Acute triangulations of polytopes

Igor Pak, UCLA

IPAM, UCLA Los Angeles, October 20, 2009

The Problem:

A simplex $\Delta \subset \mathbb{R}^d$ is *acute* if all its dihedral angles are $< \pi/2$. An *acute triangulation* is a finite subdivision into acute simplices.

- **1.** For a convex polytope $P \subset \mathbb{R}^d$, find an acute triangulation.
- **2.** Find an acute partition of \mathbb{R}^d .

FIGURE 1. An acute triangulation and an acute dissection of a square.

Main Corollary [Kopczyński–P.–Przytycki (2009)]

A d-cube has an acute triangulation only for $d \leq 3$.

This resolves an old folklore open problem: Martin Garner (1960), Burago-Zalgaller (1960), Eppstein–Sullivan–Üngör (2004), Křížek (2006), etc.

Note: There is an easy triangulation of a d-cube into d! non-obtuse simplices.

Why acute triangulations?

- Classical geometric problem.
- Finite element method.
- Crystallography.
- Large recreational literature.

4

Finite element applications:

Input: triangulated surface $S \subset \mathbb{R}^3$.

Goal: find a $good^*$ triangulation of the interior of S.

 $^{\ast}~good$ means all tetrahedra are as close to regular as possible.

FIGURE 2. TetGen group from Berlin: triangulation of the head.

Statistics:

Input points:	20,796.	Input facets: 41,5	588.
Mesh points:	350,980.	Mesh tetrahedra:	1,366,269.

Acute triangulations in the plane

- ▷ Proposed by Martin Garner (Scientific American, 1960)
- Resolved (independently) and extended by Burago–Zalgaller (1960)
 (Existence only, no complexity bounds follow from the proof).
- \triangleright Easy to do in practice (Delaunay triangulations).
- \triangleright Beginning 1980's heavily studied in the DCG community.

Theorem [Bern–Mitchell–Ruppert (1995) + Maehara (2002)] Every *n*-gon in the plane has an acute triangulation with O(n) triangles, which can be computed in linear time.

Burago–Zalgaller's proof

8

Theorem: Every polygon in the plane has an acute triangulation.

- 1) triangulate the polygon
- 2) make an acute triangulation of every triangle
- 3) assuming everything is rational: subtriangulate all triangles by the common denominator
- 4) otherwise, use an approximation argument

FIGURE 3. Steps of the BZ proof.

Flips on triangulations

Idea: use 2-flips to improve your triangulation (in any order).

Theorem: This always gives the Delaunay triangulation.

Observation: This always maximizes the min angle in a triangulation.

FIGURE 4. 2-flips in a triangulation.

Dimensionality curse

Philosophy: the higher the dimension, the harder it is to make acute triangulations (both theoretically and practically).

d=2	_	relatively easy
d = 3	_	possible sometimes; perhaps, always
d = 4	_	impossible sometimes; perhaps, very rarely
$d \ge 5$	_	always impossible

Observation: Faces of an acute *d*-simplex are also acute simplices. Thus, acute triangulation of a *d*-cube contains acute triangulations of all *n*-cubes, for n < d.

d = 3 case: the beginning of a beautiful friendship

- $\heartsuit~$ Studied for 30+ years. Until recently, very little progress.
- $\heartsuit~$ In practice: tile with Sommerville's tetrahedra:

FIGURE 5. Sommerville's tetrahedron.

Diversion: acute partition of the space

- \heartsuit Aristotle: regular tetrahedron tiles the space (*On the Heaven*, 350 BC)
- \heartsuit Sommerville: four space-filling tetrahedra (1923).
- \heartsuit M. Goldberg: two new space-filling families (1974).

FIGURE 6. Aristotle, his error, Sommerville.

12

More on acute partitions of the space

- \heartsuit Edmonds: if reflections are not allowed, then Sommerville's 1923 classification is complete (2007)
- \heartsuit Eppstein–Sullivan–Üngör: a periodic acute partition of \mathbb{R}^3 (2004)
- \heartsuit Delgado Friedrichs and Huson: no *transitive* acute partition of \mathbb{R}^3 (1999)

Open: Find an acute partition of \mathbb{R}^3 into congruent tetrahedra.

FIGURE 7. Trying to tile with regular tetrahedra.

Back to polytopes

VanderZee-Hirani-Zharnitsky-Guoy, Kopczyński-P.-Przytycki (2009):

- ♦ acute triangulation of a cube (VHZG: 1370, KPP: 2715 tetrahedra)
- $\diamond \quad VHZG \ proof \ uses \ advanced \ simulation \ (mesh-improving \ technique)$
- $\diamond \quad KPP \text{ proof uses the 600-cell (a regular polytope in } \mathbb{R}^4)$

FIGURE 8. Graph drawn in the perspective projection of the 600-cell.

KPP construction step by step:

- 1) Make a nontrivial acute triangulation of the regular tetrahedron:
 - $\checkmark~$ Take the 600–cell, remove facets adjacent to a fixed tetrahedron to obtain a 543–cell 3-dim surface.
 - \checkmark Make a stereographic projection; check the dihedral angles.
 - \checkmark Where angles are large, move vertices a bit; push exterior points to the boundary of a regular tetrahedron.
- 2) Do the same for the standard tetrahedron.
- 3) Assemble a cube from four standard and one regular tetrahedra.

FIGURE 9. Steps of the KPP construction. (see more pictures...)

Theorem [KPP, 2009]

There is a non-trivial acute triangulation of all Platonic solids.

Conjecture: Every convex polytope in \mathbb{R}^3 has an acute triangulation.

Still open for non-obtuse triangulations; known in a number of special cases (see Bern-Chew-Eppstein-Ruppert, Brandts–Korotov–Křížek–Šolc).

