A better algorithm for random k-SAT

Amin Coja-Oghlan

University of Edinburgh

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The *k*-SAT problem

- Given: a Boolean formula Φ in *conjunctive normal form*.
- The clauses have *length k*.
- Task: decide whether there is a satisfying assignment.
- This problem is well known to be NP-hard.

Worst-case running time

- Suppose Φ is a *k*-SAT formula with *n* variables.
- There are 2ⁿ possible assignments.
- We could solve Φ by *trying all of them* (in principle).
- But if n = 1,000, then this is *infeasible*.
- However, no better algorithm is known to solve all inputs!

Worst-case running time

- Suppose Φ is a *k*-SAT formula with *n* variables.
- There are 2ⁿ possible assignments.
- We could solve Φ by trying all of them (in principle).
- But if n = 1,000, then this is *infeasible*.
- However, no better algorithm is known to solve all inputs!

Complexity Theory

- provides methods for *classifying* how hard a problems is...
- ... relative to other problems.
- NP-complete = as hard as k-SAT (with $k \ge 3$).
- No absolute measure of hardness.

Worst-case running time

- Suppose Φ is a *k*-SAT formula with *n* variables.
- There are 2ⁿ possible assignments.
- We could solve Φ by trying all of them (in principle).
- But if n = 1,000, then this is *infeasible*.
- However, no better algorithm is known to solve all inputs!

Questions

- What makes a k-SAT formula hard?
- What types of inputs are *easy*?

- Aim: contrive hard (but satisfiable) forumlas.
- Let's try the *simplest* random model.

- Aim: contrive hard (but satisfiable) forumlas.
- Let's try the *simplest* random model.

Uniformly random k-SAT

- *n* variables x_1, \ldots, x_n .
- $F_k(n, m)$ has m random clauses.
- Let $m = r \cdot n$ with $r = \Theta(1)$.
- "With high probability" = with probability 1 o(1) as $n \to \infty$.

- Aim: contrive hard (but satisfiable) forumlas.
- Let's try the *simplest* random model.

The statistical physics perspective

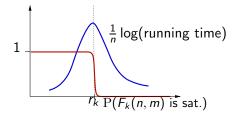
- Spin glasses.
- Gibbs measure at zero temperature.
- Rigorous vs. non-rigorous methods.

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold $r_k = r_k(n)$ so that w.h.p.

- $F_k(n,m)$ is satisfiable if $r < r_k \epsilon$,
- $F_k(n,m)$ is unsatisfiable if $r > r_k + \epsilon$.



Running time of "worst-case" algorithms is exponential and peaks at r_k .

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold $r_k = r_k(n)$ so that w.h.p.

- $F_k(n,m)$ is satisfiable if $r < r_k \epsilon$,
- $F_k(n,m)$ is unsatisfiable if $r > r_k + \epsilon$.

Theorem (Achlioptas, Peres 2004)

 $r_k \sim 2^k \ln 2$.

Proof

2nd moment method (non-algorithmic).

Question

• The threshold is $r_k \sim 2^k \ln 2$.

• For what *m*/*n* can *compute* satisfying assignments *efficiently*?

Question

- The *threshold* is $r_k \sim 2^k \ln 2$.
- For what *m*/*n* can *compute* satisfying assignments *efficiently*?

Algorithm	Density $m/n < \cdots$	
Pure Literal	$o(1)$ as $k o \infty$	Kim 2006
Walksat, rigorous	$\frac{1}{6} \cdot 2^k / k^2$	CFFKV 2009
Walksat, non-rigorous	$2^k/k$	Monasson 2003
Shortest Clause	$\frac{e^2}{8} \cdot 2^k/k$	Chvatal, Reed 1992
Unit Clause	$\frac{e}{2} \cdot 2^k / k$	Chao, Franco 1990
SC+backtracking	$1.817 \cdot 2^k/k$	Frieze, Suen 1996
BP+decimation (non-rigorous)	$e \cdot 2^k/k$	Montanari 2007

Question

- The *threshold* is $r_k \sim 2^k \ln 2$.
- For what *m*/*n* can *compute* satisfying assignments *efficiently*?

In summary,

... efficient algorithms are known to succeed up to $m/n = c \cdot 2^k/k$.

Question

- The *threshold* is $r_k \sim 2^k \ln 2$.
- For what *m*/*n* can *compute* satisfying assignments *efficiently*?

