

Feedforward Neural Network

... we want to operate on 4k x 4k x 1k tomograms!

... and it's extremely inefficient (no translational equivalence)

Deep Learning

L17-Depleted 50S Ribosomal Assembly Intermediates (EMPIAR-10076) 18 submitted maps

Α 2D classification and stack cleaning 131,899 particles 3D classification and refinement B D 27,788 Unclassified particles Repeated Particles: Particles: Particles: Particles: Particles: 2D and 3D 2,018 (2%) 12,650 (10%) 26,195 (20%) 26,294 (20%) 36,954 (28%) classification Res: 3.7 Å Res: 6.5 Å Res: 3.7 Å Res: 4.0 Å Res: 4.5 Å and refinement Additional 3D sub-classification and refinement Particles: D2 6,696 (5%) Particles: Res: 4.5 Å 25,935 (20%) Particles: C2 Discarded Particles: Particles: 7,014 (5%) 7,345 (6%) 6,486 (5%) Res: 4.6 Å Res: 4.7 Å Res: 4.9 Å Particles: 1,853 (1%) Particles: Res: 7.9 Å 12,394 (10%) Res: 4.0 Å Particles: Side Particles: в CP R 5,343 (4%) 6,964 (5%) bL9 uL10 Res: 4.7 Å Res: 4.6 Å E2 Side Front 7 Å low-pass filtered crystal structure Particles: Particles: Front View 15,187 (12%) 6,542 (5%) Res: 4.2 Å Res: 4.5 Å E4 E3 **E5 Top View** C D Particles: Particles: Particles: 4,030 (3%) 6,373 (5%) 4,429 (3%) Res: 5.0 Å Res: 4.5 Å Res: 4.9 Å

Davis JH, Tan YZ, Carragher B, et al. Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell. 2016 Dec;167(6):1610-1622.e15. PMCID: PMC5145266.

Precatalytic Spliceosome (EMPIAR) 10180

327490 particles ~7 Å resolution

Plaschka, C., Lin, P.C. & Nagai, K. (2017) Structure of a pre-catalytic spliceosome. Nature, 546, 617-621.

IP3R Acknowledgements

Medical School UTHealth at Houston

Irina Serysheva's Lab:

Guizhen Fan Mariah Baker Alexander Seryshev Raj Sharma Venkata Mallampalli

Matthew Baker

University of Rochester (Rochester, NY)

David Yule's Lab:

Lara Terry Vikas Arige

Baylor College of Medicine (Houston)

<u>Steven Ludtke's Lab</u>: Muyuan Chen <u>Zhao Wang</u>

KU Leuven (Leuven, Belgium) Geert Bultynck's Lab:

Hristina Ivanova Ian de Ridder

UTHealth Cryo-EM Core Facility: uthealth.corefacilities.org

Supported by NIGMS, NINDS, NSF, CPRIT, AHA & Welch Foundation

Inositol 1,4,5 - Trisphosphate Receptors IP₃-gated Ca²⁺ Release Channels

- Expressed in virtually all eukaryotic cells
- Intracellular ion channels
- Response to many extracellular stimuli (hormones, growth factors, neurotransmitters, neurotrophins, odorants, light, and etc.)
- Ligand-gated ion channels: primary ligands -IP₃ & Ca²⁺
- Associate *in vivo* with multiple modulatory proteins (>100)

Slide courtesy of Irina Serysheva

Ca²⁺- Dependent Activation of IP₃RI

Bezprozvanny, Watras & Ehrlich, Nature 1991

Slide courtesy of Irina Serysheva

Intrinsically Dynamic IP₃R1 Structure

2022, under review

Slide courtesy of Irina Serysheva

Intrinsic flexibility of ARM2 domain

• Deep-leaning analysis revealed an extended-retracted motion of ARM2

2022, under review

Slide courtesy of Irina Serysheva

Problems

- 5 parameter Gaussian representation -> large RAM, limited model size
- Gradients on noisy data -> poor latent space accuracy
- Subtomogram averaging
 - 2-D or 3-D representation?
 - Per-particle tilt high noise levels
 - Requires large batch size (GPU RAM)

Deep Learning

Problems

- 5 parameter Gaussian representation -> large RAM, limited model size
- Gradients on noisy data -> poor latent space accuracy
- Subtomogram averaging
 - 2-D or 3-D representation? -> 2-D
 - Per-particle tilt high noise levels -> Subtilt series uses average gradient
 - Requires large batch size (GPU RAM) -> Solved with delta functions

Acknowledgements

Steve Ludtke

Zhao Wang

Beckman Foundation: 2021FIB-41 CPRIT Core Award: RP190602 NIH: R01GM080139

Core Staff

Sneka Raveendran

Isaac Forrester

Sana Qureshi

Robyn Leidel

also: Erik Anderson Phil Baldwin Zhili Yu Adam Fluty