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The k-SAT problem

The k-SAT problem

Given: a Boolean formula Φ in conjunctive normal form.

The clauses have length k.

Task: decide whether there is a satisfying assignment.

This problem is well known to be NP-hard.
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k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!
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k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

Complexity Theory

provides methods for classifying how hard a problems is. . .

. . . relative to other problems.

NP-complete = as hard as k-SAT (with k ≥ 3).

No absolute measure of hardness.
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k-SAT is hard

Worst-case running time

Suppose Φ is a k-SAT formula with n variables.

There are 2n possible assignments.

We could solve Φ by trying all of them (in principle).

But if n = 1, 000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

Questions

What makes a k-SAT formula hard ?

What types of inputs are easy?
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Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.
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Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.

Uniformly random k-SAT

n variables x1, . . . , xn.

Fk(n,m) has m random clauses.

Let m = r · n with r = Θ(1).

“With high probability” = with probability 1 − o(1) as n → ∞.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 4 / 24



Random k-SAT

Aim: contrive hard (but satisfiable) forumlas.

Let’s try the simplest random model.

The statistical physics perspective

Spin glasses.

Gibbs measure at zero temperature.

Rigorous vs. non-rigorous methods.
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The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold rk = rk(n) so that w.h.p.

Fk(n,m) is satisfiable if r < rk − ǫ,

Fk(n,m) is unsatisfiable if r > rk + ǫ.

1

P(Fk(n, m) is sat.)rk

1
n

log(running time)

Running time of “worst-case” algorithms is exponential and peaks at rk .
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The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold rk = rk(n) so that w.h.p.

Fk(n,m) is satisfiable if r < rk − ǫ,

Fk(n,m) is unsatisfiable if r > rk + ǫ.

Theorem (Achlioptas, Peres 2004)

rk ∼ 2k ln 2.

Proof

2nd moment method (non-algorithmic).
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

Algorithm Density m/n < · · ·

Pure Literal o(1) as k → ∞ Kim 2006

Walksat, rigorous 1
6 · 2k/k2 CFFKV 2009

Walksat, non-rigorous 2k/k Monasson 2003

Shortest Clause e2

8 · 2k/k Chvatal, Reed 1992

Unit Clause e
2 · 2k/k Chao, Franco 1990

SC+backtracking 1.817 · 2k/k Frieze, Suen 1996

BP+decimation e · 2k/k Montanari 2007
(non-rigorous)
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

In summary,

. . . efficient algorithms are known to succeed up to m/n = c · 2k/k.
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can compute satisfying assignments efficiently?

In summary,

. . . efficient algorithms are known to succeed up to m/n = c · 2k/k,

Problem (Chvatal, Reed 1992)

Devise an algorithm that succeeds up to m/n = 2kω(k)/k, ω(k) → ∞.
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Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.
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Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

x is loose if there is a satisfying assignment τ such that

σ(x) 6= τ(x) and dist(σ, τ) ≤ ln(n).
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Frozen variables

Replica symmetry breaking

The k-SAT threshold is r ∼ 2k ln 2.

But there occurs another phase transition at r ∼ 2k ln k/k. . .

. . . that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

x is loose if there is a satisfying assignment τ such that

σ(x) 6= τ(x) and dist(σ, τ) ≤ ln(n).

x is frozen if for any satisfying assignment τ

σ(x) 6= τ(x) ⇒ dist(σ, τ) = Ω(n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7 / 24



Frozen variables (ctd.)

Question

Why are things so much “harder” for r > 2k ln k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fk(n,m):

1 if r < (1 − εk)2k ln k/k, then almost all variables are loose w.h.p.

2 if r > (1 + εk)2k ln k/k, then almost all variables are frozen w.h.p.
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Frozen variables (ctd.)

Question

Why are things so much “harder” for r > 2k ln k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fk(n,m):

1 if r < (1 − εk)2k ln k/k, then almost all variables are loose w.h.p.

2 if r > (1 + εk)2k ln k/k, then almost all variables are frozen w.h.p.

In other words. . .

first correlations between variables are purely local.

but then long-range correlations occur.
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A new algorithm

But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.
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But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.

Theorem (ACO 2009)

Fix(Fk(n,m)) succeeds up to r = (1 − εk)2k ln k/k.
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A new algorithm

But if RSB occurs at r ∼ 2k ln(k)/k. . .

. . . local search algorithms ought to succeed up to that density.

Yet none has been known to succeed beyond const × 2k/k.

