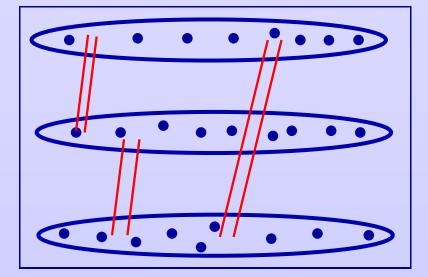
The typical structure of graphs without given excluded subgraphs + related results

Noga Alon József Balogh Béla Bollobás Jane Butterfield Robert Morris Dhruv Mubayi Wojciech Samotij Miklós Simonovits

The Turán graph

 K_p = complete graph on p vertices, $T_{n,p}$ = p-class Turán graph:

$$\left(1-\frac{1}{p}\right)\binom{n}{2} \le e(T_{n,p}) \le \left(1-\frac{1}{p}\right)\frac{n^2}{2}$$



- not necessarily induced containment.

- not necessarily induced containment.

 $\mathcal{P}(n, \mathcal{H})$ = the class of \mathcal{H} -free graphs on $[n] := \{1, \ldots, n\}$.

 $\mathbf{ex}(n, \mathcal{H}) = \max\{e(G_n) : G_n \text{ is } \mathcal{H}-\text{free}\}.$

The basic Turán type extremal problen

For a given family \mathcal{H} , determine or estimate $ex(n, \mathcal{H})$, and describe the (asymptotic) structure of extremal graphs, as $n \to \infty$.

Erdős Conjecture

Trivially

 $|\mathcal{P}(n,\mathcal{H})| \ge 2^{\mathbf{ex}(n,\mathcal{H})}.$

Conjecture [Erdős 1965] For every *H* containing a cycle

$$|\mathcal{P}(n,H)| = 2^{(1+o(1))\mathbf{ex}(n,H)}$$

Structure of a.a. *H***-free graphs**

- Conjecture suggests: Almost all H-free graphs are subgraphs of an extremal H-free graph.
- False! Most triangle-free graphs are not subgraphs of $K_{n/2,n/2}$.
- **Theorem** [Erdős, Kleitman and Rothschild (1976)] Almost all triangle-free graphs are bipartite.

History

Theorem [Erdős, Kleitman and Rothschild (1976)]

 $|\mathcal{P}(n, K_p)| \le 2^{(1+o(1))ex(n, K_p)}.$

Theorem [Kolaitis, Prömel and Rothschild (1987)] Almost all K_{p+1} -free graphs are *p*-partite.

Using Szemerédi Regularity Lemma, and the theorem above:

Theorem [Erdős, Frankl, Rödl (1986)] The number of \mathcal{H} -free graphs is

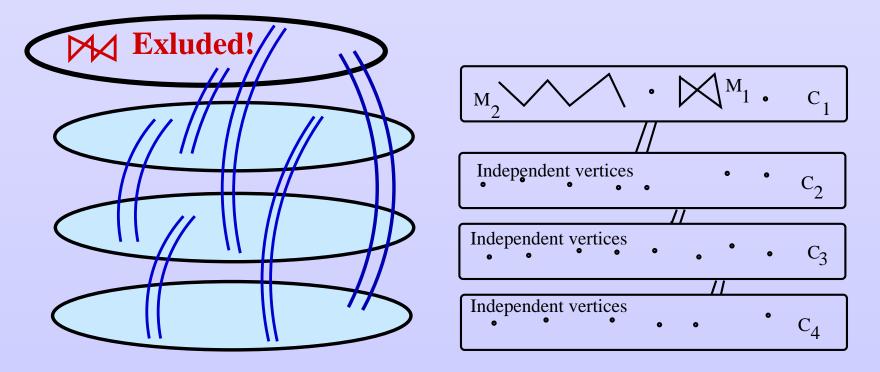
 $|\mathcal{P}(n,\mathcal{H})| \leq 2^{\mathbf{ex}(n,\mathcal{H})+o(n^2)}.$

Characterization of a.a. *H*-free graphs

AIM: Most *H*-free graphs can be regarded as subgraphs of some extremal or almost extremal graphs for *H* when $\chi(H) > 2$.

