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Basic models of random matrices

Let £ be a real or complex-valued random variable with mean 0
and variance 1.

Examples. real gaussian, complex gaussian, Bernoulli (+1 with
probability 1/2).

Non-symmetric model. M,(&) denotes the random n x n matrix
whose entries are i.i.d. copies of &.

Symmetric model. M;”" denotes the random symmetric n x n
matrix whose upper triangular entries are i.i.d. copies of &.

Remark. For the symmetric model, one can often have a different
distribution for the diagonal entries.

Related models. Adjacency matrix of a random graphs
(Erdés-Rény G(n, p), random regular graphs, etc).
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Some Main Problems

Statistics, Numerical Analysis. Spectral decomposition (Hwang,
Wishart 1920s) Complexity of a computational problem involving a
random matrix (von Neumann-Goldstine 1940s).

Mathematical Physics/Probability. Distributions of eigenvalues
(global and local statistics) (Wigner 1950s).

Combinatorics. Various combinatorial problems (Komlés 1960s).

There is a wonderful interaction between the theory of random
matrices and other areas of mathematics (number theory, additive
combinatorics, theoretical computer science etc).
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Combinatorial Problems

Singularity. How often is a random matrix singular ?
Determinant. What is the typical value of the determinant ?
How is it distributed 7

Permanent. What is the typical value of the determinant ? How
is it distributed ?

Eigenvectors. How does a typical eigenvector look like ?



The singularity problem: non-symmetric case

Let £ be Bernoulli (so we consider random +1 matrices).
Question. What is p,, the probability that M, is singular ?

Conjecture. (folklore/notorious) p, = (1/2 + o(1))".

The lower bound is obvious:

P(there are two equal rows/columns) = (1 4 o(1))n*27".

Upper bound: o(1) (Komlés 67).



Short proof of Komlds theorem

n—1

pn <Y P(Xiy1 € Span(Xy,...,X))).
i=1

Fact. A subspace V of dim d contains at most 29 Bernoulli vectors
(as any vector in V is determined by a set of d coordinates). So
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Short proof of Komlds theorem

n—1

pn <Y P(Xiy1 € Span(Xy,...,X))).
i=1

Fact. A subspace V of dim d contains at most 29 Bernoulli vectors
(as any vector in V is determined by a set of d coordinates). So

It is enough to show that the contribution of the last k := loglog n
terms is o(1). We will show

P(X, € Span(Xi,...,Xn-1))



A m x n matrix is [-universal if for any set of / indices i1, ...,/ and
any set of signs €1,..., ¢/, there is a row X where the jjth entry of
X has sign ¢j, forall 1 < j < /.

Fact. / =logn. A random n x n Bernoulli matrix is /-universal
with probability at least 1 — %

Proof. P(fails) < (7)2/(1 - %)” < exp(2llogn—2'n) < n7L.

So with probability 1 — % any vector v orthogonal to Xi,..., X,—1
should have at least / non-zero coordinate. Then

1

P(X, € Span(X,...,Xp 1)) < P(Xyv =0) = O(1"?) < — .
Iog/ n

Lemma (Littlewood-Offord-Erdds, 1940s)

If a1,...,a; are non zero numbers, then

P(ar&y + -+ a§ =0) = O(I/?).
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Further developments

O(n~1/?) (Komlés 77),

.999" (Kahn-Komlés -Szemerédi 95),
(3/4+ o(1))" (Tao-V. 06),

(1/v/2 + o(1))" (Bourgain-V-Wood 09).
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Tools

Dominating principle (Haldsz, KKSZ).
Inverse Llttlewood-Offord theory (TV)
Jcosx| < 3 + 5 cos?
cosx| < o+ cos2x.
Fractional dimension (BVW)

1 1
| cos x|* < 5 T 5cos 2x.

General theorem (BVW 09).



