
An introduction to variational image processing

Benjamin Berkels

IPAM Long Program on Computational Microscopy
Institute for Pure and Applied Mathematics, UCLA, September 16th, 2022

Image modalities

0 50 100 150

20

40

60

0 50 100 150

0

20

40

60

80

signals

1

Image modalities

digital photographs

1

Image modalities

videos

1

Image modalities

medical modalities (MR / CT / PET)

1

Image modalities

volumetric images

1

Image modalities

electron microscopy (TEM / STEM)

1

Image modalities

simulated / computer generated images

1

Image modalities

��

��

��

��

��

���

���

���

�� ���� ����� ����� ����� �����

typical EELS spectrum (log scale)

Electron energy loss spectroscopy (EELS)

1

Image modalities

0 512 1024 1536 2047 (channel)

Electron energy loss spectroscopy (EELS)

1

Fundamental image processing tasks

Image denoising

Given: Noisy image f = f0 + n.

Task: Recover f0.

2

Image deblurring

Given: A blurred f = Af0.

Task: Recover f0.

3

Image segmentation

Given: Image f showing an object.

Task: Recover the object (as region).

4

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT

What is a suitable notion of “∼”?

⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT

What is a suitable notion of “∼”?

⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”?

⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”?

⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”?

⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ?

⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically?

⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Image registration

Given: Two images gT (template) and gR (reference).

Task: Find a deformation ϕ : Ω → Ω (here Ω = [0, 1]2) such that

gT ◦ ϕ ∼ gR.

gR gT gR/gT ◦ ϕ

What is a suitable notion of “∼”? ⇒ Similarity measure

How to represent ϕ? ⇒ Regularization or parametrization

How to compute the deformation ϕ numerically? ⇒ Optimization

5

Introductory text books on image registration:
[Modersitzki, ’04][Modersitzki, ’09]

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

gR gT

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR

⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth

⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =

1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx

+
λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

Variational approaches - Image registration

Idea to approach a wide range of problems

rephrase task as conditions on the solution

find a function measuring how well the conditions are fulfilled

Example: Register two images gT, gR with comparable gray values.

Conditions on the non-parametric, non-rigid deformation ϕ:

gT ◦ ϕ ∼ gR ⇒ gT(ϕ(x)) ≈ gR(x) for all pixels x

ϕ should be smooth ⇒ D(ϕ− id) is mostly small

E[ϕ] =
1

2

∫
Ω
|gT(ϕ(x))− gR(x)|2 dx +

λ

2

∫
Ω
∥Dϕ(x)− 11∥2 dx

= 1
2 ∥A[ϕ]− gR∥2L2 + λ

2 ∥Dϕ− 11∥2L2

⇒ gT and gR are registered by minimizing E.

Structure “D[ϕ] + λR[ϕ]” typical for registration (and inverse problems).

Note: Competing conditions are balanced by weights (like λ in E)

6

A simple registration result

gR gT

gT ◦ ϕ ϕ

7

Variational approaches - Piecewise constant segmentation

g

O, c1, c2

Given an image g, we search for a piecewise constant segmentation, i.e.
two gray values c1, c2 and a region O. A valid segmentation minimizes

E[O, c1, c2] =
∫
O
(g(x)− c1)

2 dx +

∫
Ω\O

(g(x)− c2)
2 dx +ν Per(O).

(Piecewise constant binary Mumford-Shah model)

8

Variational approaches - Piecewise constant segmentation

g O, c1, c2

Given an image g, we search for a piecewise constant segmentation, i.e.
two gray values c1, c2 and a region O.

A valid segmentation minimizes

E[O, c1, c2] =
∫
O
(g(x)− c1)

2 dx +

∫
Ω\O

(g(x)− c2)
2 dx +ν Per(O).

(Piecewise constant binary Mumford-Shah model)

8

Variational approaches - Piecewise constant segmentation

g O, c1, c2

Given an image g, we search for a piecewise constant segmentation, i.e.
two gray values c1, c2 and a region O. A valid segmentation minimizes

E[O, c1, c2] =
∫
O
(g(x)− c1)

2 dx +

∫
Ω\O

(g(x)− c2)
2 dx +ν Per(O).

(Piecewise constant binary Mumford-Shah model)

8

Variational approaches - Denoising and deblurring

Denoising

Given a noise image f , i.e. f = f0 + n, find f0 by minimizing

J [u] =

∫
Ω
(u− f)2 dx︸ ︷︷ ︸
data term

+λ

∫
Ω
∥∇u(x)∥ dx︸ ︷︷ ︸
regularizer

(Rudin-Osher-Fatemi)

Deconvolution/Deblurring

Given a blurry image/signal f , i.e. f = Af0, find f0 by minimizing

J [u] =

∫
Ω
(Au− f)2 dx +λ

∫
Ω
∥∇u(x)∥dx .

9

Variational approaches - Denoising and deblurring

Denoising

Given a noise image f , i.e. f = f0 + n, find f0 by minimizing

J [u] =

∫
Ω
(u− f)2 dx︸ ︷︷ ︸
data term

+λ

∫
Ω
∥∇u(x)∥ dx︸ ︷︷ ︸
regularizer

(Rudin-Osher-Fatemi)

Deconvolution/Deblurring

Given a blurry image/signal f , i.e. f = Af0, find f0 by minimizing

J [u] =

∫
Ω
(Au− f)2 dx +λ

∫
Ω
∥∇u(x)∥ dx .

9

General task

Given: Normed vector space (X, ∥·∥),M ⊂ X, J :M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

Here,

J is called objective functional,

M is the admissible set.

Note: In the following, vector space always means real vector space.

structure is very similar to classical optimization,

but dim(X) = ∞ is possible, e.g. if X is a function space.

Central questions

Existence of minimizers? dim(X) = ∞ has large implications.

Characterization of minimizers? (necessary/sufficient conditions)

How can they be efficiently computed in practice?

10

General task

Given: Normed vector space (X, ∥·∥),M ⊂ X, J :M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

Here,

J is called objective functional,

M is the admissible set.

Note: In the following, vector space always means real vector space.

structure is very similar to classical optimization,

but dim(X) = ∞ is possible, e.g. if X is a function space.

Central questions

Existence of minimizers? dim(X) = ∞ has large implications.

Characterization of minimizers? (necessary/sufficient conditions)

How can they be efficiently computed in practice?

10

General task

Given: Normed vector space (X, ∥·∥),M ⊂ X, J :M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

Here,

J is called objective functional,

M is the admissible set.

Note: In the following, vector space always means real vector space.

structure is very similar to classical optimization,

but dim(X) = ∞ is possible, e.g. if X is a function space.

Central questions

Existence of minimizers? dim(X) = ∞ has large implications.

Characterization of minimizers? (necessary/sufficient conditions)

How can they be efficiently computed in practice?

10

General task

Given: Normed vector space (X, ∥·∥),M ⊂ X, J :M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

Here,

J is called objective functional,

M is the admissible set.

Note: In the following, vector space always means real vector space.

structure is very similar to classical optimization,

but dim(X) = ∞ is possible, e.g. if X is a function space.

Central questions

Existence of minimizers? dim(X) = ∞ has large implications.

Characterization of minimizers? (necessary/sufficient conditions)

How can they be efficiently computed in practice?

10

General task

Given: Normed vector space (X, ∥·∥),M ⊂ X, J :M → R,
Find: y∗ ∈M such that J [y∗] ≤ J [y] for all y ∈M.

Here,

J is called objective functional,

M is the admissible set.

Note: In the following, vector space always means real vector space.

structure is very similar to classical optimization,

but dim(X) = ∞ is possible, e.g. if X is a function space.

Central questions

Existence of minimizers? dim(X) = ∞ has large implications.

Characterization of minimizers? (necessary/sufficient conditions)

How can they be efficiently computed in practice?

10

Variational image registration

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Non-parametric deformations

Minimization with respect to a deformation ϕ is highly ill-posed:

solution not unique

small input changes can lead to large output changes

obtained deformation could be discontinuous

Only some of these problems are resolved by the regularization.

For instance, proper regularization guarantees existence of minimizers.

Still, a sophisticated minimization approach is necessary:

multilevel strategy

regularized gradient descent (gradient flow)

step size control (e. g. Armijo rule)

11

Multilevel minimization

hierarchy of nested meshes C1 ⊂ C2 ⊂ C3 ⊂ . . .

solve the problem on a coarse starting level l

prolongate the result to level l + 1

solve on level l + 1 with the prolongated result as initial guess

iterate till reaching the finest level

12

Multilevel minimization

hierarchy of nested meshes C1 ⊂ C2 ⊂ C3 ⊂ . . .

solve the problem on a coarse starting level l

prolongate the result to level l + 1

solve on level l + 1 with the prolongated result as initial guess

iterate till reaching the finest level

12

Multilevel minimization

hierarchy of nested meshes C1 ⊂ C2 ⊂ C3 ⊂ . . .

solve the problem on a coarse starting level l

prolongate the result to level l + 1

solve on level l + 1 with the prolongated result as initial guess

iterate till reaching the finest level

12

Multilevel minimization

hierarchy of nested meshes C1 ⊂ C2 ⊂ C3 ⊂ . . .

solve the problem on a coarse starting level l

prolongate the result to level l + 1

solve on level l + 1 with the prolongated result as initial guess

iterate till reaching the finest level

12

Multilevel minimization

hierarchy of nested meshes C1 ⊂ C2 ⊂ C3 ⊂ . . .

solve the problem on a coarse starting level l

prolongate the result to level l + 1

solve on level l + 1 with the prolongated result as initial guess

iterate till reaching the finest level

12

Multilevel minimization

gR

gT

gT ◦ ϕ

l 4 5 6 7

12

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0]+

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0) + o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0)︸ ︷︷ ︸
Euclidean inner product

+ o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0)︸ ︷︷ ︸
Euclidean inner product

+ o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0)︸ ︷︷ ︸
Euclidean inner product

+ o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0)︸ ︷︷ ︸
Euclidean inner product

+ o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties. We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradE[ϕ]

This evolution is attracted by the nearest local minimizer.

Recall: The gradient is the best linear approximation, i. e.

E[ϕ] = E[ϕ0] + gradE[ϕ0] · (ϕ− ϕ0)︸ ︷︷ ︸
Euclidean inner product

+ o(∥ϕ− ϕ0∥).

⇒ The gradient descent perceives distance in the Euclidean sense.

We can define a gradient for any inner product g via

E[ϕ] = E[ϕ0] + g(gradg E[ϕ0], (ϕ− ϕ0)) + o(∥ϕ− ϕ0∥g).

⇒ Changing the inner product changes which minimizer is nearest.

⇒ Use an inner product favoring desired solution properties.

We choose

the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

Denoting the inner product representation by A, we get

∂tϕ = −A−1DE[ϕ]

time discrete: ϕk+1 = ϕk − τA−1DE[ϕk].

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

Denoting the inner product representation by A, we get

∂tϕ = −A−1DE[ϕ]

time discrete: ϕk+1 = ϕk − τA−1DE[ϕk].

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

Denoting the inner product representation by A, we get

∂tϕ = −A−1DE[ϕ]

time discrete: ϕk+1 = ϕk − τA−1DE[ϕk].

