A better algorithm for random k-SAT

Amin Coja-Oghlan

University of Edinburgh

The k-SAT problem

The k-SAT problem

o Given: a Boolean formula ® in conjunctive normal form.
@ The clauses have length k.
o Task: decide whether there is a satisfying assignment.

@ This problem is well known to be NP-hard.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

k-SAT is hard

Worst-case running time

@ Suppose @ is a k-SAT formula with n variables.

There are 2" possible assignments.
We could solve ® by trying all of them (in principle).
But if n = 1,000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

e © ¢ ¢

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

k-SAT is hard

Worst-case running time

@ Suppose @ is a k-SAT formula with n variables.
There are 2" possible assignments.

We could solve ® by trying all of them (in principle).
But if n = 1,000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

e © ¢ ¢

Complexity Theory

@ provides methods for classifying how hard a problems is. . .
@ ... relative to other problems.
@ NP-complete = as hard as k-SAT (with k > 3).

@ No absolute measure of hardness.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 3/24

k-SAT is hard

Worst-case running time

@ Suppose @ is a k-SAT formula with n variables.

There are 2" possible assignments.
We could solve ® by trying all of them (in principle).
But if n = 1,000, then this is infeasible.

However, no better algorithm is known to solve all inputs!

e © ¢ ¢

What makes a k-SAT formula hard ?

(]

(]

What types of inputs are easy?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Random k-SAT

@ Aim: contrive hard (but satisfiable) forumlas.
@ Let's try the simplest random model.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Random k-SAT

@ Aim: contrive hard (but satisfiable) forumlas. J

@ Let's try the simplest random model.

Uniformly random k-SAT

@ n variables xq, ..., xp.

@ Fi(n,m) has m random clauses.
o Let m=r-nwith r =0(1).
°

“With high probability” = with probability 1 — o(1) as n — co.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Random k-SAT

@ Aim: contrive hard (but satisfiable) forumlas.
@ Let's try the simplest random model.

The statistical physics perspective

@ Spin glasses.
o Gibbs measure at zero temperature.

@ Rigorous vs. non-rigorous methods.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold r, = ri(n) so that w.h.p.
@ Fi(n,m) is satisfiable if r < ry — €,

® Fi(n, m) is unsatisfiable if r > r +e.

L og(running time)

Tk P(Fi(n, m) is sat.)

Running time of “worst-case” algorithms is exponential and peaks at ry. J

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The k-SAT threshold

Theorem (Friedgut 1999)

For each k there is a threshold r, = ri(n) so that w.h.p.
@ Fi(n,m) is satisfiable if r < ry — €,

® Fi(n, m) is unsatisfiable if r > r +e.

Theorem (Achlioptas, Peres 2004)

re ~ 2K1n 2.

2nd moment method (non-algorithmic).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Algorithms for random k-SAT

@ The threshold is r, ~ 2% 1n 2.

@ For what m/n can compute satisfying assignments efficiently?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 /24

Algorithms for random k-SAT

@ The threshold is r, ~ 2% 1n 2.
@ For what m/n can compute satisfying assignments efficiently? |
Algorithm Density m/n < - - -
Pure Literal o(1) as k — Kim 2006
Walksat, rigorous % . 2"/k2 CFFKYV 2009
Walksat, non-rigorous 2k /k Monasson 2003
Shortest Clause %2 2K /k Chvatal, Reed 1992
Unit Clause €. 2K/k Chao, Franco 1990
SC+-backtracking 1.817 - 2K /k Frieze, Suen 1996
BP-+decimation e-2K/k Montanari 2007
(non-rigorous)

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 6 /24

Algorithms for random k-SAT

@ The threshold is r, ~ 2% 1n 2.

@ For what m/n can compute satisfying assignments efficiently?

... efficient algorithms are known to succeed up to m/n = c -2k /k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Algorithms for random k-SAT

@ The threshold is r, ~ 2% 1n 2.

