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Integer partitions

λ = (λ1, λ2, . . . , λl) is a partition of n if λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0
and λ1 + λ2 + . . .+ λℓ = n.

λi – parts of the partition λ

ℓ = ℓ(λ) – the number of parts in λ

p(n) – the number of partitions of n

Example. n = 5, p(5) = 7. Here are all partitions of 5 :

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

Euler’s Theorem:
∞
∏

i=1

1

1− ti = 1 +
∞

∑

n=1

p(n) tn,
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Young diagrams

λ λ′

Young diagrams of partitions λ = (6, 5, 5, 3) and λ′ = (4, 4, 4, 3, 3, 1).

Classical Theorem:

The number of partitions of n with largest part k is equal to

the number of partitions of n into exactly k parts.

(Encyclopedia Britannica)
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Partition identities

1 +
∞

∑

n=1

(1 + at)(1 + at3) · · · (1 + at2n−1) znt2n

(1− bt2)(1− bt4) · · · (1− bt2n)

=

∞
∑

r=0

(1 + azt4r+3)brzrt2r(r+1)

(1− zt2(r+1))

r
∏

i=1

(1 + at2i−1)(1 + ab−1zt2i+1)

(1− bt2i)(1− zt2i)
.

(Rogers-Fine identity)

1 +
∞

∑

n=1

qn(n+1)/2 (1 + q)(1 + q2) · · · (1 + qn)

(1− q)(1− q2) · · · (1− qn)
=

∞
∏

n=1

(1 + qn)(1− q2n) .

(Ramanujan’s identity)
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Rogers–Ramanujan identities

1 +

∞
∑

k=1

tk
2

(1− t)(1− t2) · · · (1− tk) =

∞
∏

i=0

1

(1− t5i+1)(1− t5i+4)

R-R theorem:

The number of partitions of n into parts which differ by at least 2

is equal to the number of partitions of n into parts which are ±1 mod 5.

?
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G. H. Hardy (1936):

“None of the proofs of Rogers–Ramanujan identities can be called ‘sim-
ple’ and ‘straightforward’, since the simplest are essentially verifica-
tions; and no doubt it would be unreasonable to expect a really easy
proof.”

G. E. Andrews (1978):

“Hardy’s comments about the nonexistence of a really easy proof of the
Rogers–Ramanujan identities are still true today.”

A. M. Garsia (1989):

“Schur independently discovers the Rogers identities, and (unlike Ra-
manujan) is also able to provide a proof. We may add that it is really
a great historical injustice (mostly due to the tabloid sensationalism of
G. H. Hardy) to refer to as the Rogers-Ramanujan identities.”
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Ramanujan’s congruences

mod-5 congruence: p(5n− 1) ≡ 0 mod 5

¿¿¿ Combinatorial proof ???

r(λ) = λ1 − ℓ(λ) – rank of λ

p(n, i) – the number of partitions λ ⊢ n with r(λ) ≡ i mod 5.

Theorem. (Dyson, Atkin & Swinnerton-Dyer)

p(5n−1, 0) = p(5n−1, 1) = p(5n−1, 2) = p(5n−1, 3) = p(5n−1, 4).

Oliver Atkin: “it is probably bad advice to a young man to look for

a true combinatorial proof [of Ramanujan’s congruences].”

Ramanujan’s identity:

∞
∑

k=1

p(5k − 1) tk = 5

∞
∏

i=1

(1− t5i)5

(1− ti)6
.
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Euler’s identity:

∞
∏

i=1

1

1− ti = 1 +
∞

∑

r=1

tr
2

(1− t)2(1− t2)2 · · · (1− tr)2
,

Theorem: The number of pairs of partitions with at most k parts and

combined size n is equal to the number of partitions of n+ k2 with the

largest inscribed square of size k.

Proof: Durfee bijection (1850’s).

k

k
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Ramanujan’s identity

∞
∑

m=0

t2m+1

(1− tm+1) · · · (1− t2m+1)
=

∞
∑

m=0

tm

(1− tm+1) · · · (1− t2m)

Theorem: Among partitions of n with the smallest part at least half

the largest part, the number of those withe the largest part odd is equal

to the number of those where the smallest part is unique.

Proof: Andrews’s bijection (1968).

kk

k

k

k

k

mm+ 1

m+ 1
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Euler’s Theorem:

Number of partitions of n into distinct parts is equal to the number of

partitions of n into odd parts.

∞
∏

i=1

(1 + ti) =

∞
∏

i=1

1

1− t2i−1

Proof:
∞
∏

i=1

(1+ti) =
∞
∏

i=1

(1− ti)(1 + ti)

(1− ti) =
∞
∏

i=1

1− t2i

(1− t2i−1)(1− t2i)
=

∞
∏

i=1

1

1− t2i−1
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Glaisher’s bijection (1870’s) :

(7, 6, 4, 1)→ (7, 4, 3, 3, 1)→ (7, 3, 3, 2, 2, 1)→ (7, 3, 3, 2, 1, 1, 1)

→ (7, 3, 3, 1, 1, 1, 1, 1)

Extension [Franklin, 1883; Wilf, 2000]: The number of partitions of n

with k even part sizes is equal to the number of partitions of n with k

repeated part sizes.
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Sylvester’s bijection (1882) :

Extension [Sylvester, 1882]: The number partitions of n into odd

parts with k distinct part sizes is equal to the number of partitions of n

into distinct parts with k contiguous sequences of parts.

