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Throw n balls randomly into n bins.

Exercise: Max number in a bin is ∼ log n/ log log n (a.a.s.)

Theorem [Azar, Broder, Karlin and Upfal, ’94]
Throw the balls sequentially, each ball put into the least-full of
h ≥ 2 randomly chosen bins.
Then finally, max is O(ln ln n/ ln h).
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An application

Balance the load of machines, on-line.
‘load’ equals number of jobs assigned.
h choices for each job.
Then the max ‘load’ is about (ln ln n)/ ln h.

Theorem [ABKU]
With m jobs and n machines, m = O(n),
max load is a.a.s. at most (ln ln n)/ ln h + O(m/n).

Theorem [Berenbrink, Czumaj, Steger & Vöcking, ’00]
With arbitrary m,
max load is a.a.s. m/n + O(ln ln n) (fixed h ≥ 2).



An application

Balance the load of machines, on-line.
‘load’ equals number of jobs assigned.
h choices for each job.
Then the max ‘load’ is about (ln ln n)/ ln h.

Theorem [ABKU]
With m jobs and n machines, m = O(n),
max load is a.a.s. at most (ln ln n)/ ln h + O(m/n).

Theorem [Berenbrink, Czumaj, Steger & Vöcking, ’00]
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Large array of n disks.

m read requests arrive.

Each file can choose between two disks.
Task: Balance the loads.
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Efficient (O(m2)) optimal algorithm exists — solving a max flow
problem.
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Questions

(i) (Threshold) Fix k . What is the threshold m at which the
maximum load will first exceed k .

(ii) (Approximate algorithms) What about faster algorithms that
are ‘nearly optimal’, i.e. give the optimal load for most inputs
with given parameters?
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Offline load balancing: a graph orientation problem

A graph G is k -orientable if the edges can be oriented so that
every vertex has indegree at most k .

This condition holds iff max load is k .

Assumption: we consider G random in the space G(n,m).
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Cores and orientability

The k -core of a graph is the largest subgraph with all vertices
of degree at least k .

Clearly, if a graph has no (k + 1)-core, it is k -orientable.

The converse is not true.

If G has a subgraph with average degree greater than 2k then
G is not k -orientable.

The converse is also true(!)
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Theorem [Hakimi, ’65]
G is not k -orientable implies G has a subgraph with average
degree greater than 2k .

Proof If not k -orientable then the following has max flow of
value less than m = |E(G)|.
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Old question

What is the threshold for G ∈ G(n,m) possessing a k -core?

Theorem [Pittel, Spencer, W. ’95]

The threshold for having a k -core is m = ckn/2 where ck is a
constant depending on k .

ck = k + dk
√

k + O(1).
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Newer question

What is the threshold for k -orientability of G ∈ G(n,m)?

Karp and Saks [’98] conjectured that it is the same as the
threshold for

d̄k+1 > 2k

where d̄k+1(G) is the average degree of vertices in the
(k + 1)-core of G.

This was proved in ’07 by Cain, Sanders and Wormald, and
independently by Fernholz and Ramachandran.

This threshold for m is µk+1n/2 where µk+1 is constant.
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m < (µk+1 − ε)n/2 implies k -orientable (a.a.s.)

Proved algorithmically in both cases doing orientations edge by
edge.
Note: we always orient the remaining incident edges to a
vertex if doing so does not exceed load k .

load-degree algorithm
* orient edges one by one to vertices.
* a vertex with j edges oriented to it and i unoriented has ‘load
degree’ j + i/2. Greedily choose a vertex of minimum load
degree and orient an unoriented edge to it.

Theorem [CSW ’07]
For c < µk+1 − ε, the load-degree algorithm a.a.s. completes a
k -orientation in a random graph G(n, cn/2).
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FR’s algorithm: choose a vertex of min degree, k + j , and do
the following:

Theorem [FR]
For c < µk+1 − ε, this algorithm a.a.s. completes a k -orientation
in a random graph G(n, cn/2).
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Problem version 2. More choices

Choosing one out of h
What if h copies of each file are stored?

Each file can choose 1 out of h given disks.

Orientation problem becomes the following:
Given an h-uniform hypergraph G, assign (‘orient’) each edge
of G to exactly one of its incident vertices, so that each vertex is
allocated at most k edges.

The same flow proof gives:

Orientation exists iff no subhypergraph has average degree at
least hk .
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Conjecture

A.a.s. if d̄ < hk−ε, where d̄ is the average degree in the (k +1)-
core of G ∈ G(n,m,h), then G is k-orientable.

Theorem [Gao and W, ’09]
The conjecture is true for fixed k provided it is sufficiently large.

The threshold at which this occurs (core of h-uniform
hypergraph gets average degree hk ) is known. (Cain and
Wormald; Molloy, Cooper, Janson and Luczak.)
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Problem version 3. Even more to choose from

Storing two copies of every file requires double the space.
More efficient storage strategy:

... and what if two disks fail? More general error correcting
strategies.
Each file will need to choose w out of h disks, for some
1 ≤ w < h.
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More general orientations

A hyperedge is w-oriented if exactly w distinct vertices in it are
marked with positive signs with respect to the hyperedge.
The indegree of a vertex is the number of positive signs it
receives.
A (w , k)-orientation of an h-hypergraph is a w-orientation all
hyperedges such that each vertex has indegree at most k .
If such a (w , k)-orientation exists, we say the hypergraph is
(w , k)-orientable .