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

Denoting the inner product representation by A, we get

∂tϕ = −A−1DE[ϕ]

time discrete: ϕk+1 = ϕk − τA−1DE[ϕk].

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Gradient flows

Idea: Minimize E by going in direction of steepest descent:

∂tϕ = − gradg E[ϕ]

Denoting the inner product representation by A, we get

∂tϕ = −A−1DE[ϕ]

time discrete: ϕk+1 = ϕk − τA−1DE[ϕk].

We choose the inner product to be the discrete counterpart of

g(v, w) =

∫
Ω
vw dx +σ2

2

∫
Ω
∇v · ∇w dx

⇒ A−1“=” one implicit heat equation time step with step size σ2

2 .

⇒ A−1 is regularizing.

13

Step size control with the Armijo rule

Finding a suitable step size is a 1D optimization problem:

f : R → R, t 7→ E[ϕ+ td]

Armijo condition

f(τ)− f(0)

τf ′(0)
=

secant slope

tangent slope
≥ σ ∈ (0, 1)

14

High precision analysis of image series
from electron microscopy

joint work with:

P. Binev, D. A. Blom, R. Sharpley, T. Vogt, W. Dahmen
(University of SC), N. Mevenkamp (RWTH, now at Zeiss)
P. Voyles (University of Wisconsin), A. Yankovich (Chalmers)

Scanning transmission electron microscopy

Incident Electron Beam
(Rastering Probe)

Nanoprobe
(0.1-1.0 nm)

Specimen
(thickness: 10-50 nm)

High-Angle Annular
Dark-Field Detector

Contrast ~ Z2

Raster
(e.g. 256x256 px)

Digital STEM
image

quantization

15

Scanning transmission electron microscopy (cont.)

Gallium-Nitrogen lattice at 20.5Mx magnification

Distortions arise from environmental and instrumental disturbances

16

Scanning transmission electron microscopy (cont.)

Close-up reveals horizontal distortions and noise

Distortions arise from environmental and instrumental disturbances

16

Scanning transmission electron microscopy (cont.)

Close-up reveals horizontal distortions and noise

Distortions arise from environmental and instrumental disturbances

16

STEM image series of silicon (112)

Challenges

individual frames are very noisy

large movement of the sample during the series acquisition

17

STEM image series of silicon (112)

Challenges

individual frames are very noisy

large movement of the sample during the series acquisition

17

Normalized cross-correlation

Registration of noisy images requires a robust distance measure.

Interpretation

NCC[f, g] = (f̃ , g̃)L2 where f̃ := f−f

∥f−f∥ and g̃ := g−g
∥g−g∥

Thus, −1 ≤ NCC[f, g] ≤ 1 and

NCC[f, g] = 1 ⇔ f̃ = g̃ a. e.

⇔ f = ag + b with a > 0 and b ∈ R.

Data functional ENCC[ϕ] = −NCC[gR, gT ◦ ϕ]

18

Normalized cross-correlation

Registration of noisy images requires a robust distance measure.

NCC[f, g] =
1

|Ω|

∫
Ω

(
f − f

)
σf

(g − g)

σg
dx ,

where

f = 1
|Ω|
∫
Ω f dx (mean value)

σf =
√

1
|Ω|
∫
Ω

(
f − f

)2
dx . (standard deviation)

Interpretation

NCC[f, g] = (f̃ , g̃)L2 where f̃ := f−f

∥f−f∥ and g̃ := g−g
∥g−g∥

Thus, −1 ≤ NCC[f, g] ≤ 1 and

NCC[f, g] = 1 ⇔ f̃ = g̃ a. e.

⇔ f = ag + b with a > 0 and b ∈ R.

Data functional ENCC[ϕ] = −NCC[gR, gT ◦ ϕ]

18

Normalized cross-correlation

Registration of noisy images requires a robust distance measure.

NCC[f, g] =
1

|Ω|

∫
Ω

(
f − f

)
σf

(g − g)

σg
dx ,

where

f = 1
|Ω|
∫
Ω f dx (mean value)

σf =
√

1
|Ω|
∫
Ω

(
f − f

)2
dx . (standard deviation)

Interpretation

NCC[f, g] = (f̃ , g̃)L2 where f̃ := f−f

∥f−f∥ and g̃ := g−g
∥g−g∥

Thus, −1 ≤ NCC[f, g] ≤ 1 and

NCC[f, g] = 1 ⇔ f̃ = g̃ a. e.

⇔ f = ag + b with a > 0 and b ∈ R.

Data functional ENCC[ϕ] = −NCC[gR, gT ◦ ϕ]

18

Normalized cross-correlation

Registration of noisy images requires a robust distance measure.

NCC[f, g] =
1

|Ω|

∫
Ω

(
f − f

)
σf

(g − g)

σg
dx ,

where

f = 1
|Ω|
∫
Ω f dx (mean value)

σf =
√

1
|Ω|
∫
Ω

(
f − f

)2
dx . (standard deviation)

Interpretation

NCC[f, g] = (f̃ , g̃)L2 where f̃ := f−f

∥f−f∥ and g̃ := g−g
∥g−g∥

Thus, −1 ≤ NCC[f, g] ≤ 1 and

NCC[f, g] = 1 ⇔ f̃ = g̃ a. e.

⇔ f = ag + b with a > 0 and b ∈ R.

Data functional ENCC[ϕ] = −NCC[gR, gT ◦ ϕ]

18

Normalized cross-correlation

Registration of noisy images requires a robust distance measure.

NCC[f, g] =
1

|Ω|

∫
Ω

(
f − f

)
σf

(g − g)

σg
dx ,

where

f = 1
|Ω|
∫
Ω f dx (mean value)

σf =
√

1
|Ω|
∫
Ω

(
f − f

)2
dx . (standard deviation)

Interpretation

NCC[f, g] = (f̃ , g̃)L2 where f̃ := f−f

∥f−f∥ and g̃ := g−g
∥g−g∥

Thus, −1 ≤ NCC[f, g] ≤ 1 and

NCC[f, g] = 1 ⇔ f̃ = g̃ a. e.

⇔ f = ag + b with a > 0 and b ∈ R.

Data functional ENCC[ϕ] = −NCC[gR, gT ◦ ϕ]
18

Image reconstruction from an image series

Energy for joint registration and reconstruction

E[f, ϕ1, . . . , ϕn] =

n∑
i=1

(
−NCC[f, fi ◦ ϕi] +

λ

2

∫
Ω
∥Dϕi − 11∥2 dx

)
[B., Binev, Blom, Dahmen, Sharpley, Vogt Ultramicroscopy ’14]

Theorem Let Ω be a bounded domain and f1, . . . , fn ∈ C(Rd) bounded.
Then, a minimizer of

E : L2(Ω)×Mn → R
exists, where

M :=
{
ϕ ∈ H1,2(Ω,Rd) : ∥∥ϕ− id∥2∥L∞ ≤ diam(Ω)

}
.

Numerical minimization strategy

initialize f with f1, ϕ1 with id and ϕi, i > 2, with ϕi,1 (see next slide)

minimize alternatingly with respect to f, ϕ1, . . . , ϕn

Note This strategy is biased to f1. [B., Liebscher Ultramic. ’19]

19

Image reconstruction from an image series

Energy for joint registration and reconstruction

E[f, ϕ1, . . . , ϕn] =

n∑
i=1

(
−NCC[f, fi ◦ ϕi] +

λ

2

∫
Ω
∥Dϕi − 11∥2 dx

)
[B., Binev, Blom, Dahmen, Sharpley, Vogt Ultramicroscopy ’14]

Theorem Let Ω be a bounded domain and f1, . . . , fn ∈ C(Rd) bounded.
Then, a minimizer of

E : L2(Ω)×Mn → R
exists, where

M :=
{
ϕ ∈ H1,2(Ω,Rd) : ∥∥ϕ− id∥2∥L∞ ≤ diam(Ω)

}
.

Numerical minimization strategy

initialize f with f1, ϕ1 with id and ϕi, i > 2, with ϕi,1 (see next slide)

minimize alternatingly with respect to f, ϕ1, . . . , ϕn

Note This strategy is biased to f1. [B., Liebscher Ultramic. ’19]

19

Image reconstruction from an image series

Energy for joint registration and reconstruction

E[f, ϕ1, . . . , ϕn] =

n∑
i=1

(
−NCC[f, fi ◦ ϕi] +

λ

2

∫
Ω
∥Dϕi − 11∥2 dx

)
[B., Binev, Blom, Dahmen, Sharpley, Vogt Ultramicroscopy ’14]

Theorem Let Ω be a bounded domain and f1, . . . , fn ∈ C(Rd) bounded.
Then, a minimizer of

E : L2(Ω)×Mn → R
exists, where

M :=
{
ϕ ∈ H1,2(Ω,Rd) : ∥∥ϕ− id∥2∥L∞ ≤ diam(Ω)

}
.

Numerical minimization strategy

initialize f with f1, ϕ1 with id and ϕi, i > 2, with ϕi,1 (see next slide)

minimize alternatingly with respect to f, ϕ1, . . . , ϕn

Note This strategy is biased to f1. [B., Liebscher Ultramic. ’19]

19

Image reconstruction from an image series

Energy for joint registration and reconstruction

E[f, ϕ1, . . . , ϕn] =

n∑
i=1

(
−NCC[f, fi ◦ ϕi] +

λ

2

∫
Ω
∥Dϕi − 11∥2 dx

)
[B., Binev, Blom, Dahmen, Sharpley, Vogt Ultramicroscopy ’14]

Theorem Let Ω be a bounded domain and f1, . . . , fn ∈ C(Rd) bounded.
Then, a minimizer of

E : L2(Ω)×Mn → R
exists, where

M :=
{
ϕ ∈ H1,2(Ω,Rd) : ∥∥ϕ− id∥2∥L∞ ≤ diam(Ω)

}
.

Numerical minimization strategy

initialize f with f1, ϕ1 with id and ϕi, i > 2, with ϕi,1 (see next slide)

minimize alternatingly with respect to f, ϕ1, . . . , ϕn

Note This strategy is biased to f1. [B., Liebscher Ultramic. ’19]

19

Registering long image series

Strategy

f1 f2 f3 f4 f5

ϕ5,1

ϕ2,1 ϕ3,2 ϕ4,3 ϕ5,4

ϕ4,1ϕ3,1

compute ϕi+1,i for i = 1, . . . , n− 1 (initial guess id)

compute ϕ3,1 (initial guess ϕ3,2 ◦ ϕ2,1)
compute ϕ4,1 (initial guess ϕ4,3 ◦ ϕ3,1)
· · ·
compute ϕn,1 (initial guess ϕn,n−1 ◦ ϕn−1,1)

20

Registering long image series

Strategy

f1 f2 f3 f4 f5

ϕ5,1

ϕ2,1 ϕ3,2 ϕ4,3 ϕ5,4

ϕ4,1ϕ3,1

compute ϕi+1,i for i = 1, . . . , n− 1 (initial guess id)

compute ϕ3,1 (initial guess ϕ3,2 ◦ ϕ2,1)
compute ϕ4,1 (initial guess ϕ4,3 ◦ ϕ3,1)
· · ·
compute ϕn,1 (initial guess ϕn,n−1 ◦ ϕn−1,1)

20

Non-rigid registration – Aligning a series

initial data registered data

Silicon (112), magnification 82Mx, dwell time 3.2µs per pixel

21

Non-rigid registration – Reconstruction from 512 frames

f1 reconstruction #samples

Silicon (112), magnification 82Mx, dwell time 3.2µs

22

Non-rigid registration – Reconstruction from 512 frames

Silicon (112), magnification 82Mx, dwell time 3.2µs

22

Non-rigid registration – Reconstruction from 512 frames

f1 reconstruction #samples

GaN [11-20], magnification 29Mx, dwell time 12µs

How to evaluate the quality of the reconstruction? Ground truth?