@ For what m/n can compute satisfying assignments efficiently?

... efficient algorithms are known to succeed up to m/n = c - 2K /k,

Problem (Chvatal, Reed 1992)

Devise an algorithm that succeeds up to m/n = 2Kw(k)/k, w(k) — co.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Frozen variables

Replica symmetry breaking
o The k-SAT threshold is r ~ 2K In2.

o But there occurs another phase transition at r ~ 2KInk/k. ..

o ...that affects the computational difficulty.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Frozen variables

Replica symmetry breaking

@ The k-SAT threshold is r ~ 2K In 2.

o But there occurs another phase transition at r ~ 2KInk/k. ..

o ...that affects the computational difficulty.

Loose vs. frozen variables

Let ® be a k-CNF, o a satisfying assignment, and x a variable.

@ x is loose if there is a satisfying assignment 7 such that

o(x) # 7(x) and dist(o, 7) < In(n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7/ 24

Frozen variables

Replica symmetry breaking

@ The k-SAT threshold is r ~ 2K In 2.

o But there occurs another phase transition at r ~ 2KInk/k. ..

o ...that affects the computational difficulty.

Loose vs. frozen variables
Let ® be a k-CNF, o a satisfying assignment, and x a variable.

@ x is loose if there is a satisfying assignment 7 such that
o(x) # 7(x) and dist(o, 7) < In(n).
® x is frozen if for any satisfying assignment 7

o(x) # 7(x) = dist(o, 7) = Q(n).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 7/ 24

Frozen variables (ctd.)

Why are things so much “harder” for r > 2¥In k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fx(n, m):
@ if r < (1 —£x)2XIn k/k, then almost all variables are /oose w.h.p.
Q if r > (1 +£4)2XIn k/k, then almost all variables are frozen w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Frozen variables (ctd.)

Why are things so much “harder” for r > 2¥In k/k?

Theorem (Achlioptas, ACO 2008)

For a random satisfying assignment of Fx(n, m):

@ if r < (1 —£x)2XIn k/k, then almost all variables are /oose w.h.p.
Q if r > (1 +£4)2XIn k/k, then almost all variables are frozen w.h.p.

In other words. . .

@ first correlations between variables are purely local.

@ but then long-range correlations occur.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 8 /24

A new algorithm

But if RSB occurs at r ~ 2%In(k)/k. ..

@ ... local search algorithms ought to succeed up to that density.

@ Yet none has been known to succeed beyond const x 2% /k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 /24

A new algorithm

But if RSB occurs at r ~ 2%In(k)/k. ..

@ ... local search algorithms ought to succeed up to that density.

@ Yet none has been known to succeed beyond const x 2% /k.

Theorem (ACO 2009)

Fix(Fx(n, m)) succeeds up to r = (1 —)2 In k/k.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

A new algorithm

But if RSB occurs at r ~ 2%In(k)/k. ..

@ ... local search algorithms ought to succeed up to that density.

@ Yet none has been known to succeed beyond const x 2% /k.

Theorem (ACO 2009)

Fix(Fx(n, m)) succeeds up to r = (1 —)2 In k/k.

The algorithm Fix
© Start with the all-true assignment.
@ For any all-negative clause

© flip one of its variables w/out generating new unsat clauses
(if possible).

© C(lean-up step: satisfy the remaining unsat clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 9 /24

Analyzing Fix

The algorithm Fix

© Start with the all-true assignment.

© For any all-negative clause

© flip one of its variables w/out generating new unsat clauses
(if possible).

© Compute a set Z’ of variables such that any clause

o either is satisfied by a variable in V' \ Z’,
@ or contains at least three variables from Z’.

Find a matching from the unsat clauses to Z’.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix

The algorithm Fix

© Start with the all-true assignment.

© For any all-negative clause

© flip one of its variables w/out generating new unsat clauses
(if possible).

