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Data assimilation

available data (+/- 3-h): 104 − 105 (nonuniform, 4D) observations

numerical model (PEM, 1◦ horiz., 20 vert.): ∼ 107 dof’s

Ghil & Malanotte-Rizzoli (1991):

...noisy, inaccurate data should not be fitted by exact interpolation, but rather by a
procedure designed to achieve two goals simultaneously: (1) to extract the valuable
information contained in the data, and (2) to filter out the spurious information, i.e. the
noise.

Talagrand (1997):

Assimilation of meteorological or oceanographical observations can be described as
the process through which all the available information is used in order to estimate as
accurately as possible the state of the atmospheric or oceanic flow. The available
information essentially consists of the observations proper, and of physical laws that
govern the evolution of the flow. The latter are available in practice under the form of a
numerical model.
...should produce not only an estimate of the state of the flow, but also an estimate of
the associated uncertainty.
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Data assimilation cycle in NWP

Typical (6-h) data assimilation cycle:

Observations (+/− 3h) Background or first guess

Global analysis (statistical 
interpolation) and balancing

Initial conditions

6−h forecast

(Operational forecasts)

Global forecast model

Analysis: add innovations to model forecast with weights W

xa = xb + W [yobs − G(xb)]
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Statistical least squares estimation

Goal: estimate temperature T
Data: independent measurements T1, T2

Error statistics:

T1 = T + ε1, E[ε1] = 0, E[ε2
1] = σ2

1

T2 = T + ε2, E[ε2] = 0, E[ε2
2] = σ2

2 , E[ε1ε1] = 0.

Linear estimator: T a = a1T1 + a2T2

unbiased: E[T a] = T ⇒ a1 + a2 = 1

minimal variance: σ2 = E[(T a − T )2] must be minimal

⇒ a1 =
σ2

2

σ2
1 + σ2

2

, a2 =
σ2

1

σ2
1 + σ2

2

1

σ2
=

1

σ2
1

+
1

σ2
2

,
1

σ2
= “precision”

M. Grote and A. Majda: Targeted and Redundant Observations, IPAM 2010 – p. 5/33



Statistical least squares estimation (contd.)

Bayesian interpretation: Ppost(T ) = P (T |T2) =
P (T2|T ) Pprior(T )

P (T2)
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Statistical least squares estimation (contd.)
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The PDF ppost(T )

is “narrower”,

has a smaller variance,

is less “uncertain”,

is more “informative”...

But how do we quantify the information content associated with ppost(T ) ?
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Information Theory

C. Shannon (1916–2001)

founder of information theory

boolean algebra, digital circuit design

signal processing, cryptography

Shannon’s mouse, chess program

radio controlled cars, juggling, unicycling...

ultimate machine
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Information theory (Shannon, 1948)

Let A = {binary words of length n}, #A = N = 2n

Amount of information needed for x ∈ A, x = 01011001 . . . 001
︸ ︷︷ ︸

n

:

n = log2 N

Next, let A = A1 ∪ A2 ∪ · · · ∪ Ak, #Ai = Ni, Ai ∩ Aj = ∅, i 6= j:

P(x ∈ Ai) = Ni/N = pi, event Ai.

∑

pi log2 Ni
︸ ︷︷ ︸

info if x∈Ai

−
∑

pi log2 pi
︸ ︷︷ ︸

lack of info

= log2 N
︸ ︷︷ ︸

total info x∈A

Shannon entropy: S(p) = −
k∑

i=1

pi ln pi > 0

see Majda & Wang 2006
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The Shannon entropy

The Shannon entropy S(p) = −
∑k

i=1
pi ln pi has the following properties:

1. S(p1, . . . , pk) continuous,

2. S(1/k, . . . , 1/k) is monotonic increasing as k → ∞,

3. Composition law: S(p) invariant under splitting A = A1 ∪ A2

The Shannon entropy is unique up to scaling (Jaynes, 1957),

and measures the lack of information or the uncertainty associated with p.

For a continuous probability density function p(λ):

S(p) = −

∫ ∞

−∞

p ln(p) dλ > 0 .
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The Shannon entropy: Gaussian case

For a normal distribution X ∼ N (X̄, R), X ∈ R
n, R ∈ R

n×n,

S(p) =
1

2
[ln det(R) + n + n ln(2π)] .

In the special case n = 1, X ∼ N (µ, σ), µ ∈ R and σ > 0 we have:

S(p) = ln σ + (1 + ln(2π))/2 .

Thus in the Gaussian case, minimizing the Shannon entropy corresponds to

minimizing the variance ⇒ intuitively correct.

However, Shannon entropy immediately applies to the non-Gaussian case, too!
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Statistical Gaussian least squares

Random variable : X ∈ R
n, X ∼ N (X̄pr, Rpr)

Observation : Y = GX + σ, G : R
n → R

m, σ ∼ N (0, Ro)

Then the posterior (Gaussian) distribution is:

p(X |Y ) = N (X̄post, Rpost)

X̄post = (I − KG)X̄pr + KY (unbiased minimal variance estimator)

Rpost = (I − KG)Rpr

K = RprG
⊤(GRprG

⊤ + Ro)−1 (Kalman gain matrix)

REMARK:

If KG −→ I, trust the observation

If KG −→ 0, trust the prediction
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Statistical Gaussian least squares (contd.)

The gain in information or reduction in uncertainty due to the observation Y is
given by the Shannon entropy difference:

S(ppr) − S(ppost) =
1

2
[ln det(Rpr) − ln det(Rpost)]

=
1

2
[ln det(Rpr) − ln det((I − KG)Rpr)]

= −
1

2
ln det(I − KG).

Let λi be the singular values of the m × n scaled observation operator

M = (Ro)−1/2GR
1/2
pr . Then one can show (Xu, Tellus 2006):

∆S = S(ppr) − S(ppost) =
1

2

∑

i

ln(1 + λ2
i ) ≥ 0.
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Smoothing, filtering and prediction
FILTERINGSMOOTHING PREDICTION

T

X

X(t)

ESTIMATE

DATA
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Bayesian filtering: nonstationary case

state vector {Xk}∞k=0
, Xk ∈ R

N , Markov process

π(xk+1|x0, x1, . . . , xk) = π(xk+1|xk)

observation {Yk}∞k=0
, Yk ∈ R

M , Markov process w.r.t. {Xk}

π(yk|x0, x1, . . . , xk) = π(yk|xk)

and also assume
π(xk+1|xk, y1, . . . , yk) = π(xk+1|xk).

Evolution-observation model:

X0 → X1 → X2 → · · · → Xn → . . .

↓ ↓ ↓

Y1 Y2 Yn
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Bayesian filtering: nonstationary case (contd.)

Denote all measurements until tk as: Dk = {y1, . . . , yk}

FILTER UPDATING STEPS:

Time evolution: Given π(xk|Dk), find π(xk+1|Dk)

based on Markov transition kernel π(xk+1, xk)

Observation: Given π(xk+1|Dk), find π(xk+1|Dk+1)

based on the new observation yk+1 and the likelihood π(yk+1|xk+1)

GOAL: obtain π(xk+1|Dk+1), ⇒ estimate Xk+1 given all available data Dk+1
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The Kalman filter (1960)

Linear state equations with additive noise

Xk+1 = FXk + Wk+1, k = 0, 1, . . . , Xk ∈ R
N

Yk+1 = GXk+1 + Vk+1, Yk ∈ R
M

where X0, {Vk}, {Wk} are mutually independent and Gaussian, with

E[X0] = x0, E[X0X
⊤
0 ] = R0,

E[Vk] = 0, E[VkV ⊤
j ] = δkjRv,