Theorem (ACO 2009)

Fix(Fk(n,m)) succeeds up to r = (1 − εk)2k ln k/k.

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Clean-up step: satisfy the remaining unsat clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 / 24



Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.
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Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.

Let ε > 0 and suppose k > k0(ε).

Let Φ = Fk(n,m) with m/n = (1 − ε) · 2k ln(k)/k.

There are 2−km = n · (1 − ε) ln(k)/k all-negative clauses.
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Analyzing Fix

The algorithm Fix

1 Start with the all-true assignment.

2 For any all-negative clause

3 flip one of its variables w/out generating new unsat clauses
(if possible).

4 Compute a set Z ′ of variables such that any clause

either is satisfied by a variable in V \ Z ′,
or contains at least three variables from Z ′.

Find a matching from the unsat clauses to Z ′.

Key Lemma

W.h.p. #unsat clauses after Steps 1–3 is ≤ n exp(−kε).

Remember: initially there were n · (1 − ε) ln(k)/k of them.
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Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .
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Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.
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Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .
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Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.
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Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.

⇒ for each xi we expect (1 − ε) ln k.
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Analyzing Fix (ctd.)

Fixing the first unsat clause

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

This generates a new unsat clause iff Φ contains

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

Total number of uniquely pos clauses is

k2−k · m = (1 − ε) ln k · n.

⇒ for each xi we expect (1 − ε) ln k.

In fact, for each xi the number is ∼ Po((1 − ε) ln k).
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Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).
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Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.
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Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.

⇒ the expected number of free xi s is k · kε−1 = kε.
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Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

Consider the first all-neg clause, say, x̄1 ∨ · · · ∨ x̄k .

Need to flip one xi to false.

For each xi the number of

xi ∨ ȳ2 ∨ · · · ∨ ȳk .

is Po((1 − ε) ln k).

⇒ we are free to flip xi with probability

exp(−(1 − ε) ln k) = kε−1.

⇒ the expected number of free xi s is k · kε−1 = kε.

⇒ we can fix the clause with prob 1 − exp(−kε).
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Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .
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Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.
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Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.

Setting a var to false may fix several all-neg clauses.
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Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

setting vars to false may increase the # of uniquely pos clauses. . .

. . . or actually decrease it.

Setting a var to false may fix several all-neg clauses.

Method of deferred decisions

Only reveal the information needed for the next step,

so that everything else remains random.
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Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.
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πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

The set Z of vars set to flase corresponds to a sequence (Zt)t .
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Analyzing Fix (ctd.)

Let Φi =(random) clause i ; Φij = jth literal in Φi .

A ‘card game’

Track Steps 1–3 by maps πt : [m] × [k] → {−1, 1} ∪ {literals}.

πt(i , j) ∈ {+1,−1} ⇒ we’ve only revealed the sign of Φij .

πt(i , j) ∈ {literals} ⇒ we’ve revealed the actual literal Φij .

The set Z of vars set to flase corresponds to a sequence (Zt)t .

Ut = crtitical clauses.

and Ut(x) = # critical clauses ‘supported’ by x .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 14 / 24



Analyzing Fix (ctd.)

Initialization: what is π0?

Let π0(i , j) =sign of Φij . . .

unless Φij is the only positive literal in Φi  π0(i , j) = Φij .

Let Z0 = ∅.

Let U0 =all clauses with exactly one pos literal.
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Analyzing Fix (ctd.)

Defining πt for t ≥ 1

PI1 Let φt = mini∈[m] {Φi is all-negative w/out var. from Zt−1}.

no such i ⇒ stop.

PI2 Let j = minl≤k {Ut−1(|Φφt j |) = 0}.

no such l ⇒ let j = 1.

Let Zt = Zt−1 ∪ {Φφt j}.

PI3 Ut =
{

i : Φi has ex. one pos lit 6∈ Zt and no neg lit ∈ Z̄t

}

.

Ut(x) =those where x is the unique pos literal.

PI4

πt(i , j) =

{

Φij if i = φt ∨ |Φij | ∈ Zt ∨ (i ∈ Ut ∧ π0(i , j) = 1),
πt−1(i , j) otherwise.
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Analyzing Fix (ctd.)

π0 =

− − − + + + + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

The initial sign pattern (k = 5).

Φ1,Φ2,Φ3 are all-negative, the next three clauses

Φ4,Φ5,Φ6 have exactly one positive literal, etc.

The variables underlying the ±s are still uniformly random.
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Analyzing Fix (ctd.)