23

Non-rigid registration – Reconstruction from 512 frames

f1 reconstruction #samples

GaN [11-20], magnification 29Mx, dwell time 12µs

How to evaluate the quality of the reconstruction? Ground truth?

23

Results – Precision analysis on GaN [11-20]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Results – Precision analysis on GaN [11-20]

detect atom centers

compute marked x- and y-distances
for all available atom pairs

compute standard deviation of these distances
(separately for x and y)

in the context of electron microscopy, this
standard deviation is called precision

The attained precision for GaN [11-20] (pixel size 21pm) is:

x-precision = 0.74pm

y-precision = 0.85pm

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

Before best reported precision from STEM series was ∼ 5pm.
[Kimoto et al. Ultramicr. ’10]

Precision achievable in a single STEM image typically ∼ 15pm.
[Schmid et al. Micron ’12]

24

Non-rigid registration - Analysis of a Pt nanocatalyst

High precision allows to analyze defects in the crystal lattice:

500 pm

500 pm

Positions at the nanoparticle corner differ from the regular lattice.

High signal-to-noise ratio allows to estimate the 3D particle structure.

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

25

Non-rigid registration - Analysis of a Pt nanocatalyst

High precision allows to analyze defects in the crystal lattice:

500 pm

500 pm

Positions at the nanoparticle corner differ from the regular lattice.

High signal-to-noise ratio allows to estimate the 3D particle structure.

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

25

Non-rigid registration - Analysis of a Pt nanocatalyst

High precision allows to analyze defects in the crystal lattice:

500 pm

500 pm

Positions at the nanoparticle corner differ from the regular lattice.

High signal-to-noise ratio allows to estimate the 3D particle structure.

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

25

Non-rigid registration - Analysis of a Pt nanocatalyst

High precision allows to analyze defects in the crystal lattice:

500 pm

500 pm

Positions at the nanoparticle corner differ from the regular lattice.

High signal-to-noise ratio allows to estimate the 3D particle structure.

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

25

Non-rigid registration - Analysis of a Pt nanocatalyst

High precision allows to analyze defects in the crystal lattice:

500 pm 500 pm

Positions at the nanoparticle corner differ from the regular lattice.

High signal-to-noise ratio allows to estimate the 3D particle structure.

[Yankovich, B., Dahmen, Binev, Sanchez, Bradley, Li, Szlufarska, Voyles Nature Comm. ’14]

25

Limits of alternating minimization - Initialization bias

initial data registered data

Artificial series with fast and slow scan noise

joint work with C. Liebscher (MPIE Düsseldorf)

26

Bias correction

Observation: If ψ is a translation, we have

E[f, ϕ1, . . . , ϕn] = E[f ◦ ψ, ϕ1 ◦ ψ, . . . , ϕn ◦ ψ].

Idea: Reduce the deformations, i. e. find ψ that minimizes

n∑
i=1

∫
Ω
∥ϕi(ψ(x))− x∥2 dx .

Note: f ≈ fi ◦ ϕi ⇒ f ◦ ψ ≈ fi ◦ ϕi ◦ ψ
Strategy:

After each alternate minimization step

compute ψ (with a regularized gradient descent)

replace ϕi by ϕi ◦ ψ
replace f by f ◦ ψ

Note: The computation of ψ introduces a direct coupling of the ϕi.

27

Bias correction

Observation: If ψ is a translation, we have

E[f, ϕ1, . . . , ϕn] = E[f ◦ ψ, ϕ1 ◦ ψ, . . . , ϕn ◦ ψ].

Idea: Reduce the deformations, i. e. find ψ that minimizes

n∑
i=1

∫
Ω
∥ϕi(ψ(x))− x∥2 dx .

Note: f ≈ fi ◦ ϕi ⇒ f ◦ ψ ≈ fi ◦ ϕi ◦ ψ
Strategy:

After each alternate minimization step

compute ψ (with a regularized gradient descent)

replace ϕi by ϕi ◦ ψ
replace f by f ◦ ψ

Note: The computation of ψ introduces a direct coupling of the ϕi.

27

Bias correction

Observation: If ψ is a translation, we have

E[f, ϕ1, . . . , ϕn] = E[f ◦ ψ, ϕ1 ◦ ψ, . . . , ϕn ◦ ψ].

Idea: Reduce the deformations, i. e. find ψ that minimizes

n∑
i=1

∫
Ω
∥ϕi(ψ(x))− x∥2 dx .

Note: f ≈ fi ◦ ϕi ⇒ f ◦ ψ ≈ fi ◦ ϕi ◦ ψ

Strategy:

After each alternate minimization step

compute ψ (with a regularized gradient descent)

replace ϕi by ϕi ◦ ψ
replace f by f ◦ ψ

Note: The computation of ψ introduces a direct coupling of the ϕi.

27

Bias correction

Observation: If ψ is a translation, we have

E[f, ϕ1, . . . , ϕn] = E[f ◦ ψ, ϕ1 ◦ ψ, . . . , ϕn ◦ ψ].

Idea: Reduce the deformations, i. e. find ψ that minimizes

n∑
i=1

∫
Ω
∥ϕi(ψ(x))− x∥2 dx .

Note: f ≈ fi ◦ ϕi ⇒ f ◦ ψ ≈ fi ◦ ϕi ◦ ψ
Strategy:

After each alternate minimization step

compute ψ (with a regularized gradient descent)

replace ϕi by ϕi ◦ ψ
replace f by f ◦ ψ

Note: The computation of ψ introduces a direct coupling of the ϕi.

27

Bias correction

Observation: If ψ is a translation, we have

E[f, ϕ1, . . . , ϕn] = E[f ◦ ψ, ϕ1 ◦ ψ, . . . , ϕn ◦ ψ].

Idea: Reduce the deformations, i. e. find ψ that minimizes

n∑
i=1

∫
Ω
∥ϕi(ψ(x))− x∥2 dx .

Note: f ≈ fi ◦ ϕi ⇒ f ◦ ψ ≈ fi ◦ ϕi ◦ ψ
Strategy:

After each alternate minimization step

compute ψ (with a regularized gradient descent)

replace ϕi by ϕi ◦ ψ
replace f by f ◦ ψ

Note: The computation of ψ introduces a direct coupling of the ϕi.

27

Bias correction - Artificial results

initial data registered data with reduction

[B., Liebscher Ultramic. ’19]

28

Bias correction - Reconstruction from 19 STEM frames

f1 reconstruction without reduction

[B., Liebscher Ultramic. ’19]

29

Bias correction - Reconstruction from 19 STEM frames

f1 reconstruction with reduction

[B., Liebscher Ultramic. ’19]

29

Bias correction - Effect on strain estimation

−5−4−3−2−1 0 1 2 3 4 5 [%] −5−4−3−2−1 0 1 2 3 4 5 [%]

ϵyy

x

y

ϵyy

no bias-correction with bias-correction

[B., Liebscher Ultramic. ’19]

30

Source code

The C++ source code of our registration framework is available at

https://github.com/berkels/match-series

x86-64 binaries for Linux, Mac and Windows are available via Anaconda:

conda install -c conda-forge match-series

Thanks to Jan Janßen, MPIE, for the conda package!

Usage via a command line tool configured via a parameter file.

31

https://github.com/berkels/match-series

Source code

The C++ source code of our registration framework is available at

https://github.com/berkels/match-series

x86-64 binaries for Linux, Mac and Windows are available via Anaconda:

conda install -c conda-forge match-series

Thanks to Jan Janßen, MPIE, for the conda package!

Usage via a command line tool configured via a parameter file.

31

https://github.com/berkels/match-series

Source code

The C++ source code of our registration framework is available at

https://github.com/berkels/match-series

x86-64 binaries for Linux, Mac and Windows are available via Anaconda:

conda install -c conda-forge match-series

Thanks to Jan Janßen, MPIE, for the conda package!

Usage via a command line tool configured via a parameter file.

31

https://github.com/berkels/match-series

Shape averaging for jawbone reconstruction

average pelvis

joint work with A. Modabber, F. Peters (University Hospital Aachen)

32

Shape averaging for jawbone reconstruction

average pelvis

joint work with A. Modabber, F. Peters (University Hospital Aachen)

32

Existence of minimizers
and some consequences

Existence of minimizers

J needs to be bounded from below on the admissible set, i.e.

J := inf
x∈X

J [x] > −∞.

(not sufficient, e.g. J [x] = ex, this J is even strictly convex and analytic)
Then, there is a minimizing sequence, i.e. (xn)n ∈ XN with J [xn] → J
for n→ ∞.

Direct method in the calculus of variations:

1. Selection of a minimizing sequence (xn)n ∈ XN

2. Getting a convergent subsequence (xnk
)k ∈ XN (with x∗ ∈ X)

3. Proving lower semi-continuity of J , i.e.

J [y] ≤ lim inf
n→∞

J [yn] for all (yn)n ∈ XN with yn → y ∈ X.

This means that function values do not “jump down”.

Then, x∗ is a minimizer, i.e. J [x∗] = J , since

J = lim
n→∞

J [xn] = lim
k→∞

J [xnk
] = lim inf

k→∞
J [xnk

] ≥ J [x∗] ≥ J.

33

Existence of minimizers

J needs to be bounded from below on the admissible set, i.e.

J := inf
x∈X

J [x] > −∞.

(not sufficient, e.g. J [x] = ex, this J is even strictly convex and analytic)
Then, there is a minimizing sequence, i.e. (xn)n ∈ XN with J [xn] → J
for n→ ∞.
Direct method in the calculus of variations:

1. Selection of a minimizing sequence (xn)n ∈ XN

2. Getting a convergent subsequence (xnk
)k ∈ XN (with x∗ ∈ X)

3. Proving lower semi-continuity of J , i.e.

J [y] ≤ lim inf
n→∞

J [yn] for all (yn)n ∈ XN with yn → y ∈ X.

This means that function values do not “jump down”.

Then, x∗ is a minimizer, i.e. J [x∗] = J , since

J = lim
n→∞

J [xn] = lim
k→∞

J [xnk
] = lim inf

k→∞
J [xnk

] ≥ J [x∗] ≥ J.

33

Existence of minimizers

J needs to be bounded from below on the admissible set, i.e.

J := inf
x∈X

J [x] > −∞.

