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Positive Semidefinite Matrices

For a real symmetric n × n-matrix A the following are equivalent:

◮ All n eigenvalues of A are positive real numbers.

◮ All 2n principal minors of A are positive real numbers.

◮ Every non-zero vector x ∈ R
n satisfies xTA · x > 0.

A matrix A is positive definite if it satisfies these properties, and it
is positive semidefinite if the following equivalent properties hold:

◮ All n eigenvalues of A are non-negative real numbers.

◮ All 2n principal minors of A are non-negative real numbers.

◮ Every vector x ∈ R
n satisfies xT A · x ≥ 0.

The set of all positive semidefinite n × n-matrices is a convex
cone of full dimension

(

n+1

2

)

. It is closed and semialgebraic.

The interior of this cone consists of all positive definite matrices.



Semidefinite Programming

A spectrahedron is the intersection of the cone of positive
semidefinite matrices with an affine-linear space. Its algebraic
representation is a linear combination of symmetric matrices

A0 + x1A1 + x2A2 + · · · + xmAm � 0 (∗)

Engineers call this is a linear matrix inequality.



Semidefinite Programming

A spectrahedron is the intersection of the cone of positive
semidefinite matrices with an affine-linear space. Its algebraic
representation is a linear combination of symmetric matrices

A0 + x1A1 + x2A2 + · · · + xmAm � 0 (∗)

Engineers call this is a linear matrix inequality.

Semidefinite programming is the computational problem
of maximizing a linear function over a spectrahedron:

Maximize c1x1 + c2x2 + · · · + cmxm subject to (∗)

Example: The smallest eigenvalue of a symmetric matrix A is

the solution of the SDP Maximize x subject to A − x · Id � 0.



Convex Polyhedra
Linear programming is semidefinite programming for diagonal
matrices. If A0,A1, . . . ,Am are diagonal n×n-matrices then

A0 + x1A1 + x2A2 + · · · + xmAm � 0

translates into a system of n linear inequalities in the m unknowns.



Convex Polyhedra
Linear programming is semidefinite programming for diagonal
matrices. If A0,A1, . . . ,Am are diagonal n×n-matrices then

A0 + x1A1 + x2A2 + · · · + xmAm � 0

translates into a system of n linear inequalities in the m unknowns.
A spectrahedron defined in this manner is a convex polyhedron:



Pictures in Dimension Two
Here is a picture of a spectrahedron for m = 2 and n = 3:



Pictures in Dimension Two
Here is a picture of a spectrahedron for m = 2 and n = 3:

Duality is important in both optimization and projective geometry:



Example: Multifocal Ellipses

Given m points (u1, v1), . . . , (um, vm) in the plane R
2, and

a radius d > 0, their m-ellipse is the convex algebraic curve

{

(x , y) ∈ R
2 :

m
∑

k=1

√

(x−uk)2 + (y−vk)2 = d

}

.

The 1-ellipse and the 2-ellipse are algebraic curves of degree 2.



Example: Multifocal Ellipses

Given m points (u1, v1), . . . , (um, vm) in the plane R
2, and

a radius d > 0, their m-ellipse is the convex algebraic curve

{

(x , y) ∈ R
2 :

m
∑
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√

(x−uk)2 + (y−vk)2 = d

}

.

The 1-ellipse and the 2-ellipse are algebraic curves of degree 2.

The 3-ellipse is an algebraic curve of degree 8:



2, 2, 8, 10, 32, ...
The 4-ellipse is an algebraic curve of degree 10:

The 5-ellipse is an algebraic curve of degree 32:



Concentric Ellipses

What is the algebraic degree of the m-ellipse?
How to write its equation?

What is the smallest radius d for which the m-ellipse is
non-empty? How to compute the Fermat-Weber point?



3D View

C =

{

(x , y , d) ∈ R
3 :

m
∑

k=1

√

(x−uk)2 + (y−vk)2 ≤ d

}

.



Ellipses are Spectrahedra
The 3-ellipse with foci (0, 0), (1, 0), (0, 1) has the representation
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The ellipse consists of all points (x , y) where this symmetric
8×8-matrix is positive semidefinite. Its boundary is a curve
of degree eight:



2, 2, 8, 10, 32, 44, 128, ...

Theorem: The polynomial equation defining the m-ellipse has

degree 2m if m is odd and degree 2m−
(

m
m/2

)

if m is even.

We express this polynomial as the determinant of a symmetric

matrix of linear polynomials. Our representation extends to

weighted m-ellipses and m-ellipsoids in arbitrary dimensions .....