Littlewood-Offord theorems

Improvements of LOE lemma with extra assumptions on the a;.
For instance, if the a; are different, then (Erdés-Moser,
Sérkozy-Szemerédi 1960s) showed

P(ai&y + -+ a& = 0) = 0(17%/?).

Stanley showed the extremal set is an arithmetic progression.
Kleitman, Katona, Franlk-Furedi, Halasz, etc.



Inverse Littlewood-Offord theorems

Tao-V. 05: If the probability in question is large, then
{a1,...,an} can be characterized.

If P> n*, then (most of) a; belong to an AP of lenght nB.

The relation between A and B is of importance. A near optimal
bound was obtained by Tao-V. (07), that lead to the establishment
of the Circular Law Conjecture concerning the eigenvalues of M,
(Budapest 08, Bulletin AMS 09).



Inverse Littlewood-Offord theorems

Using a different approach, Nguyen-V. (09+) obtained the optimal
relation. As a corollary, one obtains all forward LOE results such as
Sarkozy-Szemerédi theorem.

One can also obtain an asymptotic, stable, version of Stanley's
result (algebra-free).

See: Hoi Nguyen's talk (December).



The singularity problem: symmetric case

Let £ be Bernoulli (so we consider random +1 matrices).
Question. What is py/"", the probability that M is singular ?
Conjecture. (B. Weiss 1980s) p;"" = o(1).

This is the symmetric version of Komlds 1967 theorem.

Theorem (Costello-Tao-V. 2005)
pYm = O(n_1/4).



Quadratic Littlewood-Offord

Recently, Kevin Costello (2009) improved the bound to n~1/2%¢,
which seems to be the limit of the method.

Lemma (Costello 09)

Consider the quadratic form Q = Zl<u<n aji&i&; with ajj # 0.
Then T

P(Q = 0) < n V/2¥.

Question. Higher degree polynomials ?
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Recently, Kevin Costello (2009) improved the bound to n~1/2%¢,
which seems to be the limit of the method.

Lemma (Costello 09)

Consider the quadratic form Q = Zl<u<n aji&i&; with ajj # 0.
Then T

P(Q = 0) < n V/2¥.

Question. Higher degree polynomials ?
Conjecture. (V. 2006) p®™(n) = (1/2+ o(1))".
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Rank of random graphs

The Costello-Tao-V. result also holds for A(n, p), the adjacency
matrix of G(n, p) with constant p.

Question. What about non-constant p 7

If p<(1—€)logn/n, A(n,p) is almost surely singular, as the
graph has non-isolated vertices.

Theorem (Costello-V. 06)

For p > (1+¢€)logn/n, A(n, p) is a.s. non-singular.

Theorem (Costello-V. 07)

For p = clogn/n with 0 < ¢ < 1, the co-rank of A(n, p) (a.s.)
comes from small local obstructions.

A set S is a local obstruction if the number of neighbors of S is
less than |S|. Small means |S| < K(c).

For p = ¢/n, Bordenare and Lelarge (09) computed the
asymptotics of the rank. | wonder if one can characterize the
co-rank.



Random regular graphs

Conjecture. [V. 2006] A(n, d) (adjacency matrix of a random
regular graphs of degree d) is a.s non-singular for all 3 < d < n/2.



The second eigenvalue

Conjecture. A(n, d) (adjacency matrix of a random regular graphs
of degree d) has second eigenvalue O(v/d) for all 3 < d < n/2.

Known for d = O(1) (Freedman, Kahn-Szemerédi 1989). Recently
Freedman showed

A= (2+o(1)Vd 1.

The KSz argument seems to extend to cover up to d < n'/2. For
d = n/2, the best current bound is O(y/nlog n).
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Determinant: non-symmetric case

Question. What is the typical value of | det M,| 7
Turdn (1940s): By linearity of expectation,

E(det M2) = n! = pli+e()n,
Conjecture. As. |det M,| = n(t/2+e()n,

Theorem (Tao-V. 2004)
A.s.

|det Mn’ _ n(1/2+o(1))n.



