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Part I: Super-resolution Ptychography
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• Bi-/tri- modes illumination
• Probe before/on the sample (4f)

Super-resolution Ptychography

[A. Maiden, Superresolution imaging via ptychography, J. Opt. Soc. Am. A, 2011]



Super-resolution Ptychography requirement

With high overlap scanning, 
we can obtain high frequency 
information of ptychography 
images

Determining the high 
frequency information of 
ptychography images 
encounters difficulty:
Under-constrained system

To obtain super-resolution Ptychography, we need:
1. A structured probe: to obtain high frequency information
2. A regularizer for Ptychography algorithm.
3. Smaller and sub-pixel scanning step-size



Super-resolution Ptychography optimization

Original Ptychography minimization problem:

The optimization problem needs a regularizer.

Total variation helps to stabilize the Ptychography reconstruction and remove noise.



Simulation results
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Figure: simulation and reconstruction of USAF using regular Ptychography ePIE, and super-resolution 
technique. High overlap and sub-pixel scanning step size help to improve the resolution
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Super-resolution ePIE with 
structured probe
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Structure of probe

Image reconstruction is independent of the probe rotation
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Super-resolution Ptychography with TV regularization

Remark: 
1. The reconstruction is unstable without regularizer.
2. There is a tradeoff between denoising and high frequency information



Ongoing Research

1. Need better structured probes.

2. Experiment with biological samples.

3. Continue improving algorithms.



Part II: Vector Tomography



Goal: 3D magnetic texture, spin-engineered magnetic materials

Figure: Imaging the 3D spin textures in a 
magnetic metalattice sample using vector 
ptycho-tomography. The 3D magnetization 
field is overlaid on the reconstruction of the Ni 
(gray) and silica (voids) metalattice. 

Part II: Vector Tomography

Question: 
● How to design experiment? How many tilt series are required?
● Algorithm?

[A. Rana, Direct observation of 3D topological spin textures and their interactions
using soft x-ray vector ptychography, 2021]



Vector Tomography algorithm

3D magnetic components                                 and the scalar part O are coupled via a 
linear integral constraint

● Use left and right polarization to eliminate the dependency of the scalar part O.
● Rewrite the equation in algebraic way.

Vector Tomography minimization problem:



Vector Tomography algorithm

Method: gradient descent

We use Fourier slice theorem to show that the reconstruction requires three tilt series: 
one original set, one in-plane rotation set, and one side rotation set.

Remark: 

1. Side rotation is infeasible.
2. However, support constraint can help (3D magnetic field only appears in the 

vacancy of magnetic materials).

[M. Pham, Real space iterative reconstruction engine for Tomography, arxiv, 2021]



Vector Tomography: Constraint Support

1. Support constraint helps 
the reconstruction.

2. Magnetic field only 
appears in the vacancy of 
the materials (the space 
between atoms) 

Remark: Simulation & experimental data shows the method works fine without 
side rotation when support constraint is enforced.

Figure: Reconstructed magnetization vector field of a Nickel infiltrated meta-lattice. 



Scalar Tomography: Constraint Support

Q: How to compute the support?
A: Obtain Scalar reconstruction, then use hard thresholding, 
     or better, we use l1 minimization

Augmented Lagrangian: exploit dual variable.

where Y and λ and auxiliary and dual variables



Scalar Tomography: l1 minimization

Augmented Lagrangian:

Algorithm: linearized ADMM.

where Shrink operator is soft thresholding.

Why linearized ADMM: inverse is expensive



Figure: Reconstructed magnetization vector field of a Nickel infiltrated meta-lattice with 
l1-mimization to find the support

Scalar Tomography: l1 minimization



Part III: Blind Deconvolution with CNN



Deconvolution with Deep learning

Convolutional neural networks acts as a high pass filter in denoising/deblurring.

where                         are pairs of corrupted & clean images (training data)

Figure 4: U-Net: a convolutional neural 
network that combines Encoder-Decoder 
with skip connection. U-Net uses 
down-sampling, up-sampling to extract 
high frequency of images.



Deconvolution with Deep learning

Enforce the commutative property of convolution: 

Send derivative in i and j directions to the neural networks:

Advantage: 
● A natural way to increase the training data size.
● Learn the high frequency information better
● Reduce bias
● Can help in the case of scarce data



Figure: Deblurring with U-net and commutative property enforcement. PNSR improves 0.5-3.

Results

          Original                           Blurred                             U-Net                          Our method



Part IV: GPU high performance Computing

High performance computing:

1. CUDA/C++ implementation with highly parallel computing.
2. Ptychography.
3. Tomography: RESIRE2 algorithm which can work with extended objects and 

partially blocked projections.
4. on single or multi-GPU
5. Matlab friendly



Thank you
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