[J. Nie, P. Parrilo, B.St.: Semidefinite representation of the k-ellipse, in

Algorithms in Algebraic Geometry, I.M.A. Volumes in Mathematics and

its Applications, 146, Springer, New York, 2008, pp. 117-132]

In other words, m-ellipses and m-ellipsoids are spectrahedra.
The problem of finding the Fermat-Weber point is an SDP.
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In other words, m-ellipses and m-ellipsoids are spectrahedra.
The problem of finding the Fermat-Weber point is an SDP.

Let’s now look at some spectrahedra in dimension three.
Our next picture shows the typical behavior for m = 3 and n = 3.



A Spectrahedron and its Dual



Non-Linear Convex Hull Computation

Input :
{

(t, t2, t3) ∈ R
3 : −1 ≤ t ≤ 1

}
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The convex hull of the moment curve is a spectrahedron.

Output :

(

1 x

x y

)

±
(

x y

y z

)

� 0



Characterization of Spectrahedra

A convex hypersurface of degree d in R
n is rigid convex

if every line passing through its interior meets (the
Zariski closure of) that hypersurface in d real points.

Theorem (Helton–Vinnikov (2006))

Every spectrahedron is rigid convex. The converse is true for n = 2.



Characterization of Spectrahedra

A convex hypersurface of degree d in R
n is rigid convex

if every line passing through its interior meets (the
Zariski closure of) that hypersurface in d real points.

Theorem (Helton–Vinnikov (2006))

Every spectrahedron is rigid convex. The converse is true for n = 2.

Open problem: Is every compact convex basic semialgebraic
set S the projection of a spectrahedron in higher dimensions?

Theorem (Helton–Nie (2008))

The answer is yes if the boundary of S is “sufficiently smooth”.



Questions about 3-Dimensional Spectrahedra

What are the edge graphs of spectrahedra in R
3?

How can one define their combinatorial types?

Is there an analogue to Steinitz’ Theorem for polytopes in R
3?

Consider 3-dimensional spectrahedra whose boundary is an
irreducible surface of degree n. Can such a spectrahedron have
(

n+1

3

)

isolated singularities in its boundary? How about n = 4?



Minimizing Polynomial Functions

Let f (x1, . . . , xm) be a polynomial of even degree 2d .
We wish to compute the global minimum x∗ of f (x) on R

m.

This optimization problem is equivalent to

Maximize λ such that f (x) − λ is non-negative on R
m.

This problem is very hard.
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m.

This optimization problem is equivalent to

Maximize λ such that f (x) − λ is non-negative on R
m.

This problem is very hard.

The optimal value of the following relaxtion gives a lower bound.

Maximize λ such that f (x) − λ is a sum of squares of polynomials.

The second problem is much easier. It is a semidefinite program.



Minimizing Polynomial Functions

Let f (x1, . . . , xm) be a polynomial of even degree 2d .
We wish to compute the global minimum x∗ of f (x) on R

m.

This optimization problem is equivalent to

Maximize λ such that f (x) − λ is non-negative on R
m.

This problem is very hard.

The optimal value of the following relaxtion gives a lower bound.

Maximize λ such that f (x) − λ is a sum of squares of polynomials.

The second problem is much easier. It is a semidefinite program.

Empirically, the optimal value of the SDP almost always agrees
with the global minimum. In that case, the optimal matrix of the
dual SDP has rank one, and the optimal point x∗ can be recovered
from this. How to reconcile this with Blekherman’s results?



SOS Programming: A Univariate Example

Let m = 1, d = 2 and f (x) = 3x4 + 4x3 − 12x2. Then

f (x) − λ =
(

x2 x 1
)





3 2 µ − 6
2 −2µ 0

µ − 6 0 −λ









x2

x

1





Our problem is to find (λ, µ) such that the 3×3-matrix is positive
semidefinite and λ is maximal.
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(
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)
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Our problem is to find (λ, µ) such that the 3×3-matrix is positive
semidefinite and λ is maximal. The optimal solution of this SDP is

(λ∗, µ∗) = (−32,−2).

Cholesky factorization reveals the SOS representation

f (x) − λ∗ =
(

(
√

3 x − 4√
3
) · (x + 2)

)2
+

8

3

(

x + 2
)2

.

We see that the global minimum is x∗ = −2.
This approach works for many polynomial optimization problems.



My Favorite Spectrahedron

Consider the intersection of the cone of 6×6 PSD matrices with
the 15-dimensional linear space consisting of all Hankel matrices

H =

















λ400 λ220 λ202 λ310 λ301 λ211

λ220 λ040 λ022 λ130 λ121 λ031

λ202 λ022 λ004 λ112 λ103 λ013

λ310 λ130 λ112 λ220 λ211 λ121

λ301 λ121 λ103 λ211 λ202 λ112

λ211 λ031 λ013 λ121 λ112 λ022

















.

This is a 15-dimensional spectrahedral cone.
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This is a 15-dimensional spectrahedral cone.