In summary,

... efficient algorithms are known to succeed up to $m/n = c \cdot 2^k/k$,

Problem (Chvatal, Reed 1992)

Devise an algorithm that succeeds up to $m/n = 2^k \omega(k)/k$, $\omega(k) \to \infty$.

Frozen variables

Replica symmetry breaking

- The k-SAT threshold is $r \sim 2^k \ln 2$.
- But there occurs another phase transition at $r \sim 2^k \ln k / k \dots$
- ... that affects the computational difficulty.

Replica symmetry breaking

- The k-SAT threshold is $r \sim 2^k \ln 2$.
- But there occurs another phase transition at $r \sim 2^k \ln k / k \dots$
- ... that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a *k*-CNF, σ a satisfying assignment, and *x* a variable.

• x is loose if there is a satisfying assignment τ such that

$$\sigma(x) \neq \tau(x)$$
 and $\operatorname{dist}(\sigma, \tau) \leq \ln(n)$.

Replica symmetry breaking

- The k-SAT threshold is $r \sim 2^k \ln 2$.
- But there occurs another phase transition at $r \sim 2^k \ln k / k \dots$
- ... that affects the computational difficulty.

Loose vs. frozen variables

Let Φ be a *k*-CNF, σ a satisfying assignment, and *x* a variable.

• x is loose if there is a satisfying assignment τ such that

$$\sigma(x) \neq \tau(x)$$
 and $\operatorname{dist}(\sigma, \tau) \leq \ln(n)$.

• x is frozen if for any satisfying assignment τ

$$\sigma(x) \neq \tau(x) \Rightarrow \operatorname{dist}(\sigma, \tau) = \Omega(n).$$

Question

Why are things so much "harder" for $r > 2^k \ln k/k$?

Theorem (Achlioptas, ACO 2008)

For a *random* satisfying assignment of $F_k(n, m)$:

If $r < (1 - \varepsilon_k)2^k \ln k/k$, then almost all variables are *loose* w.h.p.

3 if $r > (1 + \varepsilon_k)2^k \ln k/k$, then almost all variables are *frozen* w.h.p.

Question

Why are things so much "harder" for $r > 2^k \ln k/k$?

Theorem (Achlioptas, ACO 2008)

For a *random* satisfying assignment of $F_k(n, m)$:

If $r < (1 - \varepsilon_k)2^k \ln k/k$, then almost all variables are *loose* w.h.p.

3 if $r > (1 + \varepsilon_k)2^k \ln k/k$, then almost all variables are *frozen* w.h.p.

In other words...

- first correlations between variables are purely local.
- but then *long-range correlations* occur.

A new algorithm

But if RSB occurs at $r \sim 2^k \ln(k)/k...$

- ... local search algorithms ought to succeed up to that density.
- Yet none has been known to succeed beyond $const \times 2^k/k$.

A new algorithm

But if RSB occurs at $r \sim 2^k \ln(k)/k...$

- ... local search algorithms ought to succeed up to that density.
- Yet none has been known to succeed beyond $const \times 2^k/k$.

Theorem (ACO 2009)

Fix($F_k(n,m)$) succeeds up to $r = (1 - \varepsilon_k)2^k \ln k/k$.

A new algorithm

But if RSB occurs at $r \sim 2^k \ln(k)/k...$

- ... local search algorithms ought to succeed up to that density.
- Yet none has been known to succeed beyond $const \times 2^k/k$.

Theorem (ACO 2009)

$$\operatorname{Fix}(F_k(n,m))$$
 succeeds up to $r = (1 - \varepsilon_k)2^k \ln k/k$.

The algorithm Fix

- Start with the *all-true* assignment.
- Sor any all-negative clause
- flip one of its variables w/out generating new unsat clauses (if possible).
- Old Clean-up step: satisfy the remaining unsat clauses.

Analyzing Fix

3

The algorithm Fix

- Start with the *all-true* assignment.
- For any all-negative clause
 - flip one of its variables w/out generating *new* unsat clauses (if possible).
- Compute a set Z' of variables such that *any clause*
 - either is satisfied by a variable in $V \setminus Z'$,
 - or contains at least three variables from Z'.

Find a matching from the *unsat* clauses to Z'.

Analyzing Fix

The algorithm Fix

- Start with the *all-true* assignment.
- For any all-negative clause
 - flip one of its variables w/out generating *new* unsat clauses (if possible).
- Compute a set Z' of variables such that *any clause*
 - ullet either is satisfied by a variable in $V\setminus Z',$
 - or contains at least three variables from Z'.

