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Basic models of random matrices

Let ξ be a real or complex-valued random variable with mean 0
and variance 1.
Examples. real gaussian, complex gaussian, Bernoulli (±1 with
probability 1/2).

Non-symmetric model. Mn(ξ) denotes the random n × n matrix
whose entries are i.i.d. copies of ξ.

Symmetric model. Msym
n denotes the random symmetric n × n

matrix whose upper triangular entries are i.i.d. copies of ξ.

Remark. For the symmetric model, one can often have a different
distribution for the diagonal entries.

Related models. Adjacency matrix of a random graphs
(Erdös-Rény G (n, p), random regular graphs, etc).
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Some Main Problems

Statistics, Numerical Analysis. Spectral decomposition (Hwang,
Wishart 1920s) Complexity of a computational problem involving a
random matrix (von Neumann-Goldstine 1940s).

Mathematical Physics/Probability. Distributions of eigenvalues
(global and local statistics) (Wigner 1950s).

Combinatorics. Various combinatorial problems (Komlós 1960s).

There is a wonderful interaction between the theory of random
matrices and other areas of mathematics (number theory, additive
combinatorics, theoretical computer science etc).
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Combinatorial Problems

Singularity. How often is a random matrix singular ?

Determinant. What is the typical value of the determinant ?
How is it distributed ?
Permanent. What is the typical value of the determinant ? How
is it distributed ?
Eigenvectors. How does a typical eigenvector look like ?
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The singularity problem: non-symmetric case

Let ξ be Bernoulli (so we consider random ±1 matrices).
Question. What is pn, the probability that Mn is singular ?

Conjecture. (folklore/notorious) pn = (1/2 + o(1))n.

The lower bound is obvious:

P(there are two equal rows/columns) = (1 + o(1))n22−n.

Upper bound: o(1) (Komlós 67).



Short proof of Komlós theorem

pn ≤
n−1∑
i=1

P(Xi+1 ∈ Span(X1, . . . ,Xi )).

Fact. A subspace V of dim d contains at most 2d Bernoulli vectors
(as any vector in V is determined by a set of d coordinates). So

pn ≤
n−1∑
i=1

2i

2n
=

1− 2

2n
.

It is enough to show that the contribution of the last k := log log n
terms is o(1). We will show

P(Xn ∈ Span(X1, . . . ,Xn−1)) ≤ 1

log1/3 n
.
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A m× n matrix is l-universal if for any set of l indices i1, . . . , il and
any set of signs ε1, . . . , εl , there is a row X where the ij th entry of
X has sign εj , for all 1 ≤ j ≤ l .
Fact. l = log n. A random n × n Bernoulli matrix is l-universal
with probability at least 1− 1

n .
Proof. P(fails) ≤

(n
l

)
2l(1− 1

2l )
n ≤ exp(2l log n − 2ln) ≤ n−1.

So with probability 1− 1
n , any vector v orthogonal to X1, . . . ,Xn−1

should have at least l non-zero coordinate. Then

P(Xn ∈ Span(X1, . . . ,Xn−1)) ≤ P(Xn·v = 0) = O(l1/2) <
1

log1/3 n
.

Lemma (Littlewood-Offord-Erdős, 1940s)

If a1, . . . , al are non zero numbers, then

P(a1ξ1 + · · ·+ alξl = 0) = O(l−1/2).



Further developments

O(n−1/2) (Komlós 77),
.999n (Kahn-Komlós -Szemerédi 95),
(3/4 + o(1))n (Tao-V. 06),
(1/
√

2 + o(1))n (Bourgain-V-Wood 09).
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Tools

Dominating principle (Halász, KKSZ).
Inverse LIttlewood-Offord theory (TV)

| cos x | ≤ 3

4
+

1

4
cos 2x .

Fractional dimension (BVW)

| cos x |2 ≤ 1

2
+

1

2
cos 2x .

General theorem (BVW 09).
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Littlewood-Offord theorems

Improvements of LOE lemma with extra assumptions on the ai .
For instance, if the ai are different, then (Erdős-Moser,
Sárközy-Szemerédi 1960s) showed

P(a1ξ1 + · · ·+ alξl = 0) = O(l−3/2).

Stanley showed the extremal set is an arithmetic progression.
Kleitman, Katona, Franlk-Füredi, Halaśz, etc.



Inverse Littlewood-Offord theorems

Tao-V. 05: If the probability in question is large, then
{a1, . . . , an} can be characterized.
If P ≥ n−A, then (most of) ai belong to an AP of lenght nB .
The relation between A and B is of importance. A near optimal
bound was obtained by Tao-V. (07), that lead to the establishment
of the Circular Law Conjecture concerning the eigenvalues of Mn

(Budapest 08, Bulletin AMS 09).



Inverse Littlewood-Offord theorems

Using a different approach, Nguyen-V. (09+) obtained the optimal
relation. As a corollary, one obtains all forward LOE results such as
Sárkozy-Szemerédi theorem.
One can also obtain an asymptotic, stable, version of Stanley’s
result (algebra-free).

See: Hoi Nguyen’s talk (December).



The singularity problem: symmetric case

Let ξ be Bernoulli (so we consider random ±1 matrices).
Question. What is psym

n , the probability that Msym
n is singular ?

Conjecture. (B. Weiss 1980s) psym
n = o(1).

This is the symmetric version of Komlós 1967 theorem.

Theorem (Costello-Tao-V. 2005)

psym = O(n−1/4).



