Random matrices: A Survey

Van H. Vu

Department of Mathematics Rutgers University

(ロ)、(型)、(E)、(E)、 E) の(の)

Let ξ be a real or complex-valued random variable with mean 0 and variance 1.

Examples. real gaussian, complex gaussian, Bernoulli (± 1 with probability 1/2).

・ロト・日本・モート モー うへで

Let ξ be a real or complex-valued random variable with mean 0 and variance 1.

Examples. real gaussian, complex gaussian, Bernoulli (± 1 with probability 1/2).

Non-symmetric model. $M_n(\xi)$ denotes the random $n \times n$ matrix whose entries are i.i.d. copies of ξ .

Let ξ be a real or complex-valued random variable with mean 0 and variance 1.

Examples. real gaussian, complex gaussian, Bernoulli (± 1 with probability 1/2).

Non-symmetric model. $M_n(\xi)$ denotes the random $n \times n$ matrix whose entries are i.i.d. copies of ξ .

Symmetric model. M_n^{sym} denotes the random symmetric $n \times n$ matrix whose upper triangular entries are i.i.d. copies of ξ .

Let ξ be a real or complex-valued random variable with mean 0 and variance 1. *Examples.* real gaussian, complex gaussian, Bernoulli (±1 with probability 1/2).

Non-symmetric model. $M_n(\xi)$ denotes the random $n \times n$ matrix whose entries are i.i.d. copies of ξ .

Symmetric model. M_n^{sym} denotes the random symmetric $n \times n$ matrix whose upper triangular entries are i.i.d. copies of ξ .

Remark. For the symmetric model, one can often have a different distribution for the diagonal entries.

Let ξ be a real or complex-valued random variable with mean 0 and variance 1. *Examples.* real gaussian, complex gaussian, Bernoulli (±1 with probability 1/2).

Non-symmetric model. $M_n(\xi)$ denotes the random $n \times n$ matrix whose entries are i.i.d. copies of ξ .

Symmetric model. M_n^{sym} denotes the random symmetric $n \times n$ matrix whose upper triangular entries are i.i.d. copies of ξ .

Remark. For the symmetric model, one can often have a different distribution for the diagonal entries.

Related models. Adjacency matrix of a random graphs (Erdös-Rény G(n, p), random regular graphs, etc).

Statistics, Numerical Analysis. Spectral decomposition (Hwang, Wishart 1920s) Complexity of a computational problem involving a random matrix (von Neumann-Goldstine 1940s).

Statistics, Numerical Analysis. Spectral decomposition (Hwang, Wishart 1920s) Complexity of a computational problem involving a random matrix (von Neumann-Goldstine 1940s).

Mathematical Physics/Probability. Distributions of eigenvalues (global and local statistics) (Wigner 1950s).

Statistics, Numerical Analysis. Spectral decomposition (Hwang, Wishart 1920s) Complexity of a computational problem involving a random matrix (von Neumann-Goldstine 1940s).

Mathematical Physics/Probability. Distributions of eigenvalues (global and local statistics) (Wigner 1950s).

Combinatorics. Various combinatorial problems (Komlós 1960s).

There is a wonderful interaction between the theory of random matrices and other areas of mathematics (number theory, additive combinatorics, theoretical computer science etc).

Singularity. How often is a random matrix singular ?

Singularity. How often is a random matrix singular ? **Determinant.** What is the typical value of the determinant ? How is it distributed ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Singularity. How often is a random matrix singular ?
Determinant. What is the typical value of the determinant ?
How is it distributed ?
Permanent. What is the typical value of the determinant ? How is it distributed ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Singularity. How often is a random matrix singular ?
Determinant. What is the typical value of the determinant ?
How is it distributed ?
Permanent. What is the typical value of the determinant ? How is it distributed ?
Eigenvectors. How does a typical eigenvector look like ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let ξ be Bernoulli (so we consider random ± 1 matrices). **Question.** What is p_n , the probability that M_n is singular ? **Conjecture.** (folklore/notorious) $p_n = (1/2 + o(1))^n$. The lower bound is obvious:

P(there are two equal rows/columns) = $(1 + o(1))n^2 2^{-n}$.