(not sufficient, e.g. J [x] = ex, this J is even strictly convex and analytic)
Then, there is a minimizing sequence, i.e. (xn)n ∈ XN with J [xn] → J
for n→ ∞.
Direct method in the calculus of variations:

1. Selection of a minimizing sequence (xn)n ∈ XN

2. Getting a convergent subsequence (xnk
)k ∈ XN (with x∗ ∈ X)

3. Proving lower semi-continuity of J , i.e.

J [y] ≤ lim inf
n→∞

J [yn] for all (yn)n ∈ XN with yn → y ∈ X.

This means that function values do not “jump down”.

Then, x∗ is a minimizer, i.e. J [x∗] = J , since

J = lim
n→∞

J [xn] = lim
k→∞

J [xnk
] = lim inf

k→∞
J [xnk

] ≥ J [x∗] ≥ J.

33

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

Existence of minimizers (cont.)

Applying the direct method in case dim(X) <∞ is rather simple.

This is mainly due to the following: If dim(X) <∞,

all norms are equivalent and

norm-bounded sequences have a convergent subsequence.

Both is not true if dim(X) = ∞!

Here, a different notion of convergence is needed, weak convergence.

→ Functional analysis

Why should we care? After discretization, we always have dim(X) <∞.

The functional space setting gives us information about inherent
properties of the solution, e.g. its regularity, that the numerical solution
approximates.

34

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω).

Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.
Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω). Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.
Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω). Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.
Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω). Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.

Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω). Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.
Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A reason to check the existence of minimizers

With the direct method, one can show that minimizers of

J [y] =
1

2
∥y − g∥2L2 +

λ

2
∥∇y∥2L2 (simple denoising model)

are in H1,2(Ω). Is H1,2(Ω) a suitable space for images?

Images can have edges, e.g. jumps in image intensity.

Let Ω ⊂ Rd be a bounded domain and D ⊂ Rd a bounded domain with
piecewise smooth boundary with D ⊂ Ω.
Then, the characteristic function χD of D, given by

χD(x) :=

{
1 x ∈ D

0 else
,

is not in H1,p(Ω) for 1 ≤ p ≤ ∞.

This means that the simple denoising model cannot preserve edges!

35

A suitable space for denoised images

Let y ∈ C1[0, 1] be increasing. Then,

|y|H1,1 =

∫ 1

0

∣∣y′(t)∣∣dt = ∫ 1

0
y′(t) dt = y(1)− y(0).

Thus, |y|H1,1 is independent of y′(t), just y(1)− y(0) matters.

In particular, a function with jump like

(0, 1) → R, t 7→

{
0 t < 1

2

1 t ≥ 1
2

can be approximated with a sequence bounded in the H1,1-norm.

Still, we need to extend the H1,1-norm to such functions, we need a more
general concept than weak derivatives.

36

A suitable space for denoised images

Let y ∈ C1[0, 1] be increasing. Then,

|y|H1,1 =

∫ 1

0

∣∣y′(t)∣∣dt = ∫ 1

0
y′(t) dt = y(1)− y(0).

Thus, |y|H1,1 is independent of y′(t), just y(1)− y(0) matters.

In particular, a function with jump like

(0, 1) → R, t 7→

{
0 t < 1

2

1 t ≥ 1
2

can be approximated with a sequence bounded in the H1,1-norm.

Still, we need to extend the H1,1-norm to such functions, we need a more
general concept than weak derivatives.

36

A suitable space for denoised images

Let y ∈ C1[0, 1] be increasing. Then,

|y|H1,1 =

∫ 1

0

∣∣y′(t)∣∣dt = ∫ 1

0
y′(t) dt = y(1)− y(0).

Thus, |y|H1,1 is independent of y′(t), just y(1)− y(0) matters.

In particular, a function with jump like

(0, 1) → R, t 7→

{
0 t < 1

2

1 t ≥ 1
2

can be approximated with a sequence bounded in the H1,1-norm.

Still, we need to extend the H1,1-norm to such functions, we need a more
general concept than weak derivatives.

36

A suitable space for denoised images (cont.)

For x ∈ Rd with x ̸= 0, we have

∥x∥2 = x · x

∥x∥2
≤ sup

∥p∥2≤1
−x · p ≤ sup

∥p∥2≤1
∥x∥2 ∥p∥2 = ∥x∥2

⇒ ∥x∥2 = sup
∥p∥2≤1

−x · p.

Thus, for

K =
{
p ∈ C∞

c (Ω,Rd) : ∥p(x)∥2 ≤ 1 for all x ∈ Ω
}

and y ∈ H1,1(Ω), we have∫
Ω
∥∇y∥2 dx = sup

p∈K

∫
Ω
−∇y · p dx = sup

p∈K

(
−
∫
Ω

d∑
i=1

∂iypi dx

)

= sup
p∈K

∫
Ω

d∑
i=1

y∂ipi dx = sup
p∈K

∫
Ω
y divp dx .

The latter only needs y ∈ L1(Ω) to be defined.

37

A suitable space for denoised images (cont.)

For x ∈ Rd with x ̸= 0, we have

∥x∥2 = x · x

∥x∥2
≤ sup

∥p∥2≤1
−x · p ≤ sup

∥p∥2≤1
∥x∥2 ∥p∥2 = ∥x∥2

⇒ ∥x∥2 = sup
∥p∥2≤1

−x · p.

Thus, for

K =
{
p ∈ C∞

c (Ω,Rd) : ∥p(x)∥2 ≤ 1 for all x ∈ Ω
}

and y ∈ H1,1(Ω), we have∫
Ω
∥∇y∥2 dx = sup

p∈K

∫
Ω
−∇y · p dx = sup

p∈K

(
−
∫
Ω

d∑
i=1

∂iypi dx

)

= sup
p∈K

∫
Ω

d∑
i=1

y∂ipi dx = sup
p∈K

∫
Ω
y divp dx .

The latter only needs y ∈ L1(Ω) to be defined.

37

A suitable space for denoised images (cont.)

For x ∈ Rd with x ̸= 0, we have

∥x∥2 = x · x

∥x∥2
≤ sup

∥p∥2≤1
−x · p ≤ sup

∥p∥2≤1
∥x∥2 ∥p∥2 = ∥x∥2

⇒ ∥x∥2 = sup
∥p∥2≤1

−x · p.

Thus, for

K =
{
p ∈ C∞

c (Ω,Rd) : ∥p(x)∥2 ≤ 1 for all x ∈ Ω
}

and y ∈ H1,1(Ω), we have∫
Ω
∥∇y∥2 dx = sup

p∈K

∫
Ω
−∇y · p dx = sup

p∈K

(
−
∫
Ω

d∑
i=1

∂iypi dx

)

= sup
p∈K

∫
Ω

d∑
i=1

y∂ipi dx = sup
p∈K

∫
Ω
y divp dx .

The latter only needs y ∈ L1(Ω) to be defined.

37

Functions of bounded variation

For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞

c (Ω,Rd)∧∥∥p∥2∥L∞≤1

∫
Ω
y divpdx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

∥y∥BV (Ω) := ∥y∥L1(Ω) + |y|BV (Ω) .

Let y ∈ H1,1(Ω). We have
∫
Ω ∥∇y∥2 dx = |y|BV . From

∥x∥2 ≤ ∥x∥1 ≤
√
d ∥x∥2 and |y|H1,1 =

∫
Ω
∥∇y∥1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ∥y∥BV ≤ ∥y∥H1,1 ≤

√
d ∥y∥BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

38

Functions of bounded variation

For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞

c (Ω,Rd)∧∥∥p∥2∥L∞≤1

∫
Ω
y divpdx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

∥y∥BV (Ω) := ∥y∥L1(Ω) + |y|BV (Ω) .

Let y ∈ H1,1(Ω). We have
∫
Ω ∥∇y∥2 dx = |y|BV . From

∥x∥2 ≤ ∥x∥1 ≤
√
d ∥x∥2 and |y|H1,1 =

∫
Ω
∥∇y∥1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ∥y∥BV ≤ ∥y∥H1,1 ≤

√
d ∥y∥BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

38

Functions of bounded variation

For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞

c (Ω,Rd)∧∥∥p∥2∥L∞≤1

∫
Ω
y divpdx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

∥y∥BV (Ω) := ∥y∥L1(Ω) + |y|BV (Ω) .

Let y ∈ H1,1(Ω). We have
∫
Ω ∥∇y∥2 dx = |y|BV . From

∥x∥2 ≤ ∥x∥1 ≤
√
d ∥x∥2 and |y|H1,1 =

∫
Ω
∥∇y∥1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ∥y∥BV ≤ ∥y∥H1,1 ≤

√
d ∥y∥BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

38

Functions of bounded variation

For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞

c (Ω,Rd)∧∥∥p∥2∥L∞≤1

∫
Ω
y divpdx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

∥y∥BV (Ω) := ∥y∥L1(Ω) + |y|BV (Ω) .

Let y ∈ H1,1(Ω). We have
∫
Ω ∥∇y∥2 dx = |y|BV . From

∥x∥2 ≤ ∥x∥1 ≤
√
d ∥x∥2 and |y|H1,1 =

∫
Ω
∥∇y∥1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ∥y∥BV ≤ ∥y∥H1,1 ≤

√
d ∥y∥BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

38

Functions of bounded variation

For y ∈ L1(Ω), the total variation is defined as

|y|BV (Ω) = sup
p∈C∞

c (Ω,Rd)∧∥∥p∥2∥L∞≤1

∫
Ω
y divpdx .

The space of functions of bounded variation is

BV (Ω) :=
{
y ∈ L1(Ω) : |y|BV (Ω) <∞

}
.

The BV -norm of y ∈ BV (Ω) is defined as

∥y∥BV (Ω) := ∥y∥L1(Ω) + |y|BV (Ω) .

Let y ∈ H1,1(Ω). We have
∫
Ω ∥∇y∥2 dx = |y|BV . From

∥x∥2 ≤ ∥x∥1 ≤
√
d ∥x∥2 and |y|H1,1 =

∫
Ω
∥∇y∥1 dx ,

it follows that

|y|BV ≤ |y|H1,1 ≤
√
d |y|BV ⇒ ∥y∥BV ≤ ∥y∥H1,1 ≤

√
d ∥y∥BV .

In particular, we have H1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω).

38

Total variation examples

Let p ∈ C∞
c (R) with ∥p∥L∞ ≤ 1.

For the Heaviside Function

H : R → R, t 7→

{
1 t > 0

0 t ≤ 0

it holds that |H|BV (R) = 1.

Then,∫
R
H(t) divp(t) dt =

∫ ∞

0
p′(t) dt = lim

n→∞

∫ n

0
p′(t) dt

= lim
n→∞

(p(n)− p(0)) = −p(0) ≤ 1.

Since there is an admissible p with p(0) = −1, we get |H|BV (R) = 1.

Let a, b ∈ R with a < b. Then,
∣∣χ[a,b]

∣∣
BV (R) = 2. Then,∫

R
χ[a,b](t) divp(t) dt =

∫ b

a
p′(t) dt = p(b)− p(a) ≤ 2.

Since there is an admissible p with p(a) = −1 and p(b) = 1, the
statement follows.

39

Total variation examples

Let p ∈ C∞
c (R) with ∥p∥L∞ ≤ 1.