© Compute a set Z’ of variables such that any clause

o either is satisfied by a variable in V' \ Z’,
@ or contains at least three variables from Z’.

Find a matching from the unsat clauses to Z’.

@ Let ¢ > 0 and suppose k > ky(e).
o Let ® = Fi(n, m) with m/n = (1 —¢)-2¥In(k)/k.

@ There are 27¥m = n- (1 — €)In(k)/k all-negative clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 10 / 24

Analyzing Fix

The algorithm Fix

© Start with the all-true assignment.

© For any all-negative clause

© flip one of its variables w/out generating new unsat clauses
(if possible).

© Compute a set Z’ of variables such that any clause

o either is satisfied by a variable in V' \ Z’,
@ or contains at least three variables from Z’.

Find a matching from the unsat clauses to Z’.

W.h.p. #unsat clauses after Steps 1-3 is < nexp(—k®).

Remember: initially there were n- (1 —€)In(k)/k of them.]

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 10 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

o Consider the first all-neg clause, say, X1 V - -+ V Xk.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

o Consider the first all-neg clause, say, X1 V - -+ V Xk.

@ Need to flip one x; to false.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

o Consider the first all-neg clause, say, X1 V - -+ V Xk.

@ Need to flip one x; to false.

@ This generates a new unsat clause iff ® contains

XiVys V-V yg.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

o Consider the first all-neg clause, say, X1 V - -+ V Xk.

@ Need to flip one x; to false.

@ This generates a new unsat clause iff ® contains

XiVys V-V yg.

@ Total number of uniquely pos clauses is

K27k m=(1—-¢)Ink-n.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

o Consider the first all-neg clause, say, X1 V - -+ V Xk.

@ Need to flip one x; to false.

@ This generates a new unsat clause iff ® contains

XiVys V-V yg.

@ Total number of uniquely pos clauses is

K27k m=(1—-¢)Ink-n.

@ = for each x; we expect (1 —¢)Ink.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause

@ Consider the first all-neg clause, say, x; V -+ V X.
0

@ This generates a new unsat clause iff ® contains

Need to flip one x; to false.

XiVys V-V yg.

@ Total number of uniquely pos clauses is
k27K m=(1—-¢)lnk-n.
@ = for each x; we expect (1 —¢)Ink.
@ In fact, for each x; the number is ~ Po((1 — ¢) In k).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 11/ 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)
o Consider the first all-neg clause, say, x; V - -+ V X.
@ Need to flip one x; to false.

@ For each x; the number of

XiVya VooV Y.
is Po((1 — ¢) In k).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)
o Consider the first all-neg clause, say, x; V - -+ V X.
@ Need to flip one x; to false.

@ For each x; the number of
XiVyo V-V y.

is Po((1 — ¢) In k).
@ = we are free to flip x; with probability

exp(—(1 —¢)Ink) = k=L,

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)
o Consider the first all-neg clause, say, x; V - -+ V X.
@ Need to flip one x; to false.

@ For each x; the number of
XiVyo V-V y.

is Po((1 — ¢) In k).
@ = we are free to flip x; with probability

exp(—(1 —¢)Ink) = k=L,

@ = the expected number of free x;s is k - k*~1 = k°.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

Fixing the first unsat clause (ctd.)

o Consider the first all-neg clause, say, x; V - -+ V X.

(]

Need to flip one x; to false.

@ For each x; the number of
XiVyo V-V y.

is Po((1 — ¢) In k).
= we are free to flip x; with probability

(]

exp(—(1 —¢)Ink) = k=L,

= the expected number of free x;s is k - k*~1 = k=.

(]

(]

= we can fix the clause with prob 1 — exp(—k*®).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 12 / 24

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

@ setting vars to false may increase the # of uniquely pos clauses. . .

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

@ setting vars to false may increase the # of uniquely pos clauses. . .

