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The Problem:

A simplex ∆ ⊂ R
d is acute if all its dihedral angles are < π/2.

An acute triangulation is a finite subdivision into acute simplices.

1. For a convex polytope P ⊂ R
d, find an acute triangulation.

2. Find an acute partition of R
d.

Figure 1. An acute triangulation and an acute dissection of a square.
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Main Corollary [Kopczyński–P.–Przytycki (2009)]

A d-cube has an acute triangulation only for d ≤ 3.

This resolves an old folklore open problem:

Martin Garner (1960), Burago-Zalgaller (1960),

Eppstein–Sullivan–Üngör (2004), Kř́ıžek (2006), etc.

Note: There is an easy triangulation of a d-cube into
d! non-obtuse simplices.
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Why acute triangulations?

• Classical geometric problem.

• Finite element method.

• Crystallography.

• Large recreational literature.
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Finite element applications:

Input: triangulated surface S ⊂ R
3.

Goal: find a good∗ triangulation of the interior of S.

∗ good means all tetrahedra are as close to regular as possible.
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Figure 2. TetGen group from Berlin: triangulation of the head.

Statistics:

Input points: 20,796. Input facets: 41,588.

Mesh points: 350,980. Mesh tetrahedra: 1,366,269.
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Acute triangulations in the plane

⊲ Proposed by Martin Garner (Scientific American, 1960)

⊲ Resolved (independently) and extended by Burago–Zalgaller (1960)

(Existence only, no complexity bounds follow from the proof).

⊲ Easy to do in practice (Delaunay triangulations).

⊲ Beginning 1980’s heavily studied in the DCG community.

Theorem [Bern–Mitchell–Ruppert (1995) + Maehara (2002)]

Every n-gon in the plane has an acute triangulation with
O(n) triangles, which can be computed in linear time.
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Burago–Zalgaller’s proof

Theorem: Every polygon in the plane has an acute triangulation.

1) triangulate the polygon

2) make an acute triangulation of every triangle

3) assuming everything is rational: subtriangulate all triangles
by the common denominator

4) otherwise, use an approximation argument

Figure 3. Steps of the BZ proof.
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Flips on triangulations

Idea: use 2-flips to improve your triangulation (in any order).

Theorem: This always gives the Delaunay triangulation.

Observation: This always maximizes the min angle in a triangula-
tion.

Figure 4. 2-flips in a triangulation.
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Dimensionality curse

Philosophy: the higher the dimension, the harder it is to make
acute triangulations (both theoretically and practically).

d = 2 – relatively easy

d = 3 – possible sometimes; perhaps, always

d = 4 – impossible sometimes; perhaps, very rarely

d ≥ 5 – always impossible

Observation: Faces of an acute d-simplex are also acute simplices.

Thus, acute triangulation of a d-cube contains acute triangulations of
all n-cubes, for n < d.
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d = 3 case: the beginning of a beautiful friendship

♥ Studied for 30+ years. Until recently, very little progress.

♥ In practice: tile with Sommerville’s tetrahedra:

Figure 5. Sommerville’s tetrahedron.
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Diversion: acute partition of the space

♥ Aristotle: regular tetrahedron tiles the space (On the Heaven, 350 BC)

♥ Sommerville: four space-filling tetrahedra (1923).

♥ M. Goldberg: two new space-filling families (1974).

Figure 6. Aristotle, his error, Sommerville.
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More on acute partitions of the space

♥ Edmonds: if reflections are not allowed, then Sommerville’s 1923

classification is complete (2007)

♥ Eppstein–Sullivan–Üngör: a periodic acute partition of R
3 (2004)

♥ Delgado Friedrichs and Huson: no transitive acute partition of R
3 (1999)

Open: Find an acute partition of R
3 into congruent tetrahedra.

Figure 7. Trying to tile with regular tetrahedra.
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Back to polytopes

VanderZee–Hirani–Zharnitsky–Guoy, Kopczyński–P.–Przytycki (2009) :

⋄ acute triangulation of a cube (VHZG: 1370, KPP: 2715 tetrahedra)

⋄ VHZG proof uses advanced simulation (mesh-improving technique)

⋄ KPP proof uses the 600–cell (a regular polytope in R
4)

Figure 8. Graph drawn in the perspective projection of the 600-cell.
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KPP construction step by step:

1) Make a nontrivial acute triangulation of the regular tetrahedron:

X Take the 600–cell, remove facets adjacent to a fixed tetrahedron
to obtain a 543–cell 3-dim surface.

X Make a stereographic projection; check the dihedral angles.

X Where angles are large, move vertices a bit; push exterior
points to the boundary of a regular tetrahedron.

2) Do the same for the standard tetrahedron.

3) Assemble a cube from four standard and one regular tetrahedra.

Figure 9. Steps of the KPP construction. (see more pictures...)
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Theorem [KPP, 2009]

There is a non-trivial acute triangulation of all Platonic solids.

Conjecture: Every convex polytope in R
3 has an acute triangulation.

