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OUTLINE OF TALK

I. Extreme value theory

• Probability Models

• Estimation

• Profile Likelihoods

II. Trends in Extreme Rainfall Events

III. Analysis of 2003 European Heatwave
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I. EXTREME VALUE THEORY
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EXTREME VALUE DISTRIBUTIONS

Suppose X1, X2, ..., are independent random variables with the
same probability distribution, and let Mn = max(X1, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.
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The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ
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EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.
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The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.
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The Poisson-GPD model combines the GPD for the excesses

over the threshold with a Poisson distribtion for the number of

exceedances. Usually the mean of the Poisson distribution is

taken to be λ per unit time.
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POINT PROCESS APPROACH

Homogeneous case:

Exceedance y > u at time t has probability

1

ψ

(
1 + ξ

y − µ
ψ

)−1/ξ−1

+
exp

−
(

1 + ξ
u− µ
ψ

)−1/ξ

+

 dydt
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Illustration of point process model.
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Inhomogeneous case:

• Time-dependent threshold ut and parameters µt, ψt, ξt

• Exceedance y > ut at time t has probability

1

ψt

(
1 + ξt

y − µt
ψt

)−1/ξt−1

+
exp

−
(

1 + ξt
ut − µt
ψt

)−1/ξt

+

 dydt
• Estimation by maximum likelihood
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ESTIMATION

For the point process approach, likelihood

∏
i

 1

ψTi

(
1 + ξTi

Yi − µTi
ψTi

)−1/ξTi−1
 exp

−
∫ T

0

(
1 + ξt

ut − µt
ψt

)−1/ξt
dt


In practice, integral replaced by Riemann sum: neg log likelihood

is ∑
i

{
logψTi +

(
1

ξTi
+ 1

)
log

(
1 + ξTi

Yi − µTi
ψTi

)}

+δ
T∑
t=1

(
1 + ξt

ut − µt
ψt

)−1/ξt

where δ is the interval between successive time points, e.g. for

daily observations in a situation where annual maxima are of

interest, δ = 1/365.
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II. TREND IN PRECIPITATION
EXTREMES

(joint work with Amy Grady and Gabi Hegerl)

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, both in observational and model-generated data.
Groisman et al. (Journal of Climate, 2005) have a comprehensive
review of this whole field.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs. However, some papers by statisti-
cians have explored possibility of using more advanced extreme
value methods (e.g. Cooley, Naveau and Nychka, JASA 2007;
Sang and Gelfand, Env. Ecol. Stat. 2008)

In this work, we explore systematically the development of ex-
treme value and spatial models
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DATA SOURCES

• NCDC Rain Gauge Data (Groisman 2000)

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A2 scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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Statistical Analysis

The basic method uses the point process approach to extremes

with time-dependent parameters µt, ψt, ξt.
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Seasonal models without trends

General structure:

µt = θ1,1 +
K1∑
k=1

(
θ1,2k cos

2πkt

365.25
+ θ1,2k+1 sin

2πkt

365.25

)
,

logψt = θ2,1 +
K2∑
k=1

(
θ2,2k cos

2πkt

365.25
+ θ2,2k+1 sin

2πkt

365.25

)
,

ξt = θ3,1 +
K3∑
k=1

(
θ3,2k cos

2πkt

365.25
+ θ3,2k+1 sin

2πkt

365.25

)
.

Call this the (K1,K2,K3) model.

Note: This is all for one station. The θ parameters will differ at
each station.
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Model selection

Use a sequence of likelihood ratio tests

• For each (K1,K2,K3), construct LRT against some (K′1,K
′
2,K

′
3),

K′1 ≥ K1,K
′
2 ≥ K2,K

′
3 ≥ K3 (not all equal) using standard χ2

distribution theory

• Look at proportion of rejected tests over all stations. If too

high, set Kj = K′j (j = 1,2,3) and repeat procedure

• By trial and error, we select K1 = 4,K2 = 2,K3 = 1 (17

model parameters for each station)
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Models with trend

Add to the above:

• Overall linear trend θj,2K+2t added to any of µt (j = 1),
logψt (j = 1), ξt (j = 1). Define K∗j to be 1 if this term is
included, o.w. 0.

• Interaction terms of form

t cos
2πkt

365.25
, t sin

2πkt

365.25
, k = 1, ...,K∗∗j .