Decomposition Family

Given a graph H, let $\mathcal{M} := \mathcal{M}(H)$ be the family of **minimal** graphs M for which there exist a $t = t_H$ such that $H \subseteq (M + I_t) \otimes K_{p-1}(t, \ldots, t)$, where $M + I_t$ is the graph obtained by adding t isolated vertices to M. \mathcal{M} is the *decomposition family* of H.



Decomposition Family: Examples

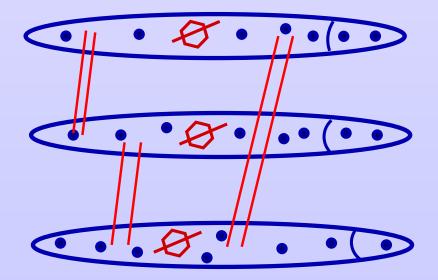
- **Example 1:** $\mathcal{M}(K_p) = \{K_2\}.$ **Example 2:** $\mathcal{M}(C_{2p+1}) = \{K_2\}.$
- **Example 3:** *H* is weakly edge-critical, i.e., $\exists e \in E(H)$ s.t. $\chi(H e) = \chi(H) 1$:

$$\mathcal{M}(H) = \{K_2\}.$$

Example 4: $H = O_6 = K(2, 2, 2)$, then $\mathcal{M}(H) = \{C_4\}$.

General structure

- Many *H*-free graph can be generated from an $\mathcal{M}(H)$ -free graph and p-1 vertex-disjoint independent sets.
- Theorem [Balogh-Bollobás-Simonovits 2004, 2009]. Let \mathcal{H} be an arbitrary finite family of graphs. Then there exists a constant $h_{\mathcal{H}}$ such that for almost all \mathcal{H} -free graphs G_n we can delete $h_{\mathcal{H}}$ vertices of G_n and partition the remaining vertices into p classes (U_1, \ldots, U_p) so that each $G[U_i]$ $(i \leq p)$ is \mathcal{M} -free



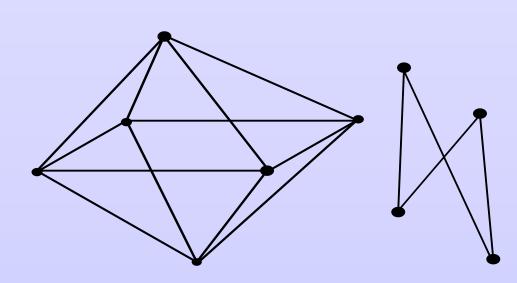
Remark. There is an infinite family \mathcal{H} for which the statement of the theorem would be false.

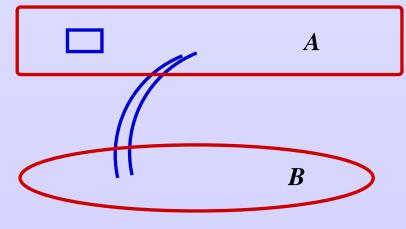
Remark. For $H = K_{19,19} + 8$ independent edges in one class the statement of the theorem would be false for $h_H = 0$.

Remark. Complete *p*-partite graph + independent edges in one class is a counterexample of the natural "theory": "a.e. *H*-free is a subgraph of an extremal type of graph."

The Octahedron $O_6 = K(2, 2, 2)$

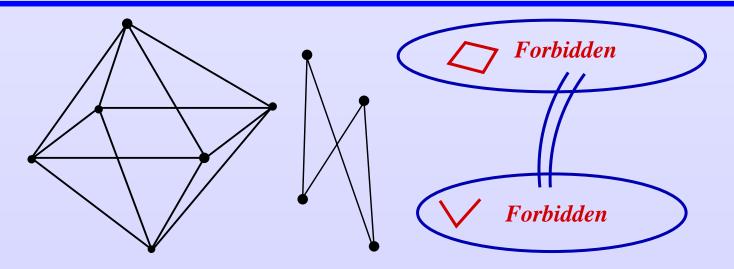
Decomposition: $C_4 \otimes K_2 = O_6$. Decomposition family is C_4 . Note: $O_6 \subseteq P_3 \otimes P_3$.





If B contains a C_4 then G_n contains an octahedron: K(2,2,2).