Find a matching from the *unsat* clauses to Z'.

• Let $\varepsilon > 0$ and suppose $k > k_0(\varepsilon)$.

• Let
$$\Phi = F_k(n,m)$$
 with $m/n = (1-\varepsilon) \cdot 2^k \ln(k)/k$.

• There are $2^{-k}m = n \cdot (1 - \varepsilon) \ln(k)/k$ all-negative clauses.

Analyzing Fix

The algorithm Fix

- Start with the *all-true* assignment.
- For any all-negative clause
 - flip one of its variables w/out generating *new* unsat clauses (if possible).
- Compute a set Z' of variables such that *any clause*
 - ullet either is satisfied by a variable in $V\setminus Z',$
 - or contains at least three variables from Z'.

Find a matching from the *unsat* clauses to Z'.

Key Lemma

3

W.h.p. #unsat clauses after Steps 1–3 is $\leq n \exp(-k^{\varepsilon})$.

Remember: initially there were $n \cdot (1 - \varepsilon) \ln(k)/k$ of them.

Fixing the first unsat clause

• Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.

Fixing the first unsat clause

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.

Fixing the first unsat clause

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- This generates a *new* unsat clause iff Φ contains

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

Fixing the first unsat clause

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- This generates a *new* unsat clause iff Φ contains

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

• Total number of uniquely pos clauses is

$$k2^{-k}\cdot m=(1-\varepsilon)\ln k\cdot n.$$

Fixing the first unsat clause

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- This generates a *new* unsat clause iff Φ contains

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

• Total number of uniquely pos clauses is

$$k2^{-k} \cdot m = (1-\varepsilon) \ln k \cdot n.$$

•
$$\Rightarrow$$
 for each x_i we expect $(1 - \varepsilon) \ln k$.

Fixing the first unsat clause

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- This generates a *new* unsat clause iff Φ contains

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

• Total number of uniquely pos clauses is

$$k2^{-k} \cdot m = (1-\varepsilon) \ln k \cdot n.$$

• \Rightarrow for each x_i we expect $(1 - \varepsilon) \ln k$.

• In fact, for each x_i the number is $\sim Po((1 - \varepsilon) \ln k)$.

Fixing the first unsat clause (ctd.)

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- For each x_i the number of

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

is $\operatorname{Po}((1-\varepsilon)\ln k)$.

Fixing the first unsat clause (ctd.)

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- For each x_i the number of

$$x_i \vee \bar{y}_2 \vee \cdots \vee \bar{y}_k.$$

is $\operatorname{Po}((1-\varepsilon)\ln k)$.

• \Rightarrow we are *free to flip* x_i with probability

$$\exp(-(1-\varepsilon)\ln k) = k^{\varepsilon-1}.$$

Fixing the first unsat clause (ctd.)

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- For each x_i the number of

$$x_i \vee \overline{y}_2 \vee \cdots \vee \overline{y}_k.$$

is $Po((1-\varepsilon)\ln k)$.

• \Rightarrow we are *free to flip* x_i with probability

$$\exp(-(1-\varepsilon)\ln k)=k^{\varepsilon-1}.$$

• \Rightarrow the *expected* number of free x_i s is $k \cdot k^{\varepsilon - 1} = k^{\varepsilon}$.

Fixing the first unsat clause (ctd.)

- Consider the *first* all-neg clause, say, $\bar{x}_1 \lor \cdots \lor \bar{x}_k$.
- Need to flip one x_i to false.
- For each x_i the number of

$$x_i \vee \overline{y}_2 \vee \cdots \vee \overline{y}_k.$$

is $\operatorname{Po}((1-\varepsilon)\ln k)$.

• \Rightarrow we are *free to flip* x_i with probability

$$\exp(-(1-\varepsilon)\ln k) = k^{\varepsilon-1}.$$

⇒ the *expected* number of free x_is is k ⋅ k^{ε-1} = k^ε.
⇒ we can *fix* the clause with prob 1 − exp(−k^ε).

How to proceed

This calculation only applies to the *first* all-neg clause. To proceed, we need to take into account:

• setting vars to *false* may *increase* the # of uniquely pos clauses...

How to proceed

This calculation only applies to the *first* all-neg clause. To proceed, we need to take into account:

- setting vars to *false* may *increase* the # of uniquely pos clauses...
- ... or actually *decrease* it.

