
A better algorithm for random k-SAT

Amin Coja-Oghlan

University of Edinburgh

The k-SAT problem

The k-SAT problem

Given: a Boolean formula Φ in conjunctive normal form.

The clauses have length k.

Task: decide whether there is a satisfying assignment.

This problem is well known to be NP-hard.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 2 / 24

k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 3 / 24

k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

Complexity Theory

provides methods for classifying how hard a problems is. . .

. . . relative to other problems.

NP-complete = as hard as k-SAT (with k ≥ 3).

No absolute measure of hardness.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 3 / 24

k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

Questions

What makes a k-SAT formula hard ?

What types of inputs are easy?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 3 / 24

Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 4 / 24

Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.

Uniformly random k-SAT

n variables x1, . . . , xn.

Fk(n,m) has m random clauses.

Let m = r · n with r = Θ(1).

“With high probability” = with probability 1 − o(1) as n → ∞.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 4 / 24

Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.

The statistical physics perspective

Spin glasses.

Gibbs measure at zero temperature.

Rigorous vs. non-rigorous methods.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 4 / 24

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold rk = rk(n) so that w.h.p.

Fk(n,m) is satisfiable if r < rk − ǫ,

Fk(n,m) is unsatisfiable if r > rk + ǫ.

1

P(Fk(n, m) is sat.)rk

1
n

log(running time)

Running time of “worst-case” algorithms is exponential and peaks at rk .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 5 / 24

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold rk = rk(n) so that w.h.p.

Fk(n,m) is satisfiable if r < rk − ǫ,

Fk(n,m) is unsatisfiable if r > rk + ǫ.

Theorem (Achlioptas, Peres 2004)

rk ∼ 2k ln 2.

Proof

2nd moment method (non-algorithmic).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 5 / 24

Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 / 24

Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

Algorithm Density m/n < · · ·

Pure Literal o(1) as k → ∞ Kim 2006

Walksat, rigorous 1
6 · 2k/k2 CFFKV 2009

Walksat, non-rigorous 2k/k Monasson 2003

Shortest Clause e2

8 · 2k/k Chvatal, Reed 1992

Unit Clause e
2 · 2k/k Chao, Franco 1990

SC+backtracking 1.817 · 2k/k Frieze, Suen 1996

BP+decimation e · 2k/k Montanari 2007
(non-rigorous)

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 / 24

Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

In summary,

. . . efficient algorithms are known to succeed up to m/n = c · 2k/k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 / 24

Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

In summary,

. . . efficient algorithms are known to succeed up to m/n = c · 2k/k,

Problem (Chvatal, Reed 1992)

Devise an algorithm that succeeds up to m/n = 2kω(k)/k, ω(k) → ∞.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 / 24

Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7 / 24

Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

x is loose if there is a satisfying assignment τ such that

σ(x) 6= τ(x) and dist(σ, τ) ≤ ln(n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7 / 24

Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

x is loose if there is a satisfying assignment τ such that

σ(x) 6= τ(x) and dist(σ, τ) ≤ ln(n).

x is frozen if for any satisfying assignment τ

σ(x) 6= τ(x) ⇒ dist(σ, τ) = Ω(n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7 / 24

Frozen variables (ctd.)

Question

Why are things so much “harder” for r > 2k ln k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fk(n,m):

1 if r < (1 − εk)2k ln k/k, then almost all variables are loose w.h.p.

2 if r > (1 + εk)2k ln k/k, then almost all variables are frozen w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 8 / 24

Frozen variables (ctd.)

Question

Why are things so much “harder” for r > 2k ln k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fk(n,m):

1 if r < (1 − εk)2k ln k/k, then almost all variables are loose w.h.p.

2 if r > (1 + εk)2k ln k/k, then almost all variables are frozen w.h.p.

In other words. . .

first correlations between variables are purely local.

but then long-range correlations occur.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 8 / 24

A new algorithm

But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 / 24

A new algorithm

But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.

Theorem (ACO 2009)

Fix(Fk(n,m)) succeeds up to r = (1 − εk)2k ln k/k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 / 24

A new algorithm

But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.

Theorem (ACO 2009)

Fix(Fk(n,m)) succeeds up to r = (1 − εk)2k ln k/k.

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Clean-up step: satisfy the remaining unsat clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 / 24

Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 10 / 24

Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.

Let ε > 0 and suppose k > k0(ε).

Let Φ = Fk(n,m) with m/n = (1 − ε) · 2k ln(k)/k.

There are 2−km = n · (1 − ε) ln(k)/k all-negative clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 10 / 24

Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.

Key Lemma

W.h.p. #unsat clauses after Steps 1–3 is ≤ n exp(−kε).

Remember: initially there were n · (1 − ε) ln(k)/k of them.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 10 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.

⇒ for each xi we expect (1 − ε) ln k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.

⇒ for each xi we expect (1 − ε) ln k.

In fact, for each xi the number is ∼ Po((1 − ε) ln k).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.

⇒ the expected number of free xi s is k · kε−1 = kε.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.

⇒ the expected number of free xi s is k · kε−1 = kε.

⇒ we can fix the clause with prob 1 − exp(−kε).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 13 / 24

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 13 / 24

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.

Setting a var to false may fix several all-neg clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 13 / 24

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.

Setting a var to false may fix several all-neg clauses.

Method of deferred decisions

Only reveal the information needed for the next step,

so that everything else remains random.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 13 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

The set Z of vars set to flase corresponds to a sequence (Zt)t .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

The set Z of vars set to flase corresponds to a sequence (Zt)t .

