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Small molecules and SNR

Common belief: Small molecules cannot be reconstructed using cryo-EM.

Why? Small molecular structures induce low SNR

EMPIAR 10028

4MDa

EMPIAR 10061

465 KDa

EMPIAR 10249

82KDa

Reasoning:

small molecules ⇒ low SNR ⇒ detection fails ⇒ reconstruction fails
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Can we estimate small molecules?

For example, Richard Henderson claimed that below ∼ 40 kDa, detection
(and thus recovery) is impossible [Henderson, ’95, ∼ 1250 citations].

Joachim Frank voices a similar observation in his 2017 Nobel Prize lecture.

But there is a gap: If reconstruction is possible without detection
(particle picking), then the impossibility of detection does not necessarily
translate into impossibility of reconstruction.

micrographs
particle
picking

reconstruction
algorithm

estimation directly
from the micrograph?
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Estimation theory perspective

Assume we represent the 3-D structure with L parameters and collect
N particle projections (observations).

Each particle is associated with 5 pose parameters: 3-D rotation and
2-D location.

If we aim to estimate the structure and the pose parameters (as in
older cryo-EM algorithms), the number of parameters is L+ 5N,
namely, increases linearly with the number of projections.

In this case, the existence of a consistent estimator is not guaranteed.

Examples:

▶ Neyman-Scott paradox

▶ The Cramer-Rao bound of multi-image alignment is proportional to the
noise level, and independent of the number of observations [Aguerrebere

et al., ’16]
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Estimation theory perspective

Solution: Marginalize over the pose (nuisance) parameters, and
estimate only the fixed number of L parameters describing the
structure. Maximum likelihood is consistent!

Note that current approaches in cryo-EM are hybrid: they marginalize
over the rotations, but estimate the locations. Overall, these methods
estimate 2N + L parameters and thus are not necessarily consistent.
In particular, they cannot work at very low SNR.

We will develop methods to marginalize over all pose parameters,
allowing estimation in extremely low SNR.
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Simplified model for cryo-EM (multi-target detection)

Problem: Multiple occurrences of x are embedded at random locations in
a noisy measurement y

Goal: Estimating x from y (the locations are nuisance variables)
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(c) σ = 2

Estimation in low SNR:

Autocorrelation analysis

Approximate expectation-maximization
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Autocorrelation analysis

Suppose that the distribution of y is parametrized by x . The goal is to
estimate x from y .

Recipe:
1 Derive the expected autocorrelations
2 Estimate the autocorrelations from the data
3 Solve the (polynomial) system of equations

a1y =
1

N

∑
i

y [i ] ≈ p1(x)

a2y [ℓ] =
1

N

∑
i

y [i ]y [i + ℓ] ≈ p2(x)

a3y [ℓ1, ℓ2] =
1

N

∑
i

y [i ]y [i + ℓ1]y [i + ℓ2] ≈ p3(x)

Properties: Simple, requires only one pass over the data, parallelizable,
consistent, not statistically efficient
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Autocorrelation analysis for multi-target detection
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If any two signals are separated by at least (L− 1) entries, then:

lim
N→∞

aqy = γaqx , q = 1, 2, 3, . . . ,

where γ ∈ [0, 1] is a density parameter.

Theorem (informal)

The signal x is determined uniquely from a3y . Namely, the signal x is
determined, in any SNR level, without intermediate detection, if N ≫ σ6.
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Numerical experiments
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Application to cryo-EM

We aim at estimating the 3-D volume directly
from the micrograph.

An L-bandlimited 3-D volume is described by ∼ L3 parameters.

We scan the micrographs with a sliding window of size L× L.

We compute the first three autocorrelations of each window with
respect to the center point and average over all windows.
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Application to cryo-EM

The autocorrelations of the micrographs converge to scaled versions
of the volume’s autocorrelations:

lim
N→∞

a1y = γ
〈
a1Pω(x)

〉
ω∈SO(3)

,

lim
N→∞

a2y [ℓ1, ℓ2] = γ
〈
a2Pω(x)

[ℓ1, ℓ2]
〉
ω∈SO(3)

,

lim
N→∞

a3y [ℓ1, ℓ2; ℓ3, ℓ4] = γ
〈
a3Pω(x)

[ℓ1, ℓ2; ℓ3, ℓ4]
〉
ω∈SO(3)

.

No detection is required, and thus small molecular are (in principle)
within reach.

The third-order autocorrelation contains ∼ L3 independent cubic
equations (rather than L4) that can be related to the ∼ L3

coefficients of the volume.
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Application to cryo-EM

We estimate the volume’s coefficients and γ by least-squares.

All technical details appear in:

“Toward single particle reconstruction without particle picking:
Breaking the detection limit”. T. Bendory, N. Boumal, W. Leeb, E.
Levin, A. Singer. Available at arXiv preprint arXiv:1810.00226.

Unfortunately, the mapping is highly ill-conditioned, preventing stable
recovery from noisy data.
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Recovery from clean autocorrelations

estimated structure (yellow), low-resolution structure (blue), high-resolution structure (purple)

TRPV1, the low-resolution molecule (L = 5) was down-sampled from 1923 to 203 pixels
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Perspective

A possible solution to the ill-conditioning: Prior! (Future work)

Further ingredients can be readily included in the model, such as CTF
and densely packed particle images [Kreymer and Bendory, ’22].

A recent paper [Lan et al., ’22] applied the technique to a random
conical tilt reconstruction (averaging only over in-plane rotations)
demonstrating improved numerical results.

The method is highly efficient, and thus, perhaps, it can be used for
additional tasks when the SNR is very low. For example, to generate
templates for particle picking.