How to proceed

This calculation only applies to the *first* all-neg clause. To proceed, we need to take into account:

- setting vars to *false* may *increase* the # of uniquely pos clauses...
- ... or actually *decrease* it.
- Setting a var to false may fix several all-neg clauses.

How to proceed

This calculation only applies to the *first* all-neg clause. To proceed, we need to take into account:

- setting vars to false may increase the # of uniquely pos clauses...
- ... or actually decrease it.
- Setting a var to false may fix several all-neg clauses.

Method of deferred decisions

- Only reveal the information needed for the next step,
- so that everything else remains *random*.

A 'card game'

• Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ \text{literals} \}.$

- Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ \text{literals} \}.$
- $\pi_t(i,j) \in \{+1,-1\} \Rightarrow$ we've only revealed the sign of Φ_{ij} .

- Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ | \text{literals} \}.$
- $\pi_t(i,j) \in \{+1,-1\} \Rightarrow$ we've only revealed the sign of Φ_{ij} .
- $\pi_t(i,j) \in \{ | \text{iterals} \} \Rightarrow$ we've revealed the actual $| \text{iteral } \Phi_{ij}$.

- Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ | \text{literals} \}.$
- $\pi_t(i,j) \in \{+1,-1\} \Rightarrow$ we've only revealed the sign of Φ_{ij} .
- $\pi_t(i,j) \in \{ | \text{iterals} \} \Rightarrow \text{we've revealed the actual literal } \Phi_{ij}$.
- The set Z of vars set to flase corresponds to a sequence $(Z_t)_t$.

- Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ | \text{literals} \}.$
- $\pi_t(i,j) \in \{+1,-1\} \Rightarrow$ we've only revealed the sign of Φ_{ij} .
- $\pi_t(i,j) \in \{ | \text{iterals} \} \Rightarrow \text{we've revealed the actual literal } \Phi_{ij}.$
- The set Z of vars set to flase corresponds to a sequence $(Z_t)_t$.
- $U_t =$ crtitical clauses.

- Track Steps 1–3 by maps $\pi_t : [m] \times [k] \rightarrow \{-1, 1\} \cup \{ \text{literals} \}.$
- $\pi_t(i,j) \in \{+1,-1\} \Rightarrow$ we've only revealed the sign of Φ_{ij} .
- $\pi_t(i,j) \in \{ | \text{iterals} \} \Rightarrow \text{we've revealed the actual literal } \Phi_{ij}$.
- The set Z of vars set to flase corresponds to a sequence $(Z_t)_t$.
- $U_t =$ crtitical clauses.
- and $U_t(x) = \#$ critical clauses 'supported' by x.

Initialization: what is π_0 ?

- Let $\pi_0(i,j) = sign of \Phi_{ij} \dots$
- unless Φ_{ij} is the only positive literal in $\Phi_i \rightsquigarrow \pi_0(i,j) = \Phi_{ij}$.
- Let $Z_0 = \emptyset$.
- Let $U_0 =$ all clauses with *exactly* one pos literal.

Defining π_t for $t \geq 1$

PI1 ● Let φ_t = min_{i∈[m]} {Φ_i is all-negative w/out var. from Z_{t-1}}.
● no such i ⇒ stop.

PI2 • Let
$$j = \min_{l \le k} \{ U_{t-1}(|\Phi_{\phi_t j}|) = 0 \}$$
.
• no such $l \Rightarrow \text{let } j = 1$.
• Let $Z_t = Z_{t-1} \cup \{\Phi_{\phi_t j}\}$.
PI3 • $U_t = \{i : \Phi_i \text{ has } ex. \text{ one pos lit } \notin Z_t \text{ and no neg lit } \in \overline{Z}_t\}$
• $U_t(x) = \text{those where } x \text{ is the unique pos literal.}$
PI4 (i.i.) $\int_{a} \Phi_{ii} = \phi_t \vee |\Phi_{ii}| \in Z_t \vee (i \in U_t \land \pi_0(i, j) = 0)$

$$\pi_t(i,j) = \begin{cases} \Phi_{ij} & \text{if } i = \phi_t \lor |\Phi_{ij}| \in Z_t \lor (i \in U_t \land \pi_0(i,j) = 1), \\ \pi_{t-1}(i,j) & \text{otherwise.} \end{cases}$$



The card game: example

- The initial sign pattern (k = 5).
- Φ_1, Φ_2, Φ_3 are all-negative, the next three clauses
- Φ_4, Φ_5, Φ_6 have exactly one positive literal, etc.
- The variables underlying the $\pm s$ are still *uniformly random*.