Upper bound: o(1) (Komlós 67).

Short proof of Komlós theorem

$$p_n \leq \sum_{i=1}^{n-1} \mathbf{P}(X_{i+1} \in \operatorname{Span}(X_1, \dots, X_i)).$$

Fact. A subspace V of dim d contains at most 2^d Bernoulli vectors (as any vector in V is determined by a set of d coordinates). So

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$p_n \leq \sum_{i=1}^{n-1} \frac{2^i}{2^n} =$$

Short proof of Komlós theorem

$$p_n \leq \sum_{i=1}^{n-1} \mathbf{P}(X_{i+1} \in \operatorname{Span}(X_1, \ldots, X_i)).$$

Fact. A subspace V of dim d contains at most 2^d Bernoulli vectors (as any vector in V is determined by a set of d coordinates). So

$$p_n \leq \sum_{i=1}^{n-1} \frac{2^i}{2^n} = 1 - \frac{2}{2^n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Short proof of Komlós theorem

$$p_n \leq \sum_{i=1}^{n-1} \mathbf{P}(X_{i+1} \in \operatorname{Span}(X_1, \ldots, X_i)).$$

Fact. A subspace V of dim d contains at most 2^d Bernoulli vectors (as any vector in V is determined by a set of d coordinates). So

$$p_n \le \sum_{i=1}^{n-1} \frac{2^i}{2^n} = 1 - \frac{2}{2^n}$$

It is enough to show that the contribution of the last $k := \log \log n$ terms is o(1). We will show

$$\mathbf{P}(X_n \in \operatorname{Span}(X_1, \dots, X_{n-1})) \leq \frac{1}{\log^{1/3} n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A $m \times n$ matrix is *l*-universal if for any set of *l* indices i_1, \ldots, i_l and any set of signs $\epsilon_1, \ldots, \epsilon_l$, there is a row X where the i_j th entry of X has sign ϵ_j , for all $1 \le j \le l$. Fact. $l = \log n$. A random $n \times n$ Bernoulli matrix is *l*-universal with probability at least $1 - \frac{1}{n}$. Proof. P(*fails*) $\le {n \choose l} 2^l (1 - \frac{1}{2^l})^n \le \exp(2l \log n - 2^l n) \le n^{-1}$. So with probability $1 - \frac{1}{n}$, any vector v orthogonal to X_1, \ldots, X_{n-1} should have at least l non-zero coordinate. Then

$$\mathbf{P}(X_n \in \text{Span}(X_1, \dots, X_{n-1})) \le \mathbf{P}(X_n \cdot v = 0) = O(l^{1/2}) < \frac{1}{\log^{1/3} n}.$$

Lemma (Littlewood-Offord-Erdős, 1940s)

If a_1, \ldots, a_l are non zero numbers, then

$$\mathbf{P}(a_1\xi_1 + \cdots + a_l\xi_l = 0) = O(l^{-1/2}).$$

Further developments

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

$$O(n^{-1/2})$$
 (Komlós 77),

 $O(n^{-1/2})$ (Komlós 77), .999ⁿ (Kahn-Komlós -Szemerédi 95),

 $O(n^{-1/2})$ (Komlós 77), .999ⁿ (Kahn-Komlós -Szemerédi 95), $(3/4 + o(1))^n$ (Tao-V. 06),

$$O(n^{-1/2})$$
 (Komlós 77),
.999ⁿ (Kahn-Komlós -Szemerédi 95),
 $(3/4 + o(1))^n$ (Tao-V. 06),
 $(1/\sqrt{2} + o(1))^n$ (Bourgain-V-Wood 09).

Dominating principle (Halász, KKSZ). Inverse LIttlewood-Offord theory (TV)

$$|\cos x| \leq \frac{3}{4} + \frac{1}{4}\cos 2x.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dominating principle (Halász, KKSZ). Inverse LIttlewood-Offord theory (TV)

$$|\cos x| \leq \frac{3}{4} + \frac{1}{4}\cos 2x.$$

Fractional dimension (BVW)

$$|\cos x|^2 \le \frac{1}{2} + \frac{1}{2}\cos 2x.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General theorem (BVW 09).