Perhaps we should consider an alternative computational method?
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Expectation-maximization (EM)

EM is a general algorithm to find a local maximum of a likelihood
function (or posterior distribution) with nuisance variables.

I will focus on models of the form:

yi = Lθi x + εi , εi ∼ N (0, σ2I ), i = 1, . . . ,N,

where Lθ is a linear operator acting on the signal x , parameterized by
a random variable θ ∈ Θ.

The goal is to estimate x from y := y1, . . . , yN , where θ1, . . . , θN are
the nuisance variables.

The likelihood function is given by

p(y; x) =
1

(2πσ2)(M/2)

N∏
i=1

∑
θℓ∈Θ

p(θℓ)e
− 1

2σ2 ∥yi−Lθℓx∥
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Expectation-maximization (EM)

We first write the Q function:

Q(x |xt) = Eθ|y,xt {log p(x |y, θ)} ∝
N∑
i=1

∑
θℓ∈Θ

wi ,ℓ∥yi − Lθℓx∥
2,

where

wi ,ℓ = p(θ = θℓ|yi , xt) ∝ e−
1

2σ2 ∥yi−Lθℓxt∥.

We apply two steps iteratively:

▶ In the E-step, we compute the weights wi,ℓ.

▶ In the M-step, we update xt+1 = argmaxQ(x |xt) by solving a linear
system of equations.
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EM for cryo-EM

EM was first introduced to cryo-EM by Fred Sigworth in 1998, and is
by now the most popular algorithm for structure refinement.

The standard strategy is to first locate and extract the particle
projections, and then apply EM, where Θ is the space of 3-D
rotations and small 2-D translations.

However, if the molecular structure is small, the SNR drops, and we
cannot locate the particle images reliably. Thus, this paradigm fails.

Can we apply EM for structure recovery directly from the micrograph?
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Approximate EM for multi-target detection

Recall the multi target detection model, where multiple copies of a
target signal occur at unknown locations in a long noisy measurement.
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(c) σ = 2

Assuming we know the number of signal occurrences K , the E-step
requires computing probabilities for all ∼

(N
K

)
possible configurations.

Therefore, EM is intractable.
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Approximate EM for multi-target detection

In the approximate EM, we divide the measurement into N/L
non-overlapping patches, and assume they are independent.

Each patch may contain a full signal, no signal, or a part of the signal.
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Approximate EM for multi-target detection

We wish to maximize the approximate likelihood function
∏

i p(yi |x)
where

yi = CRθiZx + εi

patchi = cropping ◦ circular shifti ◦ padding ◦ x + εi

Shift by 25 entries:
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Approximate EM for multi-target detection

We then apply EM to the model

yi = CRθiZx + εi = Lθi x + εi ,

assuming all observations are independent, where the circular shifts
are the nuisance variables.

An example from [Kreymer et al., ’22]:

The statistical model can be extended to account for densely packed
signals, where a patch may contain two signals [Lan et al., ’20].
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Approximate EM for cryo-EM

We model a micrograph by

I[ℓ⃗] =
∑
i

Pωi (x)[ℓ⃗− ℓ⃗i ] + ε[ℓ⃗],

where Pωi (x) denotes the tomographic projection obtained from
viewing direction ωi ∈ SO(3).

We assume that the Fourier transform of the volume x̂ may be finitely
expanded by the Fourier-Bessel expansion

x̂(ck , θ, φ) =
L∑

ℓ=0

ℓ∑
m=−ℓ

S(ℓ)∑
s=1

xℓ,m,sY
m
ℓ (θ, φ)jℓ,s(k), k ≤ 1,

where c is the bandlimit, Ym
ℓ are spherical harmonics, and jℓ,s is the

normalized spherical Bessel function.
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Approximate EM for cryo-EM

Then, each projection image is equal to

Pω(x̂)(ck , φ) =
∑

ℓ,m,m′,s

xℓ,m,sD
ℓ
m′,m(ω)Y

m′
ℓ

(π
2
, φ

)
jℓ,s(k),

Now we can easily modify the principles of the 1-D approximate EM
to 2-D.

In particular, each 2-D patch is modeled as

yi = CRℓiZPωi (x) + εi

All technical details appear in a manuscript in preparation by S.
Kreymer, A. Singer, and T. Bendory.
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Numerical results

Volumes were downsampled to 11× 11× 11 voxels, and expanded to
L = 10.

SNR=3.5 (currently working on data sets with lower SNR levels)

∼ 120000 projections

∼ 30 batch EM iterations
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Shepp-Logan

Ground truth in gray, estimate in yellow
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TRPV1

Ground truth in gray, estimate in yellow
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Plasmodium falciparum 80S ribosome

Ground truth in gray, estimate in yellow
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Bovine Pancreatic Trypsin Inhibitor (BPTI) mutant

Ground truth in gray, estimate in yellow
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Conclusions and future work

We have discussed two methods to recover molecular structures
directly from micrographs. We hope it will pave the way to recover
small molecular structures using cryo-EM.

Autocorrelation analysis is computationally efficient but (currently)
provides low-resolution estimates. Next step: designing priors.

Approximate expectation-maximization provides high resolution
recoveries for moderate SNR levels. Next steps: acceleration and
designing priors.

Theoretical analysis: Sample complexity analysis and analysis of the
EM iterations.

Alternative computational schemes such as CryoGAN [Gupta et al., ’21]

and dynamic programming.
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Thanks for your attention!

Tamir Bendory Reconstruction of small molecular structures November 16, 2022 37 / 37


	Introduction
	Autocorrelation analysis
	Approximate expectation-maximization