For the Heaviside Function

H : R → R, t 7→

{
1 t > 0

0 t ≤ 0

it holds that |H|BV (R) = 1. Then,∫
R
H(t) divp(t) dt =

∫ ∞

0
p′(t) dt = lim

n→∞

∫ n

0
p′(t) dt

= lim
n→∞

(p(n)− p(0)) = −p(0) ≤ 1.

Since there is an admissible p with p(0) = −1, we get |H|BV (R) = 1.

Let a, b ∈ R with a < b. Then,
∣∣χ[a,b]

∣∣
BV (R) = 2. Then,∫

R
χ[a,b](t) divp(t) dt =

∫ b

a
p′(t) dt = p(b)− p(a) ≤ 2.

Since there is an admissible p with p(a) = −1 and p(b) = 1, the
statement follows.

39

Total variation examples

Let p ∈ C∞
c (R) with ∥p∥L∞ ≤ 1.

For the Heaviside Function

H : R → R, t 7→

{
1 t > 0

0 t ≤ 0

it holds that |H|BV (R) = 1. Then,∫
R
H(t) divp(t) dt =

∫ ∞

0
p′(t) dt = lim

n→∞

∫ n

0
p′(t) dt

= lim
n→∞

(p(n)− p(0)) = −p(0) ≤ 1.

Since there is an admissible p with p(0) = −1, we get |H|BV (R) = 1.

Let a, b ∈ R with a < b. Then,
∣∣χ[a,b]

∣∣
BV (R) = 2.

Then,∫
R
χ[a,b](t) divp(t) dt =

∫ b

a
p′(t) dt = p(b)− p(a) ≤ 2.

Since there is an admissible p with p(a) = −1 and p(b) = 1, the
statement follows.

39

Total variation examples

Let p ∈ C∞
c (R) with ∥p∥L∞ ≤ 1.

For the Heaviside Function

H : R → R, t 7→

{
1 t > 0

0 t ≤ 0

it holds that |H|BV (R) = 1. Then,∫
R
H(t) divp(t) dt =

∫ ∞

0
p′(t) dt = lim

n→∞

∫ n

0
p′(t) dt

= lim
n→∞

(p(n)− p(0)) = −p(0) ≤ 1.

Since there is an admissible p with p(0) = −1, we get |H|BV (R) = 1.

Let a, b ∈ R with a < b. Then,
∣∣χ[a,b]

∣∣
BV (R) = 2. Then,∫

R
χ[a,b](t) divp(t) dt =

∫ b

a
p′(t) dt = p(b)− p(a) ≤ 2.

Since there is an admissible p with p(a) = −1 and p(b) = 1, the
statement follows.

39

Total variation examples (cont.)

Consider χBr(0) in R2. For p ∈ C∞
c (R2,R2) with ∥∥p∥2∥L∞ ≤ 1, we get∫

R2

χBr(0)(x) divp(x) dx =

∫
Br(0)

divp(x) dx =

∫
∂Br(0)

p(x) · ν(x) dA(x)

≤
∫
∂Br(0)

∥p(x)∥2 ∥ν(x)∥2 dA(x) ≤
∫
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth
boundary and D ⊂ Ω, |χD|BV (Ω) is the length of the boundary of D.

In particular, this motivates Per(D) := |χD|BV (Ω)

Thus, as regularizer, |·|BV smoothens the boundary of the sublevel sets
{x ∈ Ω : y(x) < c}.

40

Total variation examples (cont.)

Consider χBr(0) in R2. For p ∈ C∞
c (R2,R2) with ∥∥p∥2∥L∞ ≤ 1, we get∫

R2

χBr(0)(x) divp(x) dx =

∫
Br(0)

divp(x) dx =

∫
∂Br(0)

p(x) · ν(x) dA(x)

≤
∫
∂Br(0)

∥p(x)∥2 ∥ν(x)∥2 dA(x) ≤
∫
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth
boundary and D ⊂ Ω, |χD|BV (Ω) is the length of the boundary of D.

In particular, this motivates Per(D) := |χD|BV (Ω)

Thus, as regularizer, |·|BV smoothens the boundary of the sublevel sets
{x ∈ Ω : y(x) < c}.

40

Total variation examples (cont.)

Consider χBr(0) in R2. For p ∈ C∞
c (R2,R2) with ∥∥p∥2∥L∞ ≤ 1, we get∫

R2

χBr(0)(x) divp(x) dx =

∫
Br(0)

divp(x) dx =

∫
∂Br(0)

p(x) · ν(x) dA(x)

≤
∫
∂Br(0)

∥p(x)∥2 ∥ν(x)∥2 dA(x) ≤
∫
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth
boundary and D ⊂ Ω, |χD|BV (Ω) is the length of the boundary of D.

In particular, this motivates Per(D) := |χD|BV (Ω)

Thus, as regularizer, |·|BV smoothens the boundary of the sublevel sets
{x ∈ Ω : y(x) < c}.

40

Total variation examples (cont.)

Consider χBr(0) in R2. For p ∈ C∞
c (R2,R2) with ∥∥p∥2∥L∞ ≤ 1, we get∫

R2

χBr(0)(x) divp(x) dx =

∫
Br(0)

divp(x) dx =

∫
∂Br(0)

p(x) · ν(x) dA(x)

≤
∫
∂Br(0)

∥p(x)∥2 ∥ν(x)∥2 dA(x) ≤
∫
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth
boundary and D ⊂ Ω, |χD|BV (Ω) is the length of the boundary of D.

In particular, this motivates Per(D) := |χD|BV (Ω)

Thus, as regularizer, |·|BV smoothens the boundary of the sublevel sets
{x ∈ Ω : y(x) < c}.

40

Total variation examples (cont.)

Consider χBr(0) in R2. For p ∈ C∞
c (R2,R2) with ∥∥p∥2∥L∞ ≤ 1, we get∫

R2

χBr(0)(x) divp(x) dx =

∫
Br(0)

divp(x) dx =

∫
∂Br(0)

p(x) · ν(x) dA(x)

≤
∫
∂Br(0)

∥p(x)∥2 ∥ν(x)∥2 dA(x) ≤
∫
∂Br(0)

dA(x) = 2πr.

Since there is an admissible p with p = ν on ∂Br(0), we get∣∣χBr(0)

∣∣
BV (R2)

= 2πr.

In general, for a bounded domain D ⊂ Rd with piecewise smooth
boundary and D ⊂ Ω, |χD|BV (Ω) is the length of the boundary of D.

In particular, this motivates Per(D) := |χD|BV (Ω)

Thus, as regularizer, |·|BV smoothens the boundary of the sublevel sets
{x ∈ Ω : y(x) < c}.

40

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

The ROF-functional (Rudin, Osher, Fatemi, 1992)

To denoise an image g ∈ L2(Ω), we are looking for a minimizer of

JROF : BV (Ω) → R∞ := R ∪ {∞}, y 7→ J [y] =
1

2
∥y − g∥2L2 + λ |y|BV .

Existence of minimizers can be shown with the direct method.

Since,

inf
u∈BV

JROF[u] = inf
u∈BV

sup
p∈K

(∫
Ω
(u− f)2 + λudivpdx

)
,

JROF can be minimized by solving a saddle point problem.

To derive minimization algorithms, we first characterize minimizers.

Note: |·|BV is not differentiable, but convex.

41

Characterization of minimizers in classical optimization

Necessary condition Let X = Rd, M ⊂ X open and J ∈ C1(M). If
y∗ ∈M ⊂ X is a local extremum of J , then

∇J(y∗) = 0.

Proposition Let M ⊂ Rd be convex and open, and J ∈ C1(M). Then,

1. J convex on M ⇔ ∀x, y ∈M : J(y) ≥ J(x) +∇J(x) · (y − x)

2. J strictly convex on M
⇔ ∀x, y ∈M,x ̸= y : J(y) > J(x) +∇J(x) · (y − x)

Corollary Let M and J be as above and J additionally convex.
Moreover, let y∗ ∈M with ∇J [y∗] = 0. Then,

y∗ ∈ argmin
y∈M

J [y].

Proof Let y ∈M be arbitrary but fixed. Then,

J [y] ≥ J [y∗] +∇J [y∗] · (y − y∗) = J [y∗].

42

Characterization of minimizers in classical optimization

Necessary condition Let X = Rd, M ⊂ X open and J ∈ C1(M). If
y∗ ∈M ⊂ X is a local extremum of J , then

∇J(y∗) = 0.

Proposition Let M ⊂ Rd be convex and open, and J ∈ C1(M). Then,

1. J convex on M ⇔ ∀x, y ∈M : J(y) ≥ J(x) +∇J(x) · (y − x)

2. J strictly convex on M
⇔ ∀x, y ∈M,x ̸= y : J(y) > J(x) +∇J(x) · (y − x)

Corollary Let M and J be as above and J additionally convex.
Moreover, let y∗ ∈M with ∇J [y∗] = 0. Then,

y∗ ∈ argmin
y∈M

J [y].

Proof Let y ∈M be arbitrary but fixed. Then,

J [y] ≥ J [y∗] +∇J [y∗] · (y − y∗) = J [y∗].

42

Characterization of minimizers in classical optimization

Necessary condition Let X = Rd, M ⊂ X open and J ∈ C1(M). If
y∗ ∈M ⊂ X is a local extremum of J , then

∇J(y∗) = 0.

Proposition Let M ⊂ Rd be convex and open, and J ∈ C1(M). Then,

1. J convex on M ⇔ ∀x, y ∈M : J(y) ≥ J(x) +∇J(x) · (y − x)

2. J strictly convex on M
⇔ ∀x, y ∈M,x ̸= y : J(y) > J(x) +∇J(x) · (y − x)

Corollary Let M and J be as above and J additionally convex.
Moreover, let y∗ ∈M with ∇J [y∗] = 0. Then,

y∗ ∈ argmin
y∈M

J [y].

Proof Let y ∈M be arbitrary but fixed. Then,

J [y] ≥ J [y∗] +∇J [y∗] · (y − y∗) = J [y∗].

42

Characterization of minimizers in classical optimization

Necessary condition Let X = Rd, M ⊂ X open and J ∈ C1(M). If
y∗ ∈M ⊂ X is a local extremum of J , then

∇J(y∗) = 0.

Proposition Let M ⊂ Rd be convex and open, and J ∈ C1(M). Then,

1. J convex on M ⇔ ∀x, y ∈M : J(y) ≥ J(x) +∇J(x) · (y − x)

2. J strictly convex on M
⇔ ∀x, y ∈M,x ̸= y : J(y) > J(x) +∇J(x) · (y − x)

Corollary Let M and J be as above and J additionally convex.
Moreover, let y∗ ∈M with ∇J [y∗] = 0. Then,

y∗ ∈ argmin
y∈M

J [y].

Proof Let y ∈M be arbitrary but fixed. Then,

J [y] ≥ J [y∗] +∇J [y∗] · (y − y∗) = J [y∗].

42

Sufficient conditions

Let X be a normed vector space and J : X → R∞ convex. u ∈ X ′ is
called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

Proposition Let X be a normed vector space and J : X → R∞ convex.
Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ 0 ∈ ∂J [y∗].

Proof y∗ is a minimizer, if and only if J [y∗] ≤ J [y] for all y ∈ X. Since

J [y∗] = J [y∗] + ⟨0, y − y∗⟩ ,

this is equivalent to 0 ∈ ∂J [y∗].