The disks can be allocated in the w-out-of-h setting iff the
corresponding hypergraph is (w , k)-orientable.
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More general cores

light vertex: one with degree at most k .
free step (I) : For any light vertex v , give v positive sign with
respect to all incident hyperedges, delete v and remove v from
all incident hyperedges but don’t delete those hyperedges .
free step (II) : remove any hyperedge if its cardinality falls to
h − w . (Must then have w vertices with positive signs.)

(w , k)-core : the result of repeating free steps until no more can
be taken. Has mixed edge sizes.
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Conjecture
The event

w−1∑
j=0

(w − j)mh−j < kn̄,

where
mh−j is the number of edges of cardinality h− j in the (w , k +1)-
core of G ∈ G(n,m,h),
n̄ is its number of vertices,
has the same sharp threshold as G being (w , k)-orientable.

In
particular (w , k)-orientability has a sharp threshold.

Theorem [Gao and W, ’09]
The conjecture is true for fixed k sufficiently large.

We determine the threshold in terms of the solution of a system
of differential equations.



Conjecture
The event

w−1∑
j=0

(w − j)mh−j < kn̄,

where
mh−j is the number of edges of cardinality h− j in the (w , k +1)-
core of G ∈ G(n,m,h),
n̄ is its number of vertices,
has the same sharp threshold as G being (w , k)-orientable. In
particular (w , k)-orientability has a sharp threshold.

Theorem [Gao and W, ’09]
The conjecture is true for fixed k sufficiently large.

We determine the threshold in terms of the solution of a system
of differential equations.



Proof approach

Look again at the flow formulation. E.g.: h = 3, w = 2.



Proof approach

Look again at the flow formulation. E.g.: h = 3, w = 2.



Proof approach

Look again at the flow formulation. E.g.: h = 3, w = 2.



From the flow:
Lemma
An h-hypergraph G can be (w , k)-oriented iff there is no set S ⊆
V (G) with

1
|S|

∑
x∈E(G)

(
|x ∩ S| − (h − w)

)+
> k .

Major result:

Sub-theorem
Let C denote the (w , k + 1)-core of G ∈ G(n,m,h). A.a.s. if

1
|S|

∑
x∈E(G)

(
|x ∩ S| − (h − w)

)+
< k − ε

for S = C then it holds for all S ⊆ V (G).
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For S = C, the requirement becomes

1
|C|

w−1∑
j=0

(w − j)mh−j < k − ε

where mh−j is the number of edges of the core of size h − j .
This gives the theorem.

If w = 1 this says the average degree is less than h(k − ε).

To prove the sub-theorem we need properties of the random
(w , k + 1)-core.

To study the threshold we also need properties of the random
(w , k + 1)-core.
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Analysing the random (w , k + 1)-core

A random pseudograph model of Bollobás and Frieze (’85),
Chvátal (’91), etc:

Given positive integers n and m, define the probability space of
functions f : [2m]→ [n], all functions equiprobable.

Pseudograph P(n,m): edges are {f (2i − 1), f (2i)} (1 ≤ i ≤ m).
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Important properties of the pseudograph model

Suppose that m = cn/2.

I Simple graphs occur uniformly at random. That is, P(n,m)
restricted to simple graphs is G(n,m).

I P(P(n,m) is simple) ∼ e−c/2−c2/4.
I Connection property: events a.a.s. true for P(n,m) (c

fixed) are a.a.s. true for G(n,m).
I Multinomial property of degree sequence (X1, . . . ,Xn): for

nonnegative integer vector (d1, . . . ,dn) with
∑

i di = 2m,

P(Xi = di for 1 ≤ i ≤ n) =
(2m)!

n2m
∏n

i=1 di !
.
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Our adaptation

For a random pseudo-hypergraph Pn(h1, . . . ,hm) with

I n vertices
I m edges of cardinalities h1, . . . ,hm

Change domain of the random mapping from 1, . . . ,2m to a set
of balls with hi of them labelled i (1 ≤ i ≤ m).
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Analysis

At each step, the remaining bins are filled with a random
allocation, conditional upon the number of balls of each label
and that each bin receives at least k + 1 balls.

The number of balls in the bins therefore has a ‘truncated’
multinomial distribution which is close to a set of copies of
truncated Poisson:

P(X = j) =
e−λλj/j!∑

i≥k+1 e−λλi/i!
.
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Asymptotic Poisson distribution helps determine the expected
changes in numbers of edges of each cardinality at each step.

The differential equation method shows sharp concentration for
the final core (solve numerically).

Even without d.e.’s we can prove (after considerable work, and
for large k )

Sub-theorem
Let C denote the (w , k + 1)-core of G ∈ G(n,m,h). A.a.s. if

1
|S|

∑
x∈E(G)

(
|x ∩ S| − (h − w)

)+
< k − ε

for S = C then it holds for all S ⊆ V (G).
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Summary

I For large k we have shown that k -orienting the random
h-uniform hypergraph has a threshold determined by the
density of the (k + 1)-core. This generalises (for large k )
the result known for graphs that proved Karp and Saks’
conjecture, with a new simpler proof.

I Even further generalising, existence of a (w , k)-orientation
(k large) of the random h-uniform hypergraph is essentially
determined by the existence of a subgraph with a certain
‘density’.

I Conjecture the same results for all k ≥ 1.
I No fast algorithm for loadbalancing yet. Conjecture that the

obvious generalisation of the load-degree algorithm does
the job for all (w , k).
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