Improvements of LOE lemma with extra assumptions on the a_i . For instance, if the a_i are different, then (Erdős-Moser, Sárközy-Szemerédi 1960s) showed

 $\mathbf{P}(a_1\xi_1 + \cdots + a_l\xi_l = 0) = O(l^{-3/2}).$

Stanley showed the extremal set is an arithmetic progression. Kleitman, Katona, Franlk-Füredi, Halaśz, etc. Tao-V. 05: If the probability in question is large, then $\{a_1, \ldots, a_n\}$ can be characterized. If $P \ge n^{-A}$, then (most of) a_i belong to an AP of lenght n^B . The relation between A and B is of importance. A near optimal bound was obtained by Tao-V. (07), that lead to the establishment of the Circular Law Conjecture concerning the eigenvalues of M_n (Budapest 08, Bulletin AMS 09). Using a different approach, Nguyen-V. (09+) obtained the optimal relation. As a corollary, one obtains all forward LOE results such as Sárkozy-Szemerédi theorem.

One can also obtain an asymptotic, stable, version of Stanley's result (algebra-free).

See: Hoi Nguyen's talk (December).

Let ξ be Bernoulli (so we consider random ± 1 matrices). Question. What is p_n^{sym} , the probability that M_n^{sym} is singular? Conjecture. (B. Weiss 1980s) $p_n^{sym} = o(1)$.

This is the symmetric version of Komlós 1967 theorem.

Theorem (Costello-Tao-V. 2005)

 $p^{sym} = O(n^{-1/4}).$

Recently, Kevin Costello (2009) improved the bound to $n^{-1/2+\epsilon}$, which seems to be the limit of the method.

Lemma (Costello 09)

Consider the quadratic form $Q = \sum_{1 \le i,j \le n} a_{ij} \xi_i \xi_j$ with $a_{ij} \ne 0$. Then

$$\mathsf{P}(Q=0) \leq n^{-1/2+\epsilon}$$

Question. Higher degree polynomials ?

Recently, Kevin Costello (2009) improved the bound to $n^{-1/2+\epsilon}$, which seems to be the limit of the method.

Lemma (Costello 09)

Consider the quadratic form $Q = \sum_{1 \le i,j \le n} a_{ij} \xi_i \xi_j$ with $a_{ij} \ne 0$. Then

$$\mathsf{P}(Q=0) \leq n^{-1/2+\epsilon}$$

Question. Higher degree polynomials ? **Conjecture.** (V. 2006) $p^{sym}(n) = (1/2 + o(1))^n$.

Rank of random graphs

The Costello-Tao-V. result also holds for A(n, p), the adjacency matrix of G(n, p) with constant p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rank of random graphs

The Costello-Tao-V. result also holds for A(n, p), the adjacency matrix of G(n, p) with constant p. **Question.** What about non-constant p?

If $p < (1 - \epsilon) \log n/n$, A(n, p) is almost surely singular, as the graph has non-isolated vertices.

Theorem (Costello-V. 06)

For $p > (1 + \epsilon) \log n/n$, A(n, p) is a.s. non-singular.

Theorem (Costello-V. 07)

For $p = c \log n/n$ with 0 < c < 1, the co-rank of A(n, p) (a.s.) comes from small local obstructions.

A set S is a local obstruction if the number of neighbors of S is less than |S|. Small means $|S| \le K(c)$. For p = c/n, Bordenare and Lelarge (09) computed the asymptotics of the rank. I wonder if one can characterize the co-rank.

Conjecture. [V. 2006] A(n, d) (adjacency matrix of a random regular graphs of degree d) is a.s non-singular for all $3 \le d \le n/2$.

Conjecture. A(n, d) (adjacency matrix of a random regular graphs of degree d) has second eigenvalue $O(\sqrt{d})$ for all $3 \le d \le n/2$.