Proposition Let X = Rd and J ∈ C1(X) convex. Then,

∂J [y] = {∇J [y]} for all y ∈ X.

43

Sufficient conditions

Let X be a normed vector space and J : X → R∞ convex. u ∈ X ′ is
called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

Proposition Let X be a normed vector space and J : X → R∞ convex.
Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ 0 ∈ ∂J [y∗].

Proof y∗ is a minimizer, if and only if J [y∗] ≤ J [y] for all y ∈ X. Since

J [y∗] = J [y∗] + ⟨0, y − y∗⟩ ,

this is equivalent to 0 ∈ ∂J [y∗].

Proposition Let X = Rd and J ∈ C1(X) convex. Then,

∂J [y] = {∇J [y]} for all y ∈ X.

43

Sufficient conditions

Let X be a normed vector space and J : X → R∞ convex. u ∈ X ′ is
called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

Proposition Let X be a normed vector space and J : X → R∞ convex.
Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ 0 ∈ ∂J [y∗].

Proof y∗ is a minimizer, if and only if J [y∗] ≤ J [y] for all y ∈ X. Since

J [y∗] = J [y∗] + ⟨0, y − y∗⟩ ,

this is equivalent to 0 ∈ ∂J [y∗].

Proposition Let X = Rd and J ∈ C1(X) convex. Then,

∂J [y] = {∇J [y]} for all y ∈ X.

43

Sufficient conditions

Let X be a normed vector space and J : X → R∞ convex. u ∈ X ′ is
called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

Proposition Let X be a normed vector space and J : X → R∞ convex.
Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ 0 ∈ ∂J [y∗].

Proof y∗ is a minimizer, if and only if J [y∗] ≤ J [y] for all y ∈ X. Since

J [y∗] = J [y∗] + ⟨0, y − y∗⟩ ,

this is equivalent to 0 ∈ ∂J [y∗].

Proposition Let X = Rd and J ∈ C1(X) convex. Then,

∂J [y] = {∇J [y]} for all y ∈ X.

43

Minimization using the proximal operator

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,
i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,
i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,

i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,
i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,
i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

Closed proper convex functionals

Let X be a vector space and J : X → R∞.

dom(J) = {x ∈ X : J [x] <∞} is called effective domain of J .

epi(J) = {(x, t) ∈ X × R : J [x] ≤ t} is called epigraph of J .

A convex J is called proper, if epi(J) ̸= ∅,
i.e. if there exists x ∈ X with J [x] <∞.

If X is a normed vector space, a proper convex functional J is called
closed, if epi(J) is closed.

Γ0(X) denotes the set of closed proper convex functionals on X.

44

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.
Note: J ∈ Γ0(X) doesn’t ensure argmin

x∈X
J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.
Note: J ∈ Γ0(X) doesn’t ensure argmin

x∈X
J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.
Note: J ∈ Γ0(X) doesn’t ensure argmin

x∈X
J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.

Note: J ∈ Γ0(X) doesn’t ensure argmin
x∈X

J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.
Note: J ∈ Γ0(X) doesn’t ensure argmin

x∈X
J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator

Proposition Let X be a reflexive Banach space and J ∈ Γ0(X).

Then, the mapping

proxJ : X → X, y 7→ argmin
u∈X

(
J [u] +

1

2
∥u− y∥2

)
is well-defined (i.e. there is a unique minimizer) and is called proximal
mapping / proximal operator.

Existence of a minimizer can be shown with the direct method.

Γ0(X) was constructed such that the direct method can be applied.

Uniqueness of the minimizer follows from the strict convexity of ∥·∥2.
Note: J ∈ Γ0(X) doesn’t ensure argmin

x∈X
J [x] ̸= ∅, e.g. X = R, J [x] = x.

Recall: Let X be a normed vector space and J : X → R∞ convex.
u ∈ X ′ is called subgradient of J , if

J [y] + ⟨u, x− y⟩ ≤ J [x] for all x ∈ X.

∂J [y], the set of all subgradients of J at y, is called subdifferential of J .

45

The proximal operator - Properties

In the following, X always is a Hilbert space and we identify X ′ with X.

Corollary Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ y∗ = proxτJ [y
∗].

Lemma Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y] ⇔ y ∈ y∗ + τ∂J [y∗].

Corollary Let J ∈ Γ0(X) and τ > 0. Then, for y ∈ X, we have

{proxτJ [y]} = (id+τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Corollary Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y] ⇔ y = proxτJ [y + τy∗].

46

The proximal operator - Properties

In the following, X always is a Hilbert space and we identify X ′ with X.

Corollary Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ y∗ = proxτJ [y
∗].

Lemma Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y] ⇔ y ∈ y∗ + τ∂J [y∗].

Corollary Let J ∈ Γ0(X) and τ > 0. Then, for y ∈ X, we have

{proxτJ [y]} = (id+τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Corollary Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y] ⇔ y = proxτJ [y + τy∗].

46

The proximal operator - Properties

In the following, X always is a Hilbert space and we identify X ′ with X.

Corollary Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ y∗ = proxτJ [y
∗].

Lemma Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y] ⇔ y ∈ y∗ + τ∂J [y∗].

Corollary Let J ∈ Γ0(X) and τ > 0. Then, for y ∈ X, we have

{proxτJ [y]} = (id+τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Corollary Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y] ⇔ y = proxτJ [y + τy∗].

46

The proximal operator - Properties

In the following, X always is a Hilbert space and we identify X ′ with X.

Corollary Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ y∗ = proxτJ [y
∗].

Lemma Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y] ⇔ y ∈ y∗ + τ∂J [y∗].

Corollary Let J ∈ Γ0(X) and τ > 0. Then, for y ∈ X, we have

{proxτJ [y]} = (id+τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Corollary Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y] ⇔ y = proxτJ [y + τy∗].

46

The proximal operator - Properties

In the following, X always is a Hilbert space and we identify X ′ with X.

Corollary Let J ∈ Γ0(X) and τ > 0. Then,

y∗ ∈ argmin
y∈X

J [y] ⇔ y∗ = proxτJ [y
∗].

Lemma Let J ∈ Γ0(X) and τ > 0. Then, for y, y∗ ∈ X

y∗ = proxτJ [y] ⇔ y ∈ y∗ + τ∂J [y∗].

Corollary Let J ∈ Γ0(X) and τ > 0. Then, for y ∈ X, we have

{proxτJ [y]} = (id+τ∂J)−1[y].

Here, for a set-valued mapping A : X → P(Y), the inversion is defined by

A−1 : Y → P(X), y 7→ A−1[y] := {z ∈ X : y ∈ A[z]} .

Corollary Let J ∈ Γ0(X), τ > 0 and y, y∗ ∈ X. Then,

y∗ ∈ ∂J [y] ⇔ y = proxτJ [y + τy∗].

46

The proximal operator - Examples

Now, confine to X = Rn and ∥·∥ = ∥·∥2, i.e. Discretize Then Optimize.

For J ≡ c ∈ R, we have

proxτJ(y) = argmin
u∈Rn

(
τc+

1

2
∥u− y∥22

)
= y.

Let g ∈ Rn and J(y) = 1
2

n∑
i=1

(yi − gi)
2 = 1

2 ∥y − g∥22. Then,

u∗ := proxτJ(y) = argmin
u∈Rn

(
τ

2
∥u− g∥22 +

1

2
∥u− y∥22

)
⇒ 0 = τ(u∗ − g) + (u∗ − y) ⇒ proxτJ(y) =

y + τg

1 + τ

For J(y) =
n∑

i=1
Ji(yi) with Ji ∈ Γ0(R), we have

proxτJ(y) = (proxτJ1(y1), . . . ,proxτJn(yn)).

47

The proximal operator - Examples

Now, confine to X = Rn and ∥·∥ = ∥·∥2, i.e. Discretize Then Optimize.

For J ≡ c ∈ R, we have

proxτJ(y) = argmin
u∈Rn

(
τc+

1

2
∥u− y∥22

)
= y.

Let g ∈ Rn and J(y) = 1
2

n∑
i=1

(yi − gi)
2 = 1

2 ∥y − g∥22. Then,

u∗ := proxτJ(y) = argmin
u∈Rn

(
τ

2
∥u− g∥22 +

1

2
∥u− y∥22

)
⇒ 0 = τ(u∗ − g) + (u∗ − y) ⇒ proxτJ(y) =

y + τg

1 + τ

For J(y) =
n∑

i=1
Ji(yi) with Ji ∈ Γ0(R), we have

proxτJ(y) = (proxτJ1(y1), . . . ,proxτJn(yn)).

47

The proximal operator - Examples

Now, confine to X = Rn and ∥·∥ = ∥·∥2, i.e. Discretize Then Optimize.

For J ≡ c ∈ R, we have

proxτJ(y) = argmin
u∈Rn

(
τc+

1

2
∥u− y∥22

)
= y.

Let g ∈ Rn and J(y) = 1
2

n∑
i=1

(yi − gi)
2 = 1

2 ∥y − g∥22. Then,

u∗ := proxτJ(y) = argmin
u∈Rn

(
τ

2
∥u− g∥22 +

1

2
∥u− y∥22

)
⇒ 0 = τ(u∗ − g) + (u∗ − y) ⇒ proxτJ(y) =

y + τg

1 + τ

For J(y) =
n∑

i=1
Ji(yi) with Ji ∈ Γ0(R), we have

proxτJ(y) = (proxτJ1(y1), . . . ,proxτJn(yn)).

47

The proximal operator - Examples (cont.)

For J(y) := ∥y∥1, proxτJ(y) is the soft threshold operator, i.e.

(proxτJ(y))i =


yi − τ yi ≥ τ

0 |yi| < τ

yi + τ yi ≤ −τ
.

If C ⊂ Rn is a nonempty, closed, convex set, then

IC : Rn → R∞, y 7→

{
0 y ∈ C

∞ y ̸∈ C,

is called indicator function of C in Γ0(Rn) and we have

proxτIC (y) = ΠC(y),

where ΠC is the Euclidean projection to C, i.e.

ΠC(y) = argmin
z∈C

∥z − y∥2 .

48

The proximal operator - Examples (cont.)

For J(y) := ∥y∥1, proxτJ(y) is the soft threshold operator, i.e.

(proxτJ(y))i =


yi − τ yi ≥ τ

0 |yi| < τ

yi + τ yi ≤ −τ
.

If C ⊂ Rn is a nonempty, closed, convex set, then

IC : Rn → R∞, y 7→

{
0 y ∈ C

∞ y ̸∈ C,

is called indicator function of C in Γ0(Rn)

and we have

proxτIC (y) = ΠC(y),

where ΠC is the Euclidean projection to C, i.e.

ΠC(y) = argmin
z∈C

∥z − y∥2 .

48

The proximal operator - Examples (cont.)

For J(y) := ∥y∥1, proxτJ(y) is the soft threshold operator, i.e.

(proxτJ(y))i =


yi − τ yi ≥ τ

0 |yi| < τ

yi + τ yi ≤ −τ
.

If C ⊂ Rn is a nonempty, closed, convex set, then

IC : Rn → R∞, y 7→

{
0 y ∈ C

∞ y ̸∈ C,

is called indicator function of C in Γ0(Rn) and we have

proxτIC (y) = ΠC(y),

where ΠC is the Euclidean projection to C, i.e.