@ ...or actually decrease it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

@ setting vars to false may increase the # of uniquely pos clauses. . .

@ ...or actually decrease it.

@ Setting a var to false may fix several all-neg clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

How to proceed

This calculation only applies to the first all-neg clause.
To proceed, we need to take into account:

@ setting vars to false may increase the # of uniquely pos clauses. . .
@ ...or actually decrease it.

@ Setting a var to false may fix several all-neg clauses.

Method of deferred decisions
@ Only reveal the information needed for the next step,

@ so that everything else remains random.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 13/ 24

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

@ Track Steps 1-3 by maps m; : [m] x [k] — {—1,1} U {literals}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

@ Track Steps 1-3 by maps m; : [m] x [k] — {—1,1} U {literals}.
o m(i,j) € {+1,—1} = we've only revealed the sign of ®;;.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

@ Track Steps 1-3 by maps m; : [m] x [k] — {—1,1} U {literals}.
o m(i,j) € {+1,—1} = we've only revealed the sign of ®;;.

o 7(i,j) € {literals} = we've revealed the actual literal ®;.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

@ Track Steps 1-3 by maps m; : [m] x [k] — {—1,1} U {literals}.
o m(i,j) € {+1,—1} = we've only revealed the sign of ®;;.

o 7(i,j) € {literals} = we've revealed the actual literal ®;.

@ The set Z of vars set to flase corresponds to a sequence (Z;).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

Track Steps 1-3 by maps 7 : [m] x [k] — {—1,1} U {literals}.
m(i,j) € {+1,—1} = we've only revealed the sign of ®j;.

m¢(i,j) € {literals} = we've revealed the actual literal ®;;.

The set Z of vars set to flase corresponds to a sequence (Z;):.

e © ¢ ¢ ¢

U; = crtitical clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let ®; =(random) clause i; ®;; = jth literal in ®;.

Track Steps 1-3 by maps 7 : [m] x [k] — {—1,1} U {literals}.
m(i,j) € {+1,—1} = we've only revealed the sign of ®j;.

m¢(i,j) € {literals} = we've revealed the actual literal ®;;.
The set Z of vars set to flase corresponds to a sequence (Z;):.

U; = crtitical clauses.

e © 6 ¢ ¢ ¢

and U¢(x) = # critical clauses ‘supported’ by x.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Initialization: what is 7g?
o Let mo(i,j) =sign of &y ...
@ unless ®j; is the only positive literal in ®; ~» mo(i,)) = ®y;.
o Let Zp = 0.

@ Let Uy =all clauses with exactly one pos literal.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Defining m; for t > 1
PI1 o Let ¢ = minjc[py {®; is all-negative w/out var. from Z;_1}.

@ no such i = stop.

P12) Letj = min/gk{Ut_l(\¢¢tj|) = 0}
@ no such / = let j = 1.
o let £t =2_1U {¢¢tj}'

PI3 o U, = {i: ®; has ex. one pos lit ¢ Z; and no neg lit € Z,}.
@ Ui(x) =those where x is the unique pos literal.

P14

®; if i =¢: V|| € Z: V(i€ U Amo(i,j) =1),
me—1(i,j) otherwise.

me(i,j) = {

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 16 / 24

Analyzing Fix (ctd.)

The card game: example

@ The initial sign pattern (k = 5).
o 1, &y, P3 are all-negative, the next three clauses
o O, P5, Pg have exactly one positive literal, etc.

@ The variables underlying the =£s are still uniformly random.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

M= - - - - - — — —=

The card game: example

@ The supporting variables revealed.
*] UO(X2) = Uo(X3) = Uo(X5) =1.
o Up={4,5,6}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

X2 — — X5 X2 X3 + + +
X3 — - - - - + - +
X — - - - - - - +
— — — — — — — + —

The card game: example

@ Reveal the first all-negative clause.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

X2 — X1 X5 X2 x3 + + +
X3 - - - - - 4+ - +
X1 — — — — — — — X1
- - - - - - = xq -
- - - X - - = = =

The card game: example
o Uo(Xz) = Uo(Xg) =1 but Uo(Xl) =0.
) Thus, Zl = {Xl}.