Quadratic Littlewood-Offord

Recently, Kevin Costello (2009) improved the bound to n−1/2+ε,
which seems to be the limit of the method.

Lemma (Costello 09)

Consider the quadratic form Q =
∑

1≤i ,j≤n aijξiξj with aij 6= 0.
Then

P(Q = 0) ≤ n−1/2+ε.

Question. Higher degree polynomials ?

Conjecture. (V. 2006) psym(n) = (1/2 + o(1))n.
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Rank of random graphs

The Costello-Tao-V. result also holds for A(n, p), the adjacency
matrix of G (n, p) with constant p.

Question. What about non-constant p ?

If p < (1− ε) log n/n, A(n, p) is almost surely singular, as the
graph has non-isolated vertices.

Theorem (Costello-V. 06)

For p > (1 + ε) log n/n, A(n, p) is a.s. non-singular.

Theorem (Costello-V. 07)

For p = c log n/n with 0 < c < 1, the co-rank of A(n, p) (a.s.)
comes from small local obstructions.

A set S is a local obstruction if the number of neighbors of S is
less than |S |. Small means |S | ≤ K (c).
For p = c/n, Bordenare and Lelarge (09) computed the
asymptotics of the rank. I wonder if one can characterize the
co-rank.
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Random regular graphs

Conjecture. [V. 2006] A(n, d) (adjacency matrix of a random
regular graphs of degree d) is a.s non-singular for all 3 ≤ d ≤ n/2.



The second eigenvalue

Conjecture. A(n, d) (adjacency matrix of a random regular graphs
of degree d) has second eigenvalue O(

√
d) for all 3 ≤ d ≤ n/2.

Known for d = O(1) (Freedman, Kahn-Szemerédi 1989). Recently
Freedman showed

λ = (2 + o(1))
√

d − 1.

The KSz argument seems to extend to cover up to d ≤ n1/2. For
d = n/2, the best current bound is O(

√
n log n).



Determinant: non-symmetric case

Question. What is the typical value of | det Mn| ?
Turán (1940s): By linearity of expectation,

E(det M2
n) = n! = n(1+o(1)n.

Conjecture. A.s. | det Mn| = n(1/2+o(1))n.

Theorem (Tao-V. 2004)

A.s.

| det Mn| = n(1/2+o(1))n.
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Ideas

Determinant is the volume of the parallelepiped spanned by the
row vectors.
Use the height times base formula.
Most of the distances are strongly concentrated.

Lemma (Tao-V. 04)

The distance from a random vectorin Rn to a fixed subspace of
dimension d is, with high prob,

√
n − d + small error .

The remaining few distances are not too small !.



Determinant: Distribution

Question. We know P(det = 0) = exp(−Θ(n)). What about
P(det = z), for integer z 6= 0 ?
I think P(det = z) = exp(−ω(n)), perhaps ≤ n−cn for some
constant c > 0.
Question. Limiting distribution of | det |

log | det Mn| − 1
2 log(n − 1)!

c
√

log n
→ N(0, 1).

(Girko (???) 80s).



Determinant: Concentration

For the next discussion, consider a slightly more general model:
Let M be a deterministic matrix with entries 0 < c < mij < C . Let
ξ be a random variable with mean 0 and variance one and Mn be
the random matrix with entries mijξij . (So the entries have
different variances.)
Question. How strongly is | det Mn| concentrated ?

Motivation. Estimating permanent using random determinant.

Given a matrix A, define mij :=
√

aij , then

Per A := E| det Mn|2.
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Markov chain: Jerrum-Sinclair, J-S-Vigoda (00). Random
determinant: Barvinok (00): exp(cn) with ξ guassian,
Friedland-Rider-Zeitouni (04) exp(εn) with ξ guassian (under
boundedness).

Theorem (Costello-V. 07)

With high probability and ξ guassian or Bernoulli

| det Mn|/E| det Mn| ≤ exp(n2/3+o(1)).

Conjecture. (Kostello-V. 07) With high probability,
| det Mn|/E| det Mn| ≤ nO(1).
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Permanent: non-symmetric case

Question. What is the typical value of | PerMn| ?
Turán’s : E( PerM2

n) = n!.

Conjecture. A.s. | PerMn| = n(1/2+o(1))n.

It had been a long standing open conjecture that a.s | PerMn| > 0
(the permanent version of Komlós 1967 theorem).

Theorem (Tao-V. 2008)

A.s.

| Per Mn| = n(1/2+o(1))n.

Question. What about limiting distribution and concentration ?
(not known even for gaussian case).
Question. What is qn, the probability that the permanent is zero ?
Current bounds. qn ≤ n−b. The truth may be n−bn.
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Determinant-Permanent: Symmetric case

Still by linearity of expectation

E| det Msym
n |2 = n(1+o(1)n

E| PerMsym
n |2 = n(1+o(1))n.

Conjecture. A.s. | det Msym
n | = n(1/2+o(1))n.

Conjecture. A.s. | PerMsym
n | = n(1/2+o(1))n.

The major difficulty here is that the rows are no longer
independent.
,

Recently, Tao-V. (2009) confirmed the first conjecture, the second
is till open.
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Eigenvectors

Consider Msym
n . Its eigenvectors form a orthonormal system

v1, . . . , vn, ‖vi‖ = 1.

Question. How do the vi look like ?
sub-Question. ‖vi‖∞ =?(Linial)

Theorem (Tao-V. 2009)

With high probability

max
i
‖vi‖∞ = n−1/2+o(1).