Typical model denoted

(K1,K2,K3)× (K∗1,K
∗
2,K

∗
3)× (K∗∗1 ,K∗∗2 ,K∗∗3 )

Eventually use (4,2,1)×(1,1,0)×(2,2,0) model (27 parameters
for each station)
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs).

Don’t observe Zs — estimate Ẑs. Assume

Ẑ | Z ∼ N [Z,W ]

Z ∼ N [Xβ, V (φ)]

Ẑ ∼ N [Xβ, V (φ) +W ].

for known W ; X are covariates, β are unknown regression pa-
rameters and φ are parameters of spatial covariance matrix V .

• φ by REML

• β given φ by GLS

• Predict Z at observed and unobserved sites by kriging

• Apply separately to 19 regions; interpolate across boundaries
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Continental USA divided into 19 regions
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Map of 25-year return values (cm.) for the years 1970–1999
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Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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Root mean square prediction errors for map of ratios of 25-year

return values in 1999 to those in 1970
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Change RMSPE Change RMSPE
A –0.01 .03 K 0.08∗∗∗ .01
B 0.07∗∗ .03 L 0.07∗∗∗ .02
C 0.11∗∗∗ .01 M 0.07∗∗∗ .02
D 0.05∗∗∗ .01 N 0.02 .03
E 0.13∗∗∗ .02 O 0.01 .02
F 0.00 .02 P 0.07∗∗∗ .01
G –0.01 .02 Q 0.07∗∗∗ .01
H 0.08∗∗∗ .01 R 0.15∗∗∗ .02
I 0.07∗∗∗ .01 S 0.14∗∗∗ .02
J 0.05∗∗∗ .01

For each grid box, we show the mean change in log 25-year
return value (1970 to 1999) and the corresponding standard error
(RMSPE)

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.

14 of 19 regions are statistically significant increasing: the
remaining five are all in western states
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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RMSPE for map in previous slide
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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CONCLUSIONS FOR PRECIPITATION ANALYSIS

1. Focus on N-year return values — strong historical tradition

for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical

feature of this analysis

3. Overall significant increase over 1970–1999 except for parts

of western states — average increase across continental US

is 7%

4. But... based on CCSM data there is a completely different

spatial pattern and no overall increase

5. Projections to 2070–2099 show further strong increases but

note caveat based on point 5
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III. HEATWAVE ANALYSIS

(Joint with Michael Wehner, LBLL, and members of the SAMSI

Spatial Extremes working group)
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Methodology

Assume the probability distribution for the observation at time t

is given by

Ft(x) = exp

−
(

1 + ξt
x− µt
ψt

)−1/ξt

+


valid in x ≥ u. Here µt, ψt, ξt are time-dependent parameters

assumed to be defined in terms of covariates xt,j, 0 ≤ j ≤ q by

µt =
q∑

j=0

xt,jβj, logψt =
q∑

j=0

xt,jγj, ξt =
q∑

j=0

xt,jδj,

where we define xt,0 = 1 for all t and βj, γj, δj, j = 0, ..., q are the

parameters that define the model. Usually at least some of the

βj, γj, δj parameters are pre-set to 0.
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Suppose we are trying to use this model to calculate the proba-

bility of exceeding a design value u∗ at some as yet unobserved

time t∗. In the “single-event attribution” problem, this corre-

sponds to an actual observed value of u∗ in time t∗. Assume the

associated GEV parameters for this time point are µ∗, ψ∗, ξ∗.

µ∗ =
q∑

j=0

x∗jβj, logψ∗ =
q∑

j=0

x∗jγj, ξ∗ =
q∑

j=0

x∗jδj,

The associated probability p∗ is given by

p∗ = 1− exp

−
(

1 + ξ∗
u∗ − µ∗

ψ∗

)−1/ξ∗
 , (†)

so the obvious point estimator p̂∗ is obtained by substituting the

maximum likelihood estimators µ̂∗, ψ̂∗ and ξ̂∗ into equation (†).
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To get interval estimates of p∗, we consider here the profile like-

lihood method. In this method, for a large number of candidate

values of p∗, we repeat the estimation of the maximum likelihood

estimators under the constraint (†). From this profile likelihood

function, an asymptotically correct confidence interval for p∗ is

derived from the χ2 distribution of a likelihood ratio test.