$d \ge 5$ case: completely impossible

Theorem^{*} [KPP, 2009]: A point in \mathbb{R}^5 cannot be surrounded with acute simplices.

Proof steps:

- 1) A triangulation of a d-manifold M is rich if every codim 2 face is surrounded with at least 5 simplices.
- 2) Use the generalized Dehn–Sommerville equations to show that for every rich 4-manifold M, we have:

of points in $M \leq \chi(M)$.

- 3) For d = 5, take simplices containing a given point. They give a rich triangulation of a 4-sphere, a contradiction.
- 4) The d = 5 case implies all d > 5 (Křížek).

 $^{*}~$ Křížek (2006) gave an erroneous proof of the theorem.

Kalai (1990) showed that every polytope in \mathbb{R}^5 has a 2-face with 3 or 4 vertices.

Dehn–Sommerville eq. for simplicial manifolds:

Theorem [Klee (1964), Macdonald (1971)]

Let M be a compact m-dimensional triangulated manifold with boundary. For $k = 0, \ldots, m$ we have:

$$f_k(M) - f_k(\partial M) = \sum_{i=k}^m (-1)^{i+m} \binom{i+1}{k+1} f_i(M).$$

Corollary: For d = 4 and $\partial M = \emptyset$, we have:

$$2f_1 = 3f_2 - 6f_3 + 10f_4, \qquad 2f_3 = 5f_4.$$

Lemma: If M is rich and closed, then $f_0 \leq \chi$.

Proof: Let N be the number of $(\Delta_2 \subset \Delta_4)$ flags. Then: $N = 10f_4, \quad N \ge 5f_2, \quad \text{which implies } f_2 \le 2f_4.$ Recall that $\chi = f_0 - f_1 + f_2 - f_3 + f_4.$ We conclude:

$$2(\chi - f_0) = -2f_1 + 2(f_2 - f_3 + f_4) = -(3f_2 - 6f_3 + 10f_4) + 2(f_2 - f_3 + f_4)$$

= $-f_2 + 4f_3 - 8f_4 = -f_2 + 10f_4 - 8f_4 = 2f_4 - f_2 \ge 0.$

d = 4 case: clouds are gathering

- ♠ The 4-cube does not have an acute triangulation. (KPP)
- There is no periodic acute partition of \mathbb{R}^4 . (KPP)

Main Theorem [KPP] :

For every $\varepsilon > 0$, there is no partition of \mathbb{R}^4 into simplices with all dihedral angles $< \pi/2 - \varepsilon$.

Proof of corollaries:

1) Acute triangulation of a 4-cube can be repeatedly reflected to make a periodic acute partition of the whole space \mathbb{R}^4 .

2) A periodic acute partition of \mathbb{R}^4 gives a *rich triangulation* of a 4-torus, a contradiction.

d = 4 case continued:

- ♦ The 600–cell has an acute triangulation. (easy)
- ♦ What about other regular polytopes: the 16-cell (cross-polytope), the 24-cell, the 120-cell? (open*)

Conjecture^{**}: Space \mathbb{R}^4 has an acute partition.

* I am willing to bet \$100 that the answer is NO for the regular cross-polytope. Note: space \mathbb{R}^4 can be tiled with regular cross-polytopes.

** Brandts–Korotov–Křížek–Šolc (2009) make the opposite conjecture.

22

Outline of the proof of Main Theorem:

Lemma 1. If all dihedral angles are $< \pi/2 - \varepsilon$, then the simplices have bounded geometry (the ratio of the edge lengths in every tetrahedron is bounded).

Lemma 2. Let M be a compact 4-manifold which is a subcomplex of a rich partition of \mathbb{R}^4 . Then $f_0 \leq 1 + f_2^{\partial} + f_1^{\partial}/2$.

Lemma 3. Let G be the graph (1-skeleton) of a rich partition of \mathbb{R}^4 . Then: $|X| \leq C |\partial X|$ for all $X \subset G, |X| < \infty$, and some $C = C(\varepsilon)$.

Proofs: L1 is easy. L2 uses D–S equations (boundary version) + homology calculations. L3 follows directly from L1 and L2.

Definition [*p*-parabolicity of graphs]

G = (V, W) is a locally finite infinite graph, $\Gamma(v)$ be the set of all semi-infinite self-avoiding paths γ in G starting from $v \in V$. $L^p(V)$ is the L^p space of functions $f : V \to \mathbb{R}_+$ on vertices. The *length* of a path γ in G is defined by $\operatorname{Length}_f(\gamma) = \sum_{w \in \gamma} f(w)$.

If graph G is p-parabolic, then

$$\operatorname{EL}(G) = \sup_{f \in L^p(V)} \inf_{\gamma \in \Gamma(v)} \frac{\operatorname{Length}_f(\gamma)^p}{\left(\|f\|_p\right)^p} = \infty.$$

Note: This definition does not depend on the choice of $v \in V$.

24

Theorem. [KPP, variation on Bonk–Kleiner (2002), etc.] Graph of a triangulation of \mathbb{R}^d with bounded geometry is d-parabolic.

Lemma. [Benjamini–Curien (2009)]

Let G = (V, E) be a *d*-parabolic infinite locally finite connected graph, and $\mu : \mathbb{Z}_+ \to \mathbb{Z}_+$ such that $\mu(|X|) \leq |\partial \Omega|$ holds for every finite $X \subset V$. Then for p > d, we have:

$$\sum_{k=1}^{\infty} \frac{1}{\mu(k)^{\frac{p}{p-1}}} = \infty.$$

Note: this is an extension of the Benjamini–Schramm inequality for impossibility of certain kissing sphere configurations in higher dimensions.