The card game: example

• The supporting variables revealed.

•
$$U_0(x_2) = U_0(x_3) = U_0(x_5) = 1.$$

•
$$U_0 = \{4, 5, 6\}.$$

The card game: example

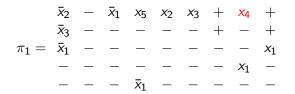
• Reveal the *first* all-negative clause.

The card game: example

•
$$U_0(x_2) = U_0(x_3) = 1$$
 but $U_0(x_1) = 0$.

• Thus,
$$Z_1 = \{x_1\}$$
.

• Reveal all occurrences of x₁.



The card game: example

- There is one new 'critical' clause, namely Φ_8 .
- Reveal its supporting variable x₄.
- Φ_4 contains $\bar{x}_1 \Rightarrow \text{not}$ critical anymore.
- At this point the vars underlying the \pm are *uniform* over $V \setminus \{x_1\}$.

The card game: example

- Reveal the next all-minus clause.
- Flip x_5 as it does not support any clauses, i.e., $Z_2 = \{x_1, x_5\}$.

\bar{x}_2	\overline{x}_5	\bar{x}_1	<i>X</i> 5	<i>x</i> ₂	<i>x</i> 3	+	<i>x</i> 4	+
\bar{x}_3	_	_	_	_	_	+	_	<i>x</i> 5
				_				
—	—	_	—	_	_	—	x_1	—
\overline{x}_5	_	_	\bar{x}_1	_	_	_	_	_

The card game: example

• Reveal all occurrences of x₅.

The card game: example

- x₅ occurs in the last clause, which becomes critical.
- Thus, we have to reveal the var underlying the +.
- At this point the vars underlying the \pm are *uniform* over $V \setminus \{x_1, x_5\}$.
- No all-minus columns left \Rightarrow halt.

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

Proof

• For any $1 \le i \le m$ we have $P[\pi_0(i, \cdot) = \text{all-minus}] = 2^{-k}$.

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

- For any $1 \le i \le m$ we have $P[\pi_0(i, \cdot) = \text{all-minus}] = 2^{-k}$.
- At each time s we flip a variable $z_s \in V \setminus Z_{s-1}$.

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

- For any $1 \le i \le m$ we have $P[\pi_0(i, \cdot) = \text{all-minus}] = 2^{-k}$.
- At each time s we flip a variable $z_s \in V \setminus Z_{s-1}$.
- If $\pi_{s-1}(i,j) = -1$, then $\Phi_{ij} \in V \setminus Z_{s-1}$ is uniformly distributed.

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

- For any $1 \le i \le m$ we have $P[\pi_0(i, \cdot) = \text{all-minus}] = 2^{-k}$.
- At each time s we flip a variable $z_s \in V \setminus Z_{s-1}$.
- If $\pi_{s-1}(i,j) = -1$, then $\Phi_{ij} \in V \setminus Z_{s-1}$ is uniformly distributed.
- Hence, $P\left[|\Phi_{ij}| = z_s | \mathcal{F}_{s-1}\right] \ge 1/(n-s+1).$

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

- For any $1 \le i \le m$ we have $P[\pi_0(i, \cdot) = \text{all-minus}] = 2^{-k}$.
- At each time s we flip a variable $z_s \in V \setminus Z_{s-1}$.
- If $\pi_{s-1}(i,j) = -1$, then $\Phi_{ij} \in V \setminus Z_{s-1}$ is uniformly distributed.
- Hence, $P[|\Phi_{ij}| = z_s | \mathcal{F}_{s-1}] \ge 1/(n-s+1).$
- Consequently,

$$P[\pi_t(i, \cdot) = \text{all-minus}] \le 2^{-k} \prod_{s \le t} 1 - \frac{1}{n-s+1} \le 2^{-k} \exp(-kt/n).$$

Let T = stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

Let T =stopping time.

Lemma

For all $t \leq \min\{T, n\}$ there are $\leq 2^{1-k} m \exp(-kt/n)$ all-minus columns w.h.p.

Corollary

 $T \leq 4n \ln \ln k / k$ w.h.p.

