Variational Methods for

Computational Microscopy
By Stanley Osher



Content

. Super-resolution Ptychography

ll. Vector Tomography
lll. Deconvolution with deep learning
IV. GPU high performance computing



Part |I: Super-resolution Ptychography



Super-resolution Ptychography
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Super-resolution Ptychography requirement
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To obtain super-resolution Ptychography, we need:

1. Astructured probe: to obtain high frequency information
2. Aregularizer for Ptychography algorithm.

3. Smaller and sub-pixel scanning step-size



Super-resolution Ptychography optimization

Original Ptychography minimization problem:

— VL

minpo 5 3, ||F(POq,)

The optimization problem needs a regularizer.

minpo 3 >, [[[F(POq,)| — VI |* + TV (Oq,)

Total variation helps to stabilize the Ptychography reconstruction and remove noise.



Simulation results
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Figure: simulation and reconstruction of USAF using regular Ptychography ePIE, and super-resolution
technique. High overlap and sub-pixel scanning step size help to improve the resolution



Structure of probe
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Image reconstruction is independent of the probe rotation



Super-resolution Ptychography with TV regularization
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1. The reconstruction is unstable without regularizer.
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2. There is a tradeoff between denoising and high frequency information



Ongoing Research

1. Need better structured probes.
2. Experiment with biological samples.

3. Continue improving algorithms.



Part Il: Vector Tomography



Part ll: Vector Tomography

Goal: 3D magnetic texture, spin-engineered magnetic materials

Figure: Imaging the 3D spin textures in a
magnetic metalattice sample using vector
ptycho-tomography. The 3D magnetization
field is overlaid on the reconstruction of the Ni
(gray) and silica (voids) metalattice.

Question:
e How to design experiment? How many tilt series are required?
e Algorithm?

[A. Rana, Direct observation of 3D topological spin textures and their interactions
using soft x-ray vector ptychography, 20217]



Vector Tomography algorithm

3D magnetic components m = (mg, my, m;) and the scalar part O are coupled via a
linear integral constraint

ng <F>’l(:13,y, Z), Rge_z>> + O(.’E,y, z) dz = Pg(a?, y)

e Use left and right polarization to eliminate the dependency of the scalar part O.
e Rewrite the equation in algebraic way.

Vector Tomography minimization problem:

. — 1 . + &
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Vector Tomography algorithm

. — 2
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Method: gradient descent

= =Yg apll] (Oto Ilg(ms) + Bo g (my) + vo Io(m) — bo)
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We use Fourier slice theorem to show that the reconstruction requires three tilt series:
one original set, one in-plane rotation set, and one side rotation set.

Remark:

1. Side rotation is infeasible.
2. However, support constraint can help (3D magnetic field only appears in the
vacancy of magnetic materials).

[M. Pham, Real space iterative reconstruction engine for Tomography, arxiv, 2021]



Vector Tomography: Constraint Support

1. Support constraint helps
the reconstruction.

2. Magnetic field only
appears in the vacancy of
the materials (the space
between atoms)

GlyphVector Z

Figure: Reconstructed magnetization vector field of a Nickel infiltrated meta-lattice.

Remark: Simulation & experimental data shows the method works fine without
side rotation when support constraint is enforced.



Scalar Tomography: Constraint Support

Q: How to compute the support?
A: Obtain Scalar reconstruction, then use hard thresholding,
or better, we use |1 minimization

2
mino ¢(0) = 1 3 [119(0) — bo” + 1|0
Augmented Lagrangian: exploit dual variable.
2
L(O,Y,)) = £ 3, |IMs(0) = bo | +4YIls + 50— Y + 2|

where Y and A and auxiliary and dual variables



Scalar Tomography: |11 minimization

Augmented Lagrangian:

LOY,N) = 1 5 [0(0) — ba| + V] + L]0 - ¥ + 2

Algorithm: linearized ADMM.
Ok+1 Yk

k

-3 HT(HQO’“ — byp)
YR = Shmnlfc(O’“Jr1 + A = 1t)
)\k+l — )\k: 4+ t(0k+1 . Yk+1)
where Shrink operator is soft thresholding.

Why linearized ADMM: inverse is expensive



Scalar Tomography: |11 minimization

GlyphVector Z

Figure: Reconstructed magnetization vector field of a Nickel infiltrated meta-lattice with
[1-mimization to find the support



Part |ll: Blind Deconvolution with CNN



Deconvolution with Deep learning

Convolutional neural networks acts as a high pass filter in denoising/deblurring.
ming 5 35, |0 + fo(zn) — yall?

where {(zx, y») Y2 are pairs of corrupted & clean images (training data)
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Deconvolution with Deep learning

Enforce the commutative property of convolution: K +x D =D x K

Send derivative in i and j directions to the neural networks:

ming 3 33, [|Zn + fo(zn) = yull* + |Dizn + fo(Dizn) — Diva|* + | Djzn + fo(Djzn) — Djyall?

Advantage:
® A natural way to increase the training data size.
® Learn the high frequency information better
® Reduce bias
® Can helpin the case of scarce data



Results

Original Blurred

Our method

Figure: Deblurring with U-net and commutative property enforcement. PNSR improves 0.5-3.



Part IV: GPU high performance Computing

High performance computing:

1. CUDA/C++ implementation with highly parallel computing.

2. Ptychography.

3. Tomography: RESIRE2 algorithm which can work with extended objects and
partially blocked projections.

4. on single or multi-GPU

5. Matlab friendly



Thank you
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