@ Reveal all occurrences of x;.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

X2 — X1 X5 X2 X3 + Xz +
X3 - - - - — 4+ - +
T = >_<1 — — — — — — — X1
- - - - - - = g -
- - - X - - = - =

The card game: example

@ There is one new ‘critical’ clause, namely ®g.
@ Reveal its supporting variable xa.
@ &, contains X; = not critical anymore.

@ At this point the vars underlying the & are uniform over V' \ {x}.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (

X2 X5 X1 Xs

The card game: example

@ Reveal the next all-minus clause.

@ Flip x5 as it does not support any

X2

clauses, i.e., Zo = {x1,x5}.

X3

Amin Coja-Oghlan (Edinburgh)

A better algorithm for random k-SAT

Analyzing Fix (ctd.)

X2 X5 X1 Xs

The card game: example

@ Reveal all occurrences of xs.

X2

X3

Amin Coja-Oghlan (Edinburgh)

A better algorithm for random k-SAT

Analyzing Fix (ctd.)

X2 X5 X1 X5 X2 X3 + Xa Xxa

X3 — — — — — 4+ — X5

T = >_<1 — — — — — — — X1
- - - - - - xx -

X% — — X - - - — -

The card game: example

@ x5 occurs in the last clause, which becomes critical.

@ Thus, we have to reveal the var underlying the +.

@ At this point the vars underlying the & are uniform over V' \ {x1, x5 }.
@ No all-minus columns left = halt.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let T =stopping time. J

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let T =stopping time.)

Lemma

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

@ For any 1 < i < m we have P [rg(i,-) = all-minus] = 27X

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.)

Lemma

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

@ For any 1 < i < m we have P [rg(i,-) = all-minus] = 27X

@ At each time s we flip a variable z; € V' \ Z,_;.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.)

Lemma

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

@ For any 1 < i < m we have P [rg(i,-) = all-minus] = 27X
@ At each time s we flip a variable z; € V' \ Z,_;.
o If ms_1(i,j) = —1, then ®j; € V' \ Z;_; is uniformly distributed.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

Proof

@ For any 1 < i < m we have P [rg(i,-) = all-minus] = 27X

| \

@ At each time s we flip a variable z; € V' \ Z,_;.
o If ms_1(i,j) = —1, then ®j; € V' \ Z;_; is uniformly distributed.
@ Hence, P[|®j| = z5|Fs_1] > 1/(n—s+1).

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time.

Lemma

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

Proof

@ For any 1 < i < m we have P [rg(i,-) = all-minus] = 27X

| \

@ At each time s we flip a variable z; € V' \ Z,_;.
o If ms_1(i,j) = —1, then ®j; € V' \ Z;_; is uniformly distributed.
@ Hence, P[|®j| = z5|Fs_1] > 1/(n—s+1).

o Consequently,

1
P [me(i,-) = allb-minus] < 275 [1 — ———— <2 ¥ exp(—kt/n).
[m¢(7,-) = all-minus] < 511 pa—— exp(—kt/n)

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT 18 / 24

Analyzing Fix (ctd.)

Let T =stopping time. J

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

Let T =stopping time.)

For all t < min{T,n} there are < 2'~"Kmexp(—kt/n) all-minus columns
w.h.p.

T <4nlnink/k w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

For all t < T we have |U| < (1 —¢/2)In(k)/n w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

For all t < T we have |U| < (1 —¢/2)In(k)/n w.h.p.

Werapping up: phase 1

@ We know |Z7| =T <4nlinlnk/k w.h.p.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

For all t < T we have |U| < (1 —¢/2)In(k)/n w.h.p.