Octahedron Theorem:



Theorem [Erdős-Simonovits 1971]. The vertices of an O_6 -extremal G_n can be partitioned into (A, B) so that

- G[A] is C_4 -extremal,
- G[B] is P_3 -extremal,
- \blacksquare A, B are completely joined.

Octahedron Theorem:

Theorem [Balogh-Bollobás-Simonovits 2009+]. Almost every O_6 -free G_n is such that $V(G_n)$ can be partitioned into (A, B) so that

- G[A] is C_4 -extremal,
- G[B] is P_3 -extremal.

Ideas of the Proof:

- Szemerédi's Regularity Lemma,
- Simonovits' Stability Theorem,
- Almost every H-free graph has structure similar to an H-free extremal graph.
- Ad hoc cleaning. (can be hard)

Ad hoc cleaning: Octahedron

- **Theorem** [Füredi (1994)] Almost every C_4 -free graph on n vertices has at least $n^{1.5}/100$ edges.
- **Remark.** Octahedron= K(2, 2, 2). To generalize result to $K(a_1, \ldots, a_p)$ for $a_1 \leq \ldots \leq a_p$ one needs: **Theorem [Balogh-Samotij (2009+)]** Assume that $a_1 \leq a_2$ such that $\Theta(ex(n, K(a_1, a_2)))$ is known. Then almost every $K(a_1, a_2)$ -free graph has at least $c \cdot ex(n, K(a_1, a_2))$ edges for some $c = c(a_1, a_2)$.

Erdős' Conjecture is open for all bipartite graphs! **Theorem** [Balogh-Samotij (2009+)]

$$\mathcal{P}(n, K(s, t)) = 2^{O(n^{2-1/s})}$$

Sharp for $s \leq t$ when $\Theta(ex(n, K(s, t)))$ is known.

Similar statements were only known for C_4 (Kleitman, Winston 1982), C_6 , C_8 (Kleitman, Wilson 1996, Kohayakawa, Kreuter, Steger 1996).

Bipartite case: Application

Corollary [Balogh-Samotij (2009+)] For all $2 \le s \le t$, there exist an integer u = u(s,t) > t and c = c(s,t) > 0, such that for all large enough m, there exists a K(s,u)-free graphs G with m edges, whose largest K(s,t)-free subgraph has only m^{1-c} edges. In particular, u(3,3) = 4.

Was known for K(2,2) with u(2,3) = 3 by Füredi (1994).

Induced case, general

- Alekseev (1992), Prömel, Steger (1993), Bollobás, Thomason (1995):
- Defined *coloring number* of \mathcal{H} . Solved a variant of Erdős' conjecture:
- **Definition.** $\chi_c(H)$ is the minimum r such that for every s + t = r, V(H) can be covered by s complete graphs and t independent sets.
- SAME: There are s + t = r 1 such that V(H) cannot be covered by s complete graphs and t independent sets.
- **Remark.** Many = $2^{(1-1/(\chi_c(H)-1))n^2/2}$ *H*-free graphs can be generated this way.

Coloring number: Application

Important parameter for computing edit distance!

Axenovich, Kézdy, Martin;

Alon, Stav;

Induced case, general

Theorem [Alekseev (1992), Prömel, Steger (1993), Bollobás, Thomason (1995):]

 $\mathcal{P}^{(i)}(n,H) = 2^{(1-1/(\chi_c(H)-1)+o(1))n^2/2}.$

STRUCTURE?

Theorem [Prömel, Steger (1991)] Almost every induced C_4 -free graph can be partitioned into a clique and an independent set.

Prömel, Steger (1993) handled C_5 as well.

Structural results:

U(k) := bipartite graph with classes $([k], 2^{[k]})$, edges

 $\{(i,A): i \in A \subset [k]\}.$

G is U(k)-free, if no $A, B \subset V(G)$ exists with G[A, B] = U(k) (only cross-edges matter).

Theorem [Alon, Balogh, Bollobás, Morris (2009+)]: For every *H* there is a c > 0 and a *k* such that the vertex set of almost every *H*-free graph can be partitioned into $U, V_1, \ldots, V_{\chi_c(H)-1}$ such that $|U| < n^{1-c}$ and V_i is U(k)-free.