Ut = crtitical clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

The set Z of vars set to flase corresponds to a sequence (Zt)t .

Ut = crtitical clauses.

and Ut(x) = # critical clauses ‘supported’ by x .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24

Analyzing Fix (ctd.)

Initialization: what is π0?

Let π0(i , j) =sign of Φij . . .

unless Φij is the only positive literal in Φi π0(i , j) = Φij .

Let Z0 = ∅.

Let U0 =all clauses with exactly one pos literal.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 15 / 24

Analyzing Fix (ctd.)

Defining πt for t ≥ 1

PI1 Let φt = mini∈[m] {Φi is all-negative w/out var. from Zt−1}.

no such i ⇒ stop.

PI2 Let j = minl≤k {Ut−1(|Φφt j |) = 0}.

no such l ⇒ let j = 1.

Let Zt = Zt−1 ∪ {Φφt j}.

PI3 Ut =
{

i : Φi has ex. one pos lit 6∈ Zt and no neg lit ∈ Z̄t

}

.

Ut(x) =those where x is the unique pos literal.

PI4

πt(i , j) =

{

Φij if i = φt ∨ |Φij | ∈ Zt ∨ (i ∈ Ut ∧ π0(i , j) = 1),
πt−1(i , j) otherwise.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 16 / 24

Analyzing Fix (ctd.)

π0 =

− − − + + + + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

The initial sign pattern (k = 5).

Φ1,Φ2,Φ3 are all-negative, the next three clauses

Φ4,Φ5,Φ6 have exactly one positive literal, etc.

The variables underlying the ±s are still uniformly random.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π0 =

− − − x5 x2 x3 + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

The supporting variables revealed.

U0(x2) = U0(x3) = U0(x5) = 1.

U0 = {4, 5, 6}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π0 =

x̄2 − − x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

Reveal the first all-negative clause.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π0 =

x̄2 − x̄1 x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

U0(x2) = U0(x3) = 1 but U0(x1) = 0.

Thus, Z1 = {x1}.

Reveal all occurrences of x1.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π1 =

x̄2 − x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

There is one new ‘critical’ clause, namely Φ8.

Reveal its supporting variable x4.

Φ4 contains x̄1 ⇒ not critical anymore.

At this point the vars underlying the ± are uniform over V \ {x1}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

Reveal the next all-minus clause.

Flip x5 as it does not support any clauses, i.e., Z2 = {x1, x5}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − x5

x̄1 − − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

The card game: example

Reveal all occurrences of x5.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

π2 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 x4

x̄3 − − − − − + − x5

x̄1 − − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

The card game: example

x5 occurs in the last clause, which becomes critical.

Thus, we have to reveal the var underlying the +.

At this point the vars underlying the ± are uniform over V \ {x1, x5}.

No all-minus columns left ⇒ halt.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 17 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

If πs−1(i , j) = −1, then Φij ∈ V \ Zs−1 is uniformly distributed.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

If πs−1(i , j) = −1, then Φij ∈ V \ Zs−1 is uniformly distributed.

Hence, P [|Φij | = zs |Fs−1] ≥ 1/(n − s + 1).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

If πs−1(i , j) = −1, then Φij ∈ V \ Zs−1 is uniformly distributed.

Hence, P [|Φij | = zs |Fs−1] ≥ 1/(n − s + 1).

Consequently,

P [πt(i , ·) = all-minus] ≤ 2−k
∏

s≤t

1 −
1

n − s + 1
≤ 2−k exp(−kt/n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 19 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Corollary

T ≤ 4n ln ln k/k w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 19 / 24

Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24

Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24

Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24

Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Thus, w.h.p. there are ≥ nkε/2−1 vars x with Ut(x) = 0 for all t ≤ T .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24

Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Thus, w.h.p. there are ≥ nkε/2−1 vars x with Ut(x) = 0 for all t ≤ T .

Therefore, the argument used for the first clause (i.e., t = 1). . .

. . . actually applies for all t.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24

The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 21 / 24

The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph

To set the next variable, the algorithm inspects

. . . for each clause the variables that it contains,

. . . and their assigned values.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 21 / 24

The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph

To set the next variable, the algorithm inspects

. . . for each clause the variables that it contains,

. . . and their assigned values.

Thus, it inspects the factor graph up to depth one.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 21 / 24

The factor graph (ctd.)

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 22 / 24

The factor graph (ctd.)

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Fix: depth three

In the first phase the algorithm

. . . inspects each clauses and its variables,

. . . the clauses in which these vars occur,

. . . and the values of all other variables in those clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 22 / 24

The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 23 / 24

The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Most likely, this is a tree.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 23 / 24

The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Most likely, this is a tree.

Compute the marginals at the root variable,

. . . given all previous decisions.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 23 / 24

The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Most likely, this is a tree.

Compute the marginals at the root variable,

. . . given all previous decisions.

Decimation: assign a variable based on these marginals.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 23 / 24

The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Most likely, this is a tree.

Compute the marginals at the root variable,

. . . given all previous decisions.

Decimation: assign a variable based on these marginals.

Surprise

To reach the dRSB point, depth three is sufficient.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 23 / 24

Conclusion

Fix works up to the dRSB point, at least asymptotically for large k.

Is Fk(n,m) ‘hard’ beyond the dRSB point?

Better algorithm for small k?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 24 / 24

	Outline