Werapping up: phase 1

o We know |Z7| =T < 4nlinink/k w.h.p.
@ W.hop. |Us] < (1 —¢/2)In(k)/nforallt < T.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

For all t < T we have |U| < (1 —¢/2)In(k)/n w.h.p.

Werapping up: phase 1

o We know |Z7| =T < 4nlinink/k w.h.p.
@ W.hop. |Us] < (1 —¢/2)In(k)/nforallt < T.
® Thus, w.h.p. there are > nk®/2=! vars x with U;(x) =0 forall t < T.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Analyzing Fix (ctd.)

For all t < T we have |U| < (1 —¢/2)In(k)/n w.h.p.

Werapping up: phase 1

o We know |Z7| =T < 4nlinink/k w.h.p.
@ W.hop. |Us] < (1 —¢/2)In(k)/nforallt < T.
® Thus, w.h.p. there are > nk®/2=! vars x with U;(x) =0 forall t < T.

@ Therefore, the argument used for the first clause (i.e., t =1)...

@ ...actually applies for all t.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph

@ & = k-CNF formula.
@ The factor graph is a bipartite auxiliary graph.
@ lts vertices are the variables and the clauses of .

@ Each clause is adjacent to the variables that occur in it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph

@ & = k-CNF formula.
@ The factor graph is a bipartite auxiliary graph.
@ lts vertices are the variables and the clauses of .

@ Each clause is adjacent to the variables that occur in it.

| \

Unit Clause and the factor graph
To set the next variable, the algorithm inspects
@ ...for each clause the variables that it contains,

@ ...and their assigned values.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph

@ & = k-CNF formula.
@ The factor graph is a bipartite auxiliary graph.
@ lts vertices are the variables and the clauses of .

@ Each clause is adjacent to the variables that occur in it.

| \

Unit Clause and the factor graph
To set the next variable, the algorithm inspects
@ ...for each clause the variables that it contains,

@ ...and their assigned values.

Thus, it inspects the factor graph up to depth one.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

@ ® = k-CNF formula.
@ The factor graph is a bipartite auxiliary graph.
@ lts vertices are the variables and the clauses of .

@ Each clause is adjacent to the variables that occur in it.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

@ ® = k-CNF formula.
@ The factor graph is a bipartite auxiliary graph.
@ lts vertices are the variables and the clauses of .

@ Each clause is adjacent to the variables that occur in it.

| A\

Fix: depth three
In the first phase the algorithm

@ ...inspects each clauses and its variables,

@ ...the clauses in which these vars occur,

@ ...and the values of all other variables in those clauses.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

Belief Propagation: a algorithm.

@ Check out the w-neighborhood of each variable.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

Belief Propagation: a algorithm.

@ Check out the w-neighborhood of each variable.

@ Most likely, this is a tree.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

Belief Propagation: a algorithm.

@ Check out the w-neighborhood of each variable.
@ Most likely, this is a tree.
o Compute the marginals at the root variable,

@ ...given all previous decisions.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

Belief Propagation: a algorithm.

@ Check out the w-neighborhood of each variable.
Most likely, this is a tree.
Compute the marginals at the root variable,

...given all previous decisions.

(*]
(*]
(]
(*]

Decimation: assign a variable based on these marginals.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

The factor graph (ctd.)

Belief Propagation: a algorithm.

@ Check out the w-neighborhood of each variable.
Most likely, this is a tree.
Compute the marginals at the root variable,

°
°
@ ...given all previous decisions.
°

Decimation: assign a variable based on these marginals.

v

To reach the dRSB point, depth three is sufficient.

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

Conclusion

@ Fix works up to the dRSB point, at least asymptotically for /arge k.
@ Is Fi(n,m) ‘hard’ beyond the dRSB point?
@ Better algorithm for small k?

Amin Coja-Oghlan (Edinburgh) A better algorithm for random k-SAT

	Outline