Still open for non-obtuse triangulations; known in a number of special
cases (see Bern-Chew-Eppstein-Ruppert, Brandts–Korotov–Kř́ıžek–Šolc).
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d ≥ 5 case: completely impossible

Theorem∗ [KPP, 2009] : A point in R
5 cannot be surrounded with

acute simplices.

Proof steps:

1) A triangulation of a d-manifold M is rich if every codim2 face
is surrounded with at least 5 simplices.

2) Use the generalized Dehn–Sommerville equations to show that
for every rich 4-manifold M , we have:

# of points inM ≤ χ(M).

3) For d = 5, take simplices containing a given point.
They give a rich triangulation of a 4-sphere, a contradiction.

4) The d = 5 case implies all d > 5 (Kř́ıžek).

∗ Kř́ıžek (2006) gave an erroneous proof of the theorem.

Kalai (1990) showed that every polytope in R
5 has a 2-face with 3 or 4 vertices.
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Dehn–Sommerville eq. for simplicial manifolds:

Theorem [Klee (1964), Macdonald (1971)]

Let M be a compact m–dimensional triangulated manifold with bound-
ary. For k = 0, . . . , m we have:

fk(M) − fk(∂M) =
m

∑

i=k

(−1)i+m

(

i + 1

k + 1

)

fi(M).

Corollary: For d = 4 and ∂M = ∅, we have:

2f1 = 3f2 − 6f3 + 10f4 , 2f3 = 5f4 .
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Lemma: If M is rich and closed, then f0 ≤ χ.

Proof: Let N be the number of (∆2 ⊂ ∆4) flags. Then:

N = 10f4 , N ≥ 5f2 , which implies f2 ≤ 2f4 .

Recall that χ = f0 − f1 + f2 − f3 + f4. We conclude:

2(χ−f0) = −2f1+2(f2−f3+f4) = −(3f2−6f3+10f4)+2(f2−f3+f4)

= −f2+4f3−8f4 = −f2+10f4−8f4 = 2f4−f2 ≥ 0. �
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d = 4 case: clouds are gathering

♠ The 4-cube does not have an acute triangulation. (KPP)

♠ There is no periodic acute partition of R
4. (KPP)

Main Theorem [KPP] :

For every ε > 0, there is no partition of R
4 into simplices

with all dihedral angles < π/2 − ε.
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Proof of corollaries:

1) Acute triangulation of a 4–cube can be repeatedly reflected to make
a periodic acute partition of the whole space R

4.

2) A periodic acute partition of R
4 gives a rich triangulation of a

4-torus, a contradiction.
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d = 4 case continued:

♠ The 600–cell has an acute triangulation. (easy)

♠ What about other regular polytopes: the 16–cell (cross-polytope),
the 24–cell, the 120–cell? (open∗)

Conjecture∗∗ : Space R
4 has an acute partition.

∗ I am willing to bet $100 that the answer is NO for the regular cross-polytope.
Note: space R

4 can be tiled with regular cross-polytopes.

∗∗ Brandts–Korotov–Kř́ıžek–Šolc (2009) make the opposite conjecture.
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Outline of the proof of Main Theorem:

Lemma 1. If all dihedral angles are < π/2−ε, then the simplices have
bounded geometry (the ratio of the edge lengths in every tetrahedron is
bounded).

Lemma 2. Let M be a compact 4–manifold which is a subcomplex of
a rich partition of R

4. Then f0 ≤ 1 + f ∂
2 + f ∂

1 /2.

Lemma 3. Let G be the graph (1-skeleton) of a rich partition of R
4.

Then: |X| ≤ C |∂X| for all X ⊂ G, |X| < ∞, and some C = C(ε).

Proofs: L1 is easy. L2 uses D–S equations (boundary version) + homology calcula-
tions. L3 follows directly from L1 and L2.
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Definition [p−parabolicity of graphs]

G = (V, W ) is a locally finite infinite graph, Γ(v) be the set of all
semi-infinite self-avoiding paths γ in G starting from v ∈ V .

Lp(V ) is the Lp space of functions f : V → R+ on vertices.

The length of a path γ in G is defined by Lengthf(γ) =
∑

w∈γ f(w).

If graph G is p–parabolic, then

EL(G) = sup
f∈Lp(V )

inf
γ∈Γ(v)

Lengthf(γ)p

(

‖f‖p

)p = ∞.

Note: This definition does not depend on the choice of v ∈ V .
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Theorem. [KPP, variation on Bonk–Kleiner (2002), etc.]

Graph of a triangulation of R
d with bounded geometry is d-parabolic.

Lemma. [Benjamini–Curien (2009)]
Let G = (V, E) be a d–parabolic infinite locally finite connected graph,
and µ : Z+ → Z+ such that µ(|X|) ≤ |∂Ω| holds for every finite X ⊂ V .
Then for p > d, we have:

∞
∑

k=1

1

µ(k)
p

p−1

= ∞.

Note: this is an extension of the Benjamini–Schramm inequality for impossibility

of certain kissing sphere configurations in higher dimensions.