ΠC(y) = argmin
z∈C

∥z − y∥2 .

48

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal point algorithm

Finding a minimizer of J ∈ Γ0 and a fixed point of proxτJ are equivalent:

Proximal point algorithm

yk+1 = proxτJ(y
k)

for a step size τ > 0 and an initial value value y0 ∈ Rn.

If a minimizer of J exists, yk converges to the set of minimizers and
J(yk) to the optimal value.

If J ∈ C1(Rn) ∩ Γ0(Rn), then yk+1 = proxτJ(y
k) is characterized by

0 = τ∇J(yk+1) + (yk+1 − yk) ⇒ yk+1 = yk − τ∇J(yk+1)

This is the backward Euler discretization of the gradient descent of J .

Thus, for differentiable J , the proximal point algorithm is equivalent to
the fully implicit gradient descent.

Note: For most image processing problems, this algorithm is not very
practical, since proxτJ can’t be evaluated efficiently.

⇒ Operator Splitting.

49

The proximal gradient algorithm

For J = G+H, we consider the optimization problem

min
y∈Rn

(G(y) +H(y)),

where G ∈ C1(Rn) ∩ Γ0(Rn) and H ∈ Γ0(Rn).

Proximal gradient algorithm

yk+1 = proxτkH

(
yk − τk∇G(yk)

)
for step sizes τk > 0 and an initial value y0 ∈ Rn. Using

Fτ (y) =
1

τ
(y − proxτH (y − τ∇G(y))) ,

we get
yk+1 = yk − τkFτk(y

k).

This is also called forward-backward splitting, since it combines

a forward Euler gradient descent step in G with
a proximal point algorithm step in H
(equivalent to a backward Euler gradient descent step in H).

50

The proximal gradient algorithm

For J = G+H, we consider the optimization problem

min
y∈Rn

(G(y) +H(y)),

where G ∈ C1(Rn) ∩ Γ0(Rn) and H ∈ Γ0(Rn).

Proximal gradient algorithm

yk+1 = proxτkH

(
yk − τk∇G(yk)

)
for step sizes τk > 0 and an initial value y0 ∈ Rn.

Using

Fτ (y) =
1

τ
(y − proxτH (y − τ∇G(y))) ,

we get
yk+1 = yk − τkFτk(y

k).

This is also called forward-backward splitting, since it combines

a forward Euler gradient descent step in G with
a proximal point algorithm step in H
(equivalent to a backward Euler gradient descent step in H).

50

The proximal gradient algorithm

For J = G+H, we consider the optimization problem

min
y∈Rn

(G(y) +H(y)),

where G ∈ C1(Rn) ∩ Γ0(Rn) and H ∈ Γ0(Rn).

Proximal gradient algorithm

yk+1 = proxτkH

(
yk − τk∇G(yk)

)
for step sizes τk > 0 and an initial value y0 ∈ Rn. Using

Fτ (y) =
1

τ
(y − proxτH (y − τ∇G(y))) ,

we get
yk+1 = yk − τkFτk(y

k).

This is also called forward-backward splitting, since it combines

a forward Euler gradient descent step in G with
a proximal point algorithm step in H
(equivalent to a backward Euler gradient descent step in H).

50

The proximal gradient algorithm

For J = G+H, we consider the optimization problem

min
y∈Rn

(G(y) +H(y)),

where G ∈ C1(Rn) ∩ Γ0(Rn) and H ∈ Γ0(Rn).

Proximal gradient algorithm

yk+1 = proxτkH

(
yk − τk∇G(yk)

)
for step sizes τk > 0 and an initial value y0 ∈ Rn. Using

Fτ (y) =
1

τ
(y − proxτH (y − τ∇G(y))) ,

we get
yk+1 = yk − τkFτk(y

k).

This is also called forward-backward splitting, since it combines

a forward Euler gradient descent step in G with
a proximal point algorithm step in H
(equivalent to a backward Euler gradient descent step in H).

50

The proximal gradient algorithm - Properties

Assumptions as before and ∇G Lipschitz continuous with constant L > 0.

Lemma For all y, z ∈ Rn and τ ∈ [0, 1
L], it holds that

J(y − τFτ (y)) ≤ J(z) + Fτ (y) · (y − z)− τ

2
∥Fτ (y)∥22 .

Theorem Let τk ∈ [τmin,
1
L], where τmin ∈ (0, 1

L], and let argmin
x∈X

J ̸= ∅.

Then, the proximal gradient algorithm converges. More precisely,

0 ≤ J(yk)− J(y∗) ≤ 1

2kτmin

∥∥y0 − y∗
∥∥2
2
= O

(
1
k

)
for y∗ ∈ argmin

x∈X
J . Moreover, (yk)k converges to the set of minimizers,

i.e.
lim
k→∞

dist(yk, argmin J) = 0.

51

The proximal gradient algorithm - Properties

Assumptions as before and ∇G Lipschitz continuous with constant L > 0.

Lemma For all y, z ∈ Rn and τ ∈ [0, 1
L], it holds that

J(y − τFτ (y)) ≤ J(z) + Fτ (y) · (y − z)− τ

2
∥Fτ (y)∥22 .

Theorem Let τk ∈ [τmin,
1
L], where τmin ∈ (0, 1

L], and let argmin
x∈X

J ̸= ∅.

Then, the proximal gradient algorithm converges. More precisely,

0 ≤ J(yk)− J(y∗) ≤ 1

2kτmin

∥∥y0 − y∗
∥∥2
2
= O

(
1
k

)
for y∗ ∈ argmin

x∈X
J . Moreover, (yk)k converges to the set of minimizers,

i.e.
lim
k→∞

dist(yk, argmin J) = 0.

51

The proximal gradient algorithm - Properties

Assumptions as before and ∇G Lipschitz continuous with constant L > 0.

Lemma For all y, z ∈ Rn and τ ∈ [0, 1
L], it holds that

J(y − τFτ (y)) ≤ J(z) + Fτ (y) · (y − z)− τ

2
∥Fτ (y)∥22 .

Theorem Let τk ∈ [τmin,
1
L], where τmin ∈ (0, 1

L], and let argmin
x∈X

J ̸= ∅.

Then, the proximal gradient algorithm converges. More precisely,

0 ≤ J(yk)− J(y∗) ≤ 1

2kτmin

∥∥y0 − y∗
∥∥2
2
= O

(
1
k

)
for y∗ ∈ argmin

x∈X
J . Moreover, (yk)k converges to the set of minimizers,

i.e.
lim
k→∞

dist(yk, argmin J) = 0.

51

The proximal gradient algorithm - Special cases

The above also proves convergence of other methods.

G = 0, H = J ⇒ proximal point algorithm
Since ∇0 is Lipschitz continuous with constant 0, it follows the
convergence for arbitrary, bounded step sizes.

G = J , H = 0 ⇒ fully explicit gradient descent
If ∇J is Lipschitz continuous, we get convergence for suitable τn.

C ⊂ Rn nonempty, convex and closed, G = J , H = IC
⇒ projected gradient descent, which minimizes J(y) under the
constraint y ∈ C. If ∇J is Lipschitz continuous, we get convergence
for suitable τn.

52

The proximal gradient algorithm - Special cases

The above also proves convergence of other methods.

G = 0, H = J ⇒ proximal point algorithm
Since ∇0 is Lipschitz continuous with constant 0, it follows the
convergence for arbitrary, bounded step sizes.

G = J , H = 0 ⇒ fully explicit gradient descent
If ∇J is Lipschitz continuous, we get convergence for suitable τn.

C ⊂ Rn nonempty, convex and closed, G = J , H = IC
⇒ projected gradient descent, which minimizes J(y) under the
constraint y ∈ C. If ∇J is Lipschitz continuous, we get convergence
for suitable τn.

52

The proximal gradient algorithm - Special cases

The above also proves convergence of other methods.

G = 0, H = J ⇒ proximal point algorithm
Since ∇0 is Lipschitz continuous with constant 0, it follows the
convergence for arbitrary, bounded step sizes.

G = J , H = 0 ⇒ fully explicit gradient descent
If ∇J is Lipschitz continuous, we get convergence for suitable τn.

C ⊂ Rn nonempty, convex and closed, G = J , H = IC
⇒ projected gradient descent, which minimizes J(y) under the
constraint y ∈ C. If ∇J is Lipschitz continuous, we get convergence
for suitable τn.

52

The proximal gradient algorithm - Special cases

The above also proves convergence of other methods.

G = 0, H = J ⇒ proximal point algorithm
Since ∇0 is Lipschitz continuous with constant 0, it follows the
convergence for arbitrary, bounded step sizes.

G = J , H = 0 ⇒ fully explicit gradient descent
If ∇J is Lipschitz continuous, we get convergence for suitable τn.

C ⊂ Rn nonempty, convex and closed, G = J , H = IC
⇒ projected gradient descent, which minimizes J(y) under the
constraint y ∈ C. If ∇J is Lipschitz continuous, we get convergence
for suitable τn.

52

Primal-dual approaches

Let J : X → R∞ be proper. Then, Fenchel conjugate of J denotes

J∗ : X ′ :→ R∞, x
′ 7→ sup

x∈X

(〈
x′, x

〉
− J [x]

)

Particularly relevant in image processing are problems of the type

min
y∈Rn

(G(y) +H(Ay)),

where G ∈ Γ0(Rn), H ∈ Γ0(Rm) and A : Rn → Rm is linear. Then,

inf
y∈Rn

(G(y) +H(Ay))
H=H∗∗
= inf

y∈Rn
(G(y) +H∗∗(Ay))

= inf
y∈Rn

(G(y) + sup
z∈Rm

(Ay · z −H∗(z)))

= inf
y∈Rn

sup
z∈Rm

(Ay · z +G(y)−H∗(z)) .

The necessary conditions for z and y are

0 ∈ ∂z (Ay · z −H∗(z)) = Ay − ∂H∗(z) ⇒ Ay ∈ ∂H∗(z),

0 ∈ ∂y
(
AT z · y +G(y)

)
= AT z + ∂G(y) ⇒ −AT z ∈ ∂G(y).

53

Primal-dual approaches

Let J : X → R∞ be proper. Then, Fenchel conjugate of J denotes

J∗ : X ′ :→ R∞, x
′ 7→ sup

x∈X

(〈
x′, x

〉
− J [x]

)
Particularly relevant in image processing are problems of the type

min
y∈Rn

(G(y) +H(Ay)),

where G ∈ Γ0(Rn), H ∈ Γ0(Rm) and A : Rn → Rm is linear.

Then,

inf
y∈Rn

(G(y) +H(Ay))
H=H∗∗
= inf

y∈Rn
(G(y) +H∗∗(Ay))

= inf
y∈Rn

(G(y) + sup
z∈Rm

(Ay · z −H∗(z)))

= inf
y∈Rn

sup
z∈Rm

(Ay · z +G(y)−H∗(z)) .

The necessary conditions for z and y are

0 ∈ ∂z (Ay · z −H∗(z)) = Ay − ∂H∗(z) ⇒ Ay ∈ ∂H∗(z),

0 ∈ ∂y
(
AT z · y +G(y)

)
= AT z + ∂G(y) ⇒ −AT z ∈ ∂G(y).