An alternative approach would be to assume prior distributions

for all the unknown model parameters and then calculate the

posterior distribution of p∗ through a Bayesian calculation.
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Illustration of profile likelihood method for calculating confidence
intervals for a return value. From Davison and Smith (1990)
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Results for UKMO data

Data:

• 4 runs of UKMO model run data under an “all forcings”

scenario, 1900–1999.

• 4 runs of UKMO model run data under an “natural forcings”

scenario, 1900–1999.

• Real data from CRU, specifically, the “HADCRUT3VM” data

series, 1900–2008.

For each series, I compute JJA means for each year, for the

region 30–50oN, 10oW–40oE, same as in Stott, Stone and Allen

(SSA). All computed as anomalies from 1960–1999. No “data

mask”.
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Sample traces for JJA averages for 1900–1999 over the spatial
region 30–50oN, 10oW–40oE, from four runs of a natural forcings
model (blue) and four runs of an anthropogenic model (red).
Smoothed curves represent spline-smoothed averages of the four
model runs, computed separately for the natural-forcings and
anthopogenic-forcings data.
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Observational data; JJA averages for 1900–2008 over the spatial
region 30–50oN, 10oW–40oE.
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Fitting an Extreme Value Model

• Two thresholds, 90th and 95th percentiles

• Regression models for µt; hold ψt, ξt fixed.

• Parametric trends for µt: polynomials or splines

Model 90% Threshold 95% Threshold
ALL NAT ALL NAT

No Trend 232.3 231.7 149.5 142.8
Poly2 223.4 232.3 149.5 142.1
Poly4 219.4 232.9 144.2 139.9
Poly6 219.8 235.9 147.0 144.0
Spl2 223.8 232.0 149.5 142.2
Spl4 217.2 232.1 144.1 140.8
Spl6 215.7 234.3 145.2 143.7

Table 1: AIC scores for several extreme value models. I choose
the Spl4 model, i.e. a natural splines expansion with 4 degrees
of freedom.
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Selection of a Design Value

Two issues:

• which level in the observational series we take as best repre-

senting the 2003 heatwave

– I take 1.6K (same as SSA)

• how to derive a corresponding value for the model series,

taking into account possible scale mismatches between the

observational and model series.

– Based on variance matching, 1.6K for the observational

series translates to 1.84K for the anthropogenic model

runs and 1.71 K for the natural model runs
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Analysis of Profile Likelihood I

• Profile likelihoods associated with the two design values for

the natural and anthropogenic models, for two different thresh-

olds.

– Discrepancies between profile likelihoods for the two

thresholds, same model, are not important.

– But 95% confidence intervals for the exceedance

probabilities (determined by green cutoff line) are much

wider than in SSA.

46



0.01 0.05 0.10 0.50 1.00 5.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rate (Exceedances per 1000 yrs)

N
or

m
al

iz
ed

 L
ik

el
ih

oo
d

Normalized profile likelihoods for the rate of crossing the design

value, computed for the natural forcings (blue curves) and the

anthropogenic forcings (red curves) models, and for two different

thresholds: 95% threshold (solid curve), 90% threshold (dashed

curve).
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Analysis of Profile Likelihood II

• Profile likelihood plot for the risk ratio, P1
P2

, where P1 and

P2 are the probability of exceeding the design value for the

anthropogenic and natural forcings models respectively. SSA

computed FAR= 1− P1
P2

.

– We can get a reasonable “likelihood” for the RR. But

any reasonable calculation of a 95% confidence interval is

going to be much wider than that presented by SSA.

– SSA claim “...we estimate it is very likely (confidence level

> 90%) that human influence has at least doubled the risk

of exceeding a threshold magnitude”...

– An equivalent statement would be that a 90% confidence

interval for the RR is contained within (2,∞).

– I believe that such an assessment understates the uncer-

tainty in estimating RR.
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Normalized profile likelihood for the relative risk; 95% threshold
(solid curve), 90% threshold (dashed curve).

49



CONCLUSIONS

• This approach does not fully resolve data mismatch problem

between observations and model output

• Profile likelihood method not only approach — consider also

Bayesian methods

• How to model time trends is important

• Current results indicate that it’s possible to estimate relative

risks along the same lines as SSA, but that realistic confi-

dence intervals would be much wider than they derived

• Probably need much more intensive model runs to derive

usable interval estimates for the RR
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