Extension [Fine, 1948; P., 2003]: The number of partitions of n into

distinct parts with the largest part k is equal to the number of parti-

tions λ of n into odd parts with λ1 + 2ℓ(λ) = 2k + 1.
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Iterated Dyson’s map:

ψ2

Iterated Dyson’s map Ψ : (5, 5, 3, 3, 1)→ (8, 6, 2, 1).

Theorem [P., 2003] This works.

Extension [Fine, 1948; Andrews, 1983; P., 2003]:

The number of partitions of n into distinct parts with Dyson’s rank 2k

or 2k+1 is equal to the number of partitions λ of n into odd parts with

λ1 = 2k + 1.
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The elusive R-R bijection

George Andrews (70’s): Will give $100 for a R-R bijection!

Garsia–Milne (1980): Here is one!

(based on the involution principle)

The idea:

(1) Schur’s 1915 proof of R-R identities by an explicit involution prov-
ing Schur’s identity combined with Jacobi triple product identity.

(2) Sylvester’s 1882 proof of the Jacobi triple product identity by an
explicit involution.

(3) Garsia–Milne method of combining involutions.
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The involution principle

Let α, β be two involutions on a finite set X: α2 = β2 = 1.

Dihedral group D∞ = 〈α, β〉 acts on X with the following orbits:

α
αα

αα

α

αα

β
ββ

ββ

β

ββ
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Suppose now X = X+ ∪X− and both α and β are sign reversing:

α(X−) ⊂ X+, β(X−) ⊂ X+.

Denote by A,B ⊂ X+ the fixed points of α, β. Then:

|A| =α |X+| − |X−| =β |B|
Then the action of D∞ gives a bijection Φ : A→ B .

Remark. From TCS point of view, there is an easy polynomial time algorithm

to produce a R-R bijection, based on lexicographic ordering of partitions. On the

other hand, the bijection of Garsia and Milne is so complicated, it may in fact require

exp(nΩ(1)) steps.
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Recent work:

1. The only known “good” involution principle bijection

(O’Hara’s algorithm) is actually pretty bad.

[Konvalinka–P., 2009]

2. When restricted to natural geometric partition bijections,

there is no R-R bijection. [P., 2006, 2009]
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Andrews’s identities

Let a = (a1, a2, . . .) with ai ∈ {1, 2, . . . ,∞}
A to be the set of partitions λ with the number of parts i

mi(λ) < ai , for all i.

An is the subset of A of partitions of size n.
supp(a) = {i : ai <∞} the support of the sequence a.

Let a = (a1, a2, . . .) and b = (b1, b2, . . .). Define a ∼ϕ b, if:

ϕ : supp(a)→ supp(b) is a bijection such that iai = ϕ(i)bϕ(i) for all i.

Theorem [Andrews, 1978] If a ∼ b, then |An| = |Bn| for all n.

Note: This generalizes Euler’s theorem, Schur’s theorem, and several Sylvester’s

results.
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Examples

(1) Let a = (2, 2, . . .) and b = (∞, 1,∞, 1, . . .)
An is the set of all partitions of n into distinct parts

Bn is the set of partitions of n into odd parts

The bijection ϕ : i 7→ 2i between supp(a)→ supp(b) satisfies
iai = ϕ(i)bϕ(i), i.e. a ∼ϕ b.

The theorem then implies that |An| = |Bn|.

(2) Let a = (1, 1, 4, 5, 3, 1, 1, . . .) and b = (1, 1, 5, 3, 4, 1, 1, . . .)
ϕ(3) = 4, ϕ(4) = 5, ϕ(5) = 3, and ϕ(i) = i for i 6= 3, 4, 5;
observe that a ∼ϕ b.
The theorem then implies that |An| = |Bn|.
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O’Hara’s algorithm

Algorithm
Fix: sequences a ∼ϕ b

Input: λ ∈ A
Set: µ← λ

While: µ contains more than bj copies of j for some j
Do: remove bj copies of j from µ,
add ai copies of i to µ, where ϕ(i) = j

Output: ψ(λ)← µ

In Example (1), we get Glaisher’s bijection.
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Example (2):

334452 → 374152 → 324155 → 324651 → 364351 →

→ 3104051 → 354054 → 304057 → 304553 → 344253

Theorem [Konvalinka-P., 2009]

For general ϕ, the O’Hara algorithm is mildly exponential: exp Ω( 3
√
n).

For general ϕ with support of size m, the O’Hara algorithm takes nΩ(m)

For general ϕ with support of size m, the O’Hara algorithm function
can be computed in polynomial time.
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Random partitions

Algorithm [Friestedt, 1993]

Input n. Choose q > 0 wisely.

For each i = 1, . . . , n, let mi ← Geo
(

1− qi
)

.

Let λ ← 1m12m2 . . . nmn.

If |λ| = n, Output λ.

Here in X ← Geo(p) is a geometric random variable:

P (X = k) = (1− p)kp, k = 0, 1, 2, . . .

We choose q in to maximize fn(q) = qn(1− q) · · · (1− qn).

Proof: The probability to obtain any given partition:

P (λ) = (1− q)q1m1 · (1− q2)q2m2 · · · (1− qn)qnmn

= (1− q)(1− q2) · · · (1− qn) · q|λ|
Thus

P (λ | λ1 + λ2 + . . . = n) =
1

p(n)
.

Note: Often called Boltzmann sampling. Generalized by Flajolet et al. to other

unlabeled structures (2007). This approach was extensively used by Dembo–Vershik–

Zeitouni (2001), Pittel (2007) and others, to obtain delicate results on the shape of

random partitions.