Dual to this intersection is the projection

Sym2(Sym2(R
3)) → Sym4(R

3)

taking a 6×6-matrix to the ternary quartic it represents. Its image
is a cone whose algebraic boundary is a discriminant of degree 27.



Orbitopes

An orbitope is the convex hull of an orbit under a real algebraic
representation of a compact Lie group. Primary examples are
the groups SO(n) and their products. Orbitopes for their adjoint
representations are continuous analogues of permutohedra.

Many of these special orbitopes are projections of spectrahedra.

A forthcoming paper with Raman Sanyal and Frank Sottile
develops the basic theory of orbitopes and has many examples.
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Example: Consider the orbitope of (x+y+z)4 under the
SO(3)-action on the space Sym4(R

3) of ternary quartics.

Quiz: Is this orbitope a spectrahedron?



Orbitopes

An orbitope is the convex hull of an orbit under a real algebraic
representation of a compact Lie group. Primary examples are
the groups SO(n) and their products. Orbitopes for their adjoint
representations are continuous analogues of permutohedra.

Many of these special orbitopes are projections of spectrahedra.

A forthcoming paper with Raman Sanyal and Frank Sottile
develops the basic theory of orbitopes and has many examples.

Example: Consider the orbitope of (x+y+z)4 under the
SO(3)-action on the space Sym4(R

3) of ternary quartics.

Quiz: Is this orbitope a spectrahedron?

Answer: Yes, it is the set of psd Hankel matrices H that satisfy

λ400 + λ040 + λ004 + 2λ220 + 2λ202 + 2λ022 = 9.

Problem. Classify all SO(n)-orbitopes that are spectrahedra.



Tautological Orbitopes

. . . are obtained by taking the convex hull of a matrix group.

Example The orbitope conv(SO(3)) is the set of 3×3-matrices





u11+u22−u33−u44 2u23 − 2u14 2u13 + 2u24

2u23 + 2u14 u11−u22+u33−u44 2u34 − 2u12

2u24 − 2u13 2u12 + 2u34 u11−u22−u33+u44





where U = (uij) runs over all 4×4 psd matrices having trace 1.



Tautological Orbitopes

. . . are obtained by taking the convex hull of a matrix group.

Example The orbitope conv(SO(3)) is the set of 3×3-matrices





u11+u22−u33−u44 2u23 − 2u14 2u13 + 2u24

2u23 + 2u14 u11−u22+u33−u44 2u34 − 2u12

2u24 − 2u13 2u12 + 2u34 u11−u22−u33+u44





where U = (uij) runs over all 4×4 psd matrices having trace 1.

Proof: Psd matrices having both trace 1 and rank 1 are of the form

U =
1

a2 + b2 + c2 + d2









a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2









Their images under the linear map parametrize the group SO(3).



Barvinok-Novik Orbitopes
The SO(2)-orbitope BN4 is the convex hull of the curve

θ 7→
(

cos(θ), sin(θ), cos(3θ), sin(3θ)
)

∈ R4.

This is the projection of a 6-dimensional Hermitian spectrahedron:



Barvinok-Novik Orbitopes
The SO(2)-orbitope BN4 is the convex hull of the curve

θ 7→
(

cos(θ), sin(θ), cos(3θ), sin(3θ)
)

∈ R4.

This is the projection of a 6-dimensional Hermitian spectrahedron:








1 x1 x2 x3

y1 1 x1 x2

y2 y1 1 x1

y3 y2 y1 1









where
xj = cj +

√
−1 · sj ,

yj = cj −
√
−1 · sj ,

under the map (c1, c2, c3, s1, s2, s3) 7→ (c1, c3, s1, s3). Here the
unknown cj represents cos(jθ), the unknown sj represents sin(jθ).

The curve is cut out by the 2×2-minors of the Toeplitz matrix.
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where
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√
−1 · sj ,

yj = cj −
√
−1 · sj ,

under the map (c1, c2, c3, s1, s2, s3) 7→ (c1, c3, s1, s3). Here the
unknown cj represents cos(jθ), the unknown sj represents sin(jθ).

The curve is cut out by the 2×2-minors of the Toeplitz matrix.

The faces of BN4 are certain edges and triangles. Its algebraic
boundary is the threefold defined by the degree 8 polynomial

x2
3 y6
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1 x3y

3
1 y3 + x6

1 y2
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2
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1 y2
1 + 4x3y

3
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1 y3 − 6x1x3y1y3 + x2
3y2

3 .



Conclusion

Spectrahedra and orbitopes deserve to be studied in their own
right, independently of their important uses in applications.

A true understanding of these convex bodies will require
the integration of three different areas of mathematics:

◮ Combinatorial Convexity

◮ Algebraic Geometry

◮ Optimization Theory

Please join us at IPAM in the Fall of 2010 !!