Known for d = O(1) (Freedman, Kahn-Szemerédi 1989). Recently Freedman showed

$$\lambda = (2 + o(1))\sqrt{d - 1}.$$

The KSz argument seems to extend to cover up to $d \le n^{1/2}$. For d = n/2, the best current bound is $O(\sqrt{n \log n})$.

(日) (同) (三) (三) (三) (○) (○)

Question. What is the typical value of $|\det M_n|$? Turán (1940s): By linearity of expectation,

$$\mathbf{E}(\det M_n^2) = n! = n^{(1+o(1)n)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question. What is the typical value of $|\det M_n|$? Turán (1940s): By linearity of expectation,

$$\mathbf{E}(\det M_n^2) = n! = n^{(1+o(1)n)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conjecture. A.s. $|\det M_n| = n^{(1/2+o(1))n}$.

Question. What is the typical value of $|\det M_n|$? Turán (1940s): By linearity of expectation,

$$\mathbf{E}(\det M_n^2) = n! = n^{(1+o(1)n)}$$

Conjecture. A.s. $|\det M_n| = n^{(1/2+o(1))n}$.

Theorem (Tao-V. 2004)

A.s.

$$|\det M_n| = n^{(1/2+o(1))n}.$$

Determinant is the volume of the parallelepiped spanned by the row vectors.

Use the height times base formula.

Most of the distances are strongly concentrated.

Lemma (Tao-V. 04)

The distance from a random vector \mathbf{R}^n to a fixed subspace of dimension d is, with high prob, $\sqrt{n-d} + \text{ small error}$.

The remaining few distances are not too small !.

Question. We know $P(det = 0) = exp(-\Theta(n))$. What about P(det = z), for integer $z \neq 0$? I think $P(det = z) = exp(-\omega(n))$, perhaps $\leq n^{-cn}$ for some constant c > 0. **Question.** Limiting distribution of |det|

$$\frac{\log |\det M_n| - \frac{1}{2}\log(n-1)!}{c\sqrt{\log n}} \to N(0,1).$$

(Girko (???) 80s).

For the next discussion, consider a slightly more general model: Let M be a deterministic matrix with entries $0 < c < m_{ij} < C$. Let ξ be a random variable with mean 0 and variance one and M_n be the random matrix with entries $m_{ij}\xi_{ij}$. (So the entries have different variances.)

Question. How strongly is $|\det M_n|$ concentrated ?

For the next discussion, consider a slightly more general model: Let M be a deterministic matrix with entries $0 < c < m_{ij} < C$. Let ξ be a random variable with mean 0 and variance one and M_n be the random matrix with entries $m_{ij}\xi_{ij}$. (So the entries have different variances.)

Question. How strongly is $|\det M_n|$ concentrated ?

Motivation. Estimating permanent using random determinant.

Given a matrix A, define $m_{ij} := \sqrt{a_{ij}}$, then

Per $A := \mathbf{E} |\det M_n|^2$.

Markov chain: Jerrum-Sinclair, J-S-Vigoda (00). Random determinant: Barvinok (00): $\exp(cn)$ with ξ guassian, Friedland-Rider-Zeitouni (04) $\exp(\epsilon n)$ with ξ guassian (under boundedness).

Theorem (Costello-V. 07)

With high probability and ξ guassian or Bernoulli

 $|\det M_n|/\mathbf{E}|\det M_n| \leq \exp(n^{2/3+o(1)}).$

Markov chain: Jerrum-Sinclair, J-S-Vigoda (00). Random determinant: Barvinok (00): $\exp(cn)$ with ξ guassian, Friedland-Rider-Zeitouni (04) $\exp(\epsilon n)$ with ξ guassian (under boundedness).

Theorem (Costello-V. 07)

With high probability and ξ guassian or Bernoulli

 $|\det M_n|/\mathbf{E}|\det M_n| \le \exp(n^{2/3+o(1)}).$

Conjecture. (Kostello-V. 07) With high probability, $|\det M_n| / \mathbf{E} |\det M_n| \le n^{O(1)}$.