π0 =

− − − x5 x2 x3 + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

The supporting variables revealed.

U0(x2) = U0(x3) = U0(x5) = 1.

U0 = {4, 5, 6}.
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Analyzing Fix (ctd.)

π0 =

x̄2 − − x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The card game: example

Reveal the first all-negative clause.
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Analyzing Fix (ctd.)

π0 =

x̄2 − x̄1 x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

U0(x2) = U0(x3) = 1 but U0(x1) = 0.

Thus, Z1 = {x1}.

Reveal all occurrences of x1.
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Analyzing Fix (ctd.)

π1 =

x̄2 − x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

There is one new ‘critical’ clause, namely Φ8.

Reveal its supporting variable x4.

Φ4 contains x̄1 ⇒ not critical anymore.

At this point the vars underlying the ± are uniform over V \ {x1}.
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Analyzing Fix (ctd.)

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

The card game: example

Reveal the next all-minus clause.

Flip x5 as it does not support any clauses, i.e., Z2 = {x1, x5}.
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Analyzing Fix (ctd.)

π0 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − x5

x̄1 − − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

The card game: example

Reveal all occurrences of x5.
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Analyzing Fix (ctd.)

π2 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 x4

x̄3 − − − − − + − x5

x̄1 − − − − − − − x1

− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

The card game: example

x5 occurs in the last clause, which becomes critical.

Thus, we have to reveal the var underlying the +.

At this point the vars underlying the ± are uniform over V \ {x1, x5}.

No all-minus columns left ⇒ halt.
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Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.
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Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24



Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof

For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24



Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Proof
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At each time s we flip a variable zs ∈ V \ Zs−1.

If πs−1(i , j) = −1, then Φij ∈ V \ Zs−1 is uniformly distributed.
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For any 1 ≤ i ≤ m we have P [π0(i , ·) = all-minus] = 2−k .

At each time s we flip a variable zs ∈ V \ Zs−1.

If πs−1(i , j) = −1, then Φij ∈ V \ Zs−1 is uniformly distributed.

Hence, P [|Φij | = zs |Fs−1] ≥ 1/(n − s + 1).

Consequently,

P [πt(i , ·) = all-minus] ≤ 2−k
∏

s≤t

1 −
1

n − s + 1
≤ 2−k exp(−kt/n).
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Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t ≤ min{T , n} there are ≤ 21−km exp(−kt/n) all-minus columns

w.h.p.

Corollary

T ≤ 4n ln ln k/k w.h.p.
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Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.
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We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24



Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24



Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Thus, w.h.p. there are ≥ nkε/2−1 vars x with Ut(x) = 0 for all t ≤ T .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 20 / 24



Analyzing Fix (ctd.)

Lemma

For all t ≤ T we have |Ut | ≤ (1 − ε/2) ln(k)/n w.h.p.

Wrapping up: phase 1

We know |ZT | = T ≤ 4n ln ln k/k w.h.p.

W.h.p. |Ut | ≤ (1 − ε/2) ln(k)/n for all t ≤ T .

Thus, w.h.p. there are ≥ nkε/2−1 vars x with Ut(x) = 0 for all t ≤ T .

Therefore, the argument used for the first clause (i.e., t = 1). . .

. . . actually applies for all t.
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The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 21 / 24



The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph
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. . . and their assigned values.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 21 / 24



The factor graph

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph

To set the next variable, the algorithm inspects

. . . for each clause the variables that it contains,

. . . and their assigned values.

Thus, it inspects the factor graph up to depth one.
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The factor graph (ctd.)

Φ = k-CNF formula.

The factor graph is a bipartite auxiliary graph.

Its vertices are the variables and the clauses of Φ.

Each clause is adjacent to the variables that occur in it.

Fix: depth three

In the first phase the algorithm

. . . inspects each clauses and its variables,

. . . the clauses in which these vars occur,

. . . and the values of all other variables in those clauses.
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The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.
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Decimation: assign a variable based on these marginals.
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The factor graph (ctd.)

Belief Propagation: a depth ω algorithm.

Check out the ω-neighborhood of each variable.

Most likely, this is a tree.

Compute the marginals at the root variable,

. . . given all previous decisions.

Decimation: assign a variable based on these marginals.

Surprise

To reach the dRSB point, depth three is sufficient.
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Conclusion

Fix works up to the dRSB point, at least asymptotically for large k.

Is Fk(n,m) ‘hard’ beyond the dRSB point?

Better algorithm for small k?
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