Sharpness:

Lemma [Alon, Balogh, Bollobás, Morris (2009+)]: For every k there is a c such that the number of U(k)-free graphs is at most

Quantitative improvement of the main result:

 $2^{(1-1/r+o(n^{-c}))n^2/2}.$

 $2^{n^{2-c}}$.

Sharpness:

Lemma [Alon, Balogh, Bollobás, Morris (2009+)]: The number of U(k)-free bipartite graphs on ([n], [n]) is at most

$$2^{n^{2-1/(k-1)}\log^k n}$$
.

Comparable with

Lemma [Alon, Krivelevich, Sudakov (2003+)]:

$$ex(n, U(k)) = O(n^{2-1/(k-1)}).$$

Application: Improves the bounds on the number of String graphs (and *d*-rank string graphs) [Pach, G. Tóth (2004)].

Critical graphs:

Theorem [Prömel, Steger (1991)] Almost every induced C_4 -free graph can be partitioned into a clique and an independent set.

Theorem [Prömel, Steger (1992)] The following true iff H is a **weakly edge-color-critical** (p + 1)-chromatic graph. Then almost all H-free (non-induced containment) graphs have chromatic number p.

Recall: *H* is a **weakly edge-color-critical** if there is an edge whose removal decreases $\chi(H)$.

Natural generalization for the induced case: H is a **critical** if there is a pair of vertices whose flipping in H decreases $\chi_c(H)$.

Critical graphs (induced case):

Theorem [Balogh, Butterfield (2009+)] Let H be a graph with $\chi_c(H) = p + 1$. The following holds iff H is critical: Then the vertex set of almost every H-free graph can be covered with p cliques/independent sets.

Remark. The proper definition of 'critical' is different, K_4^- is critical only by our definition.

Remark. C_{2k+1} is critical for $k \ge 3$.

Remark. The vertex set of almost every C_7 -free graph can be covered with 3 cliques or 2 cliques and an independent set.

Hypergraphs: Triple Systems.

Theorem [Bollobás and Thomason (1995)] For every k-hypergraph H there is a constant c s.t.

$$\mathcal{P}(n,H) = 2^{cn^k + o(n^k)}.$$

Theorem [Nagle and Rödl (2001)] For every 3-hypergraph *H*

$$\mathcal{P}(n,H) = 2^{ex(n,H) + o(n^3)}.$$

Strong Hypergraph Regularity Lemma is used.

Hypergraphs: Fano planes, linear hypergraphs.

- **Theorem** [Keevash- Sudakov, Füredi- Simonovits (2006)] The extremal Fano-plane-free triple system is bipartite.
- **Theorem** [Person and Schacht (2009)] Almost all hypergraphs without Fano planes are bipartite.
- **Remark.** Using embedding result of [Kohayakawa, Nagle, Rödl, Schacht (2009)] argument works for 'nice' linear hypergraphs.
- Weak Hypergraph Regularity Lemma is used.

Hypergraphs: Cancellative triple system

- A triple system is **cancellative** if no three of its distinct edges satisfy $A \cup B = A \cup C$.
- **Theorem** [Bollobás (1974)] The extremal cancellative triple system is tripartite.
- Note that a cancellative system does not contain $F_5 = \{abc, abd, cde\}$. (extended triangle?)
- **Theorem** [Frankl, Füredi (1983)] The extremal F_5 -free triple system is tripartite.
- **Theorem** [Balogh, Mubayi (2009+)] Almost all *F*₅-free triple system is tripartite.

Hypergraphs: Independent neighborho

- $T_5 = \{abc, abd, abe, cde\}$. In a T_5 -free hypergraph the neighborhood of any pair of vertices is an independent set.
- A semi-bipartite hypergraph is T_5 -free.
- **Theorem** [Balogh, Mubayi (2009+)] Almost all T_5 -free triple system is semi-bipartite.

Ideas of the Proof:

- Apply Strong Hypergraph Regularity Lemma.
- Apply Stability result to cluster hypergraph (if it exists.)
- There are many cluster hypergraphs!
- Apply stability to each, and then prove that their structure are similar.
- Gives: a.a. T_5 -free almost semi-bipartite.
- ad hoc methods (some new pseudo-random terminology)...