Question. What is the typical value of $|\operatorname{Per} M_n|$? Turán's : **E**($\operatorname{Per} M_n^2$) = n!.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへで

Question. What is the typical value of $|\operatorname{Per} M_n|$? Turán's : $\mathbf{E}(\operatorname{Per} M_n^2) = n!$.

Conjecture. A.s. $|\operatorname{Per} M_n| = n^{(1/2+o(1))n}$.

It had been a long standing open conjecture that a.s $|\operatorname{Per} M_n| > 0$ (the permanent version of Komlós 1967 theorem).

Theorem (Tao-V. 2008)

A.s.

$$|Per M_n| = n^{(1/2+o(1))n}$$
.

Question. What about limiting distribution and concentration ? (not known even for gaussian case).

Question. What is the typical value of $|\operatorname{Per} M_n|$? Turán's : $\mathbf{E}(\operatorname{Per} M_n^2) = n!$.

Conjecture. A.s. $|\operatorname{Per} M_n| = n^{(1/2+o(1))n}$.

It had been a long standing open conjecture that a.s $|\operatorname{Per} M_n| > 0$ (the permanent version of Komlós 1967 theorem).

Theorem (Tao-V. 2008)

A.s.

$$|Per M_n| = n^{(1/2+o(1))n}$$
.

Question. What about limiting distribution and concentration ? (not known even for gaussian case). **Question.** What is q_n , the probability that the permanent is zero ?

Question. What is the typical value of $|\operatorname{Per} M_n|$? Turán's : $\mathbf{E}(\operatorname{Per} M_n^2) = n!$.

Conjecture. A.s. $|\operatorname{Per} M_n| = n^{(1/2+o(1))n}$.

It had been a long standing open conjecture that a.s $|\operatorname{Per} M_n| > 0$ (the permanent version of Komlós 1967 theorem).

Theorem (Tao-V. 2008)

A.s.

$$|Per M_n| = n^{(1/2+o(1))n}$$
.

Question. What about limiting distribution and concentration ? (not known even for gaussian case). **Question.** What is q_n , the probability that the permanent is zero ? **Current bounds.** $q_n \le n^{-b}$. The truth may be n^{-bn} . Still by linearity of expectation

$$\mathbf{E} |\det M_n^{sym}|^2 = n^{(1+o(1)n)}$$

E| $\operatorname{Per} M_n^{sym}|^2 = n^{(1+o(1))n}$. Conjecture. A.s. $|\det M_n^{sym}| = n^{(1/2+o(1))n}$. Conjecture. A.s. $|\operatorname{Per} M_n^{sym}| = n^{(1/2+o(1))n}$. Still by linearity of expectation

$$\mathbf{E}|\det M_n^{sym}|^2 = n^{(1+o(1)n)}$$

E
$$|\operatorname{Per} M_n^{sym}|^2 = n^{(1+o(1))n}.$$

Conjecture. A.s. $|\det M_n^{sym}| = n^{(1/2+o(1))n}$.

Conjecture. A.s. $|\operatorname{Per} M_n^{sym}| = n^{(1/2+o(1))n}$.

The major difficulty here is that the rows are no longer independent.

Still by linearity of expectation

,

$$\mathbf{E}|\det M_n^{sym}|^2 = n^{(1+o(1)n)}$$

E
$$|\operatorname{Per} M_n^{sym}|^2 = n^{(1+o(1))n}.$$

Conjecture. A.s. $|\det M_n^{sym}| = n^{(1/2+o(1))n}$.

Conjecture. A.s. $|\operatorname{Per} M_n^{sym}| = n^{(1/2+o(1))n}$.

The major difficulty here is that the rows are no longer independent.

Recently, Tao-V. (2009) confirmed the first conjecture, the second is till open.

Consider M_n^{sym} . Its eigenvectors form a orthonormal system

$$v_1,\ldots,v_n,\|v_i\|=1.$$

Question. How do the v_i look like ? sub-Question. $||v_i||_{\infty} = ?(Linial)$

Theorem (Tao-V. 2009)

With high probability

$$\max_{i} \|v_i\|_{\infty} = n^{-1/2 + o(1)}$$