Ideas

Determinant is the volume of the parallelepiped spanned by the
row vectors.

Use the height times base formula.

Most of the distances are strongly concentrated.

Lemma (Tao-V. 04)

The distance from a random vectorin R" to a fixed subspace of
dimension d is, with high prob, ~/n — d + small error.

The remaining few distances are not too small !.



Determinant: Distribution

Question. We know P(det = 0) = exp(—©(n)). What about
P(det = z), for integer z # 0 7

| think P(det = z) = exp(—w(n)), perhaps < n™<" for some
constant ¢ > 0.

Question. Limiting distribution of | det |

log | det M,| — 3 log(n — 1)!
cy/logn

— N(0,1).

(Girko (777) 80s).



Determinant: Concentration

For the next discussion, consider a slightly more general model:
Let M be a deterministic matrix with entries 0 < ¢ < m;; < C. Let
& be a random variable with mean 0 and variance one and M,, be
the random matrix with entries m;;§;;. (So the entries have
different variances.)

Question. How strongly is | det M,| concentrated ?



Determinant: Concentration

For the next discussion, consider a slightly more general model:
Let M be a deterministic matrix with entries 0 < ¢ < m;; < C. Let
& be a random variable with mean 0 and variance one and M,, be
the random matrix with entries m;;§;;. (So the entries have
different variances.)

Question. How strongly is | det M,| concentrated ?

Motivation. Estimating permanent using random determinant.

Given a matrix A, define mj; := | /aj;, then

Per A := E|det M,|°.



Markov chain: Jerrum-Sinclair, J-S-Vigoda (00). Random
determinant: Barvinok (00): exp(cn) with £ guassian,
Friedland-Rider-Zeitouni (04) exp(en) with § guassian (under
boundedness).

Theorem (Costello-V. 07)

With high probability and & guassian or Bernoulli

| det M,| /E| det M,,| < exp(n?/3ToM).



Markov chain: Jerrum-Sinclair, J-S-Vigoda (00). Random
determinant: Barvinok (00): exp(cn) with £ guassian,
Friedland-Rider-Zeitouni (04) exp(en) with § guassian (under
boundedness).

Theorem (Costello-V. 07)

With high probability and & guassian or Bernoulli

| det M,| /E| det M,,| < exp(n?/3ToM).

Conjecture. (Kostello-V. 07) With high probability,
| det M,|/E| det M,,| < n©),
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Permanent: non-symmetric case

Question. What is the typical value of | PerM,| ?
Turdn's : E( PerM?2) = n!.

Conjecture. As. | PerM,| = n(t/2+o(1)n,

It had been a long standing open conjecture that a.s | PerM,| > 0
(the permanent version of Komlds 1967 theorem).

Theorem (Tao-V. 2008)

As.

| Per M| = n(1/2+0(1))n

Question. What about limiting distribution and concentration 7
(not known even for gaussian case).

Question. What is g, the probability that the permanent is zero ?
Current bounds. g, < n=?. The truth may be n=b".
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Determinant-Permanent: Symmetric case

Still by linearity of expectation

E| det Mﬁym’2 _ n(1+o(1)n

E| PerMm|2 = p(t+o()n,
Conjecture. As. |det M| = p(1/2+o(1)n
Conjecture. As. | PerM"| = n(1/2+o()n,

The major difficulty here is that the rows are no longer
independent.

Recently, Tao-V. (2009) confirmed the first conjecture, the second
is till open.



Eigenvectors

. sym .
Consider M;”™. Its eigenvectors form a orthonormal system
Viyeooy Vi, |lVil| = 1

Question. How do the v; look like ?
sub-Question. ||v;||o =7(Linial)

Theorem (Tao-V. 2009)
With high probability

miax ||VI||OO _ n—1/2+o(1).