For all $t \leq T$ we have $|U_t| \leq (1 - \varepsilon/2) \ln(k)/n$ w.h.p.

臣

For all $t \leq T$ we have $|U_t| \leq (1 - \varepsilon/2) \ln(k)/n$ w.h.p.

Wrapping up: phase 1

• We know $|Z_T| = T \le 4n \ln \ln k / k$ w.h.p.

A ⊕ > A ⊡

For all $t \leq T$ we have $|U_t| \leq (1 - \varepsilon/2) \ln(k)/n$ w.h.p.

Wrapping up: phase 1

- We know $|Z_T| = T \le 4n \ln \ln k/k$ w.h.p.
- W.h.p. $|U_t| \le (1 \varepsilon/2) \ln(k)/n$ for all $t \le T$.

< 4 ₽ < <

For all $t \leq T$ we have $|U_t| \leq (1 - \varepsilon/2) \ln(k)/n$ w.h.p.

Wrapping up: phase 1

- We know $|Z_T| = T \le 4n \ln \ln k/k$ w.h.p.
- W.h.p. $|U_t| \leq (1 \varepsilon/2) \ln(k)/n$ for all $t \leq T$.
- Thus, w.h.p. there are $\geq nk^{\varepsilon/2-1}$ vars x with $U_t(x) = 0$ for all $t \leq T$.

For all $t \leq T$ we have $|U_t| \leq (1 - \varepsilon/2) \ln(k)/n$ w.h.p.

Wrapping up: phase 1

- We know $|Z_T| = T \le 4n \ln \ln k/k$ w.h.p.
- W.h.p. $|U_t| \le (1 \varepsilon/2) \ln(k)/n$ for all $t \le T$.
- Thus, w.h.p. there are $\geq nk^{\epsilon/2-1}$ vars x with $U_t(x) = 0$ for all $t \leq T$.
- Therefore, the argument used for the *first clause* (i.e., t = 1)...
- ... actually applies for all t.

- $\Phi = k$ -CNF formula.
- The *factor graph* is a bipartite auxiliary graph.
- Its vertices are the variables and the clauses of Φ .
- Each clause is adjacent to the variables that occur in it.

- $\Phi = k$ -CNF formula.
- The factor graph is a bipartite auxiliary graph.
- Its vertices are the variables and the clauses of Φ .
- Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph

To set the next variable, the algorithm inspects

- ... for each *clause* the variables that it contains,
- ... and their assigned values.

- $\Phi = k$ -CNF formula.
- The factor graph is a bipartite auxiliary graph.
- Its vertices are the variables and the clauses of Φ .
- Each clause is adjacent to the variables that occur in it.

Unit Clause and the factor graph

To set the next variable, the algorithm inspects

- ... for each *clause* the variables that it contains,
- ... and their assigned values.

Thus, it inspects the *factor graph* up to depth one.

- $\Phi = k$ -CNF formula.
- The factor graph is a bipartite auxiliary graph.
- Its vertices are the variables and the clauses of Φ .
- Each clause is adjacent to the variables that occur in it.

- $\Phi = k$ -CNF formula.
- The factor graph is a bipartite auxiliary graph.
- Its vertices are the variables and the clauses of Φ .
- Each clause is adjacent to the variables that occur in it.

Fix: depth three

In the first phase the algorithm

- ... inspects each *clauses* and its *variables*,
- ... the *clauses* in which these vars occur,
- ... and the values of all *other* variables in those clauses.

• Check out the ω -neighborhood of each variable.

- Check out the ω -neighborhood of each variable.
- Most likely, this is a *tree*.

- Check out the ω -neighborhood of each variable.
- Most likely, this is a *tree*.
- Compute the *marginals* at the *root* variable,
- ... given all previous decisions.

- Check out the ω -neighborhood of each variable.
- Most likely, this is a *tree*.
- Compute the *marginals* at the *root* variable,
- ... given all previous decisions.
- Decimation: assign a variable based on these marginals.

- Check out the ω -neighborhood of each variable.
- Most likely, this is a *tree*.
- Compute the marginals at the root variable,
- ... given all previous decisions.
- Decimation: assign a variable based on these marginals.

Surprise

To reach the dRSB point, depth three is sufficient.

- Fix works up to the dRSB point, at least asymptotically for *large k*.
- Is $F_k(n, m)$ 'hard' beyond the dRSB point?
- Better algorithm for *small k*?