53

Primal-dual approaches

Let J : X → R∞ be proper. Then, Fenchel conjugate of J denotes

J∗ : X ′ :→ R∞, x
′ 7→ sup

x∈X

(〈
x′, x

〉
− J [x]

)
Particularly relevant in image processing are problems of the type

min
y∈Rn

(G(y) +H(Ay)),

where G ∈ Γ0(Rn), H ∈ Γ0(Rm) and A : Rn → Rm is linear. Then,

inf
y∈Rn

(G(y) +H(Ay))
H=H∗∗
= inf

y∈Rn
(G(y) +H∗∗(Ay))

= inf
y∈Rn

(G(y) + sup
z∈Rm

(Ay · z −H∗(z)))

= inf
y∈Rn

sup
z∈Rm

(Ay · z +G(y)−H∗(z)) .

The necessary conditions for z and y are

0 ∈ ∂z (Ay · z −H∗(z)) = Ay − ∂H∗(z) ⇒ Ay ∈ ∂H∗(z),

0 ∈ ∂y
(
AT z · y +G(y)

)
= AT z + ∂G(y) ⇒ −AT z ∈ ∂G(y).

53

Primal-dual approaches

Let J : X → R∞ be proper. Then, Fenchel conjugate of J denotes

J∗ : X ′ :→ R∞, x
′ 7→ sup

x∈X

(〈
x′, x

〉
− J [x]

)
Particularly relevant in image processing are problems of the type

min
y∈Rn

(G(y) +H(Ay)),

where G ∈ Γ0(Rn), H ∈ Γ0(Rm) and A : Rn → Rm is linear. Then,

inf
y∈Rn

(G(y) +H(Ay))
H=H∗∗
= inf

y∈Rn
(G(y) +H∗∗(Ay))

= inf
y∈Rn

(G(y) + sup
z∈Rm

(Ay · z −H∗(z)))

= inf
y∈Rn

sup
z∈Rm

(Ay · z +G(y)−H∗(z)) .

The necessary conditions for z and y are

0 ∈ ∂z (Ay · z −H∗(z)) = Ay − ∂H∗(z) ⇒ Ay ∈ ∂H∗(z),

0 ∈ ∂y
(
AT z · y +G(y)

)
= AT z + ∂G(y) ⇒ −AT z ∈ ∂G(y).

53

Primal-dual approaches (cont.)

Ay ∈ ∂H∗(z) ∧ −AT z ∈ ∂G(y) is equivalent to

z = proxσH∗ [z + σAy] ∧ y = proxτG[y − τAT z]

for τ, σ > 0

and motivates the algorithm

zk+1 = proxσH∗ [zk + σAyk]

yk+1 = proxτG[y
k − τAT zk+1]

yk+1 = yk+1 + θ(yk+1 − yk) (extrapolation step)

for θ ∈ [0, 1], y0 = y0 ∈ Rn, z0 ∈ Rm.

avoids computing proxσH(A·), just needs proxσH∗ , A, AT

typically proxσH∗ can be computed pointwise

proposed in [Chambolle, Pock ’10], very popular (4300+ citations)

also called Primal-Dual Hybrid Gradient (PDHG) method

well suited for models that use the total variation as regularizer

convergence guaranteed if θ = 1, τσ|||A|||2 < 1

54

Primal-dual approaches (cont.)

Ay ∈ ∂H∗(z) ∧ −AT z ∈ ∂G(y) is equivalent to

z = proxσH∗ [z + σAy] ∧ y = proxτG[y − τAT z]

for τ, σ > 0 and motivates the algorithm

zk+1 = proxσH∗ [zk + σAyk]

yk+1 = proxτG[y
k − τAT zk+1]

yk+1 = yk+1 + θ(yk+1 − yk) (extrapolation step)

for θ ∈ [0, 1], y0 = y0 ∈ Rn, z0 ∈ Rm.

avoids computing proxσH(A·), just needs proxσH∗ , A, AT

typically proxσH∗ can be computed pointwise

proposed in [Chambolle, Pock ’10], very popular (4300+ citations)

also called Primal-Dual Hybrid Gradient (PDHG) method

well suited for models that use the total variation as regularizer

convergence guaranteed if θ = 1, τσ|||A|||2 < 1

54

Primal-dual approaches (cont.)

Ay ∈ ∂H∗(z) ∧ −AT z ∈ ∂G(y) is equivalent to

z = proxσH∗ [z + σAy] ∧ y = proxτG[y − τAT z]

for τ, σ > 0 and motivates the algorithm

zk+1 = proxσH∗ [zk + σAyk]

yk+1 = proxτG[y
k − τAT zk+1]

yk+1 = yk+1 + θ(yk+1 − yk) (extrapolation step)

for θ ∈ [0, 1], y0 = y0 ∈ Rn, z0 ∈ Rm.

avoids computing proxσH(A·), just needs proxσH∗ , A, AT

typically proxσH∗ can be computed pointwise

proposed in [Chambolle, Pock ’10], very popular (4300+ citations)

also called Primal-Dual Hybrid Gradient (PDHG) method

well suited for models that use the total variation as regularizer

convergence guaranteed if θ = 1, τσ|||A|||2 < 1

54

PDHG extensions and variants

θ = 0: Arrow–Hurwicz algorithm, used for TV minimization before
[Zhu, Chan ’08]

diagonal preconditioning [Pock, Chambolle ’11]

extension to Banach spaces with applications to inverse problems
[Hohage, Homann ’14]

stochastic extension based on arbitrary sampling of the dual variables
[Chambolle, Ehrhardt, Richtárik, Schönlieb, ’18]

stochastic PDHG to solve regularized stochastic minimization problems
[Qiao, Lin, Qin, Lu Neurocomputing ’18]

learned primal-dual reconstruction [Adler, Öktem TMI ’18]

Riemannian Chambolle–Pock algorithm
[Bergmann, Herzog, Louzeiro, Tenbrinck Vidal-Núñez ’21]

...

55

A primal-dual approach for the ROF model

ROF model J [y] =

∫
Ω
(y − f)2 dx +λ

∫
Ω
∥∇y(x)∥dx

Discretization: y = (yi,j) ∈ X := RM×N , grid width h.

G(y) =
1

2λ
∥y − f∥22 ⇒ proxτG(y) =

y + τ
λf

1 + τ
λ

.

Forward differences: (∇hy)i,j = ((∂h+1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i =M ;
, j = 1, . . . , N,

(∂h+2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

H(∇hy) := ||∇hy||1 :=
∑
i,j

|(∇hy)i,j |.

With Rn ≃ X, Rm ≃ X ×X and A ≃ ∇h, G(y) +H(Ay) is a
discretization of the ROF-model fitting the framework.

56

A primal-dual approach for the ROF model

ROF model J [y] =

∫
Ω
(y − f)2 dx +λ

∫
Ω
∥∇y(x)∥dx

Discretization: y = (yi,j) ∈ X := RM×N , grid width h.

G(y) =
1

2λ
∥y − f∥22 ⇒ proxτG(y) =

y + τ
λf

1 + τ
λ

.

Forward differences: (∇hy)i,j = ((∂h+1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i =M ;
, j = 1, . . . , N,

(∂h+2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

H(∇hy) := ||∇hy||1 :=
∑
i,j

|(∇hy)i,j |.

With Rn ≃ X, Rm ≃ X ×X and A ≃ ∇h, G(y) +H(Ay) is a
discretization of the ROF-model fitting the framework.

56

A primal-dual approach for the ROF model

ROF model J [y] =

∫
Ω
(y − f)2 dx +λ

∫
Ω
∥∇y(x)∥dx

Discretization: y = (yi,j) ∈ X := RM×N , grid width h.

G(y) =
1

2λ
∥y − f∥22 ⇒ proxτG(y) =

y + τ
λf

1 + τ
λ

.

Forward differences: (∇hy)i,j = ((∂h+1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i =M ;
, j = 1, . . . , N,

(∂h+2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

H(∇hy) := ||∇hy||1 :=
∑
i,j

|(∇hy)i,j |.

With Rn ≃ X, Rm ≃ X ×X and A ≃ ∇h, G(y) +H(Ay) is a
discretization of the ROF-model fitting the framework.

56

A primal-dual approach for the ROF model

ROF model J [y] =

∫
Ω
(y − f)2 dx +λ

∫
Ω
∥∇y(x)∥dx

Discretization: y = (yi,j) ∈ X := RM×N , grid width h.

G(y) =
1

2λ
∥y − f∥22 ⇒ proxτG(y) =

y + τ
λf

1 + τ
λ

.

Forward differences: (∇hy)i,j = ((∂h+1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i =M ;
, j = 1, . . . , N,

(∂h+2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

H(∇hy) := ||∇hy||1 :=
∑
i,j

|(∇hy)i,j |.

With Rn ≃ X, Rm ≃ X ×X and A ≃ ∇h, G(y) +H(Ay) is a
discretization of the ROF-model fitting the framework.

56

A primal-dual approach for the ROF model

ROF model J [y] =

∫
Ω
(y − f)2 dx +λ

∫
Ω
∥∇y(x)∥dx

Discretization: y = (yi,j) ∈ X := RM×N , grid width h.

G(y) =
1

2λ
∥y − f∥22 ⇒ proxτG(y) =

y + τ
λf

1 + τ
λ

.

Forward differences: (∇hy)i,j = ((∂h+1 y)i,j , (∂
h+
2 y)i,j) ∈ X ×X, where

(∂h+1 y)i,j =

{
yi+1,j−yi,j

h i < M ;

0 i =M ;
, j = 1, . . . , N,

(∂h+2 y)i,j =

{
yi,j+1−yi,j

h j < N ;

0 j = N ;
, i = 1, . . . ,M.

H(∇hy) := ||∇hy||1 :=
∑
i,j

|(∇hy)i,j |.

With Rn ≃ X, Rm ≃ X ×X and A ≃ ∇h, G(y) +H(Ay) is a
discretization of the ROF-model fitting the framework.

56

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP .

Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)
https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP . Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)
https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP . Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)

https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP . Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)

https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP . Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)
https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

A primal-dual approach for the ROF model (cont.)

One can show, that H∗ = IP , where

P =

{
p ∈ X ×X : ∥p∥∞ := max

i,j
|pi,j | ≤ 1

}
.

Thus, proxσH∗ = ΠP . Moreover, for p ∈ X ×X, we have

(ΠP (p))i,j =
pi,j

max(1, |pi,j |)
.

Thus, the full algorithm is

zk+1 = ΠP (z
k + σAyk)

yk+1 =
yk − τAT zk+1 + τ

λf

1 + τ
λ

yk+1 = yk+1 + θ(yk+1 − yk)
https://berkels.github.io/

jupyterlite-demo

Moreover, one can show
∣∣∣∣∣∣∇h

∣∣∣∣∣∣2 ≤ 8
h2 .

There are variants of the primal-dual method, which exploit the strict
convexity of the data term G for an even faster convergence.

57

https://berkels.github.io/jupyterlite-demo
https://berkels.github.io/jupyterlite-demo

Mumford-Shah based
image segmentation

	Two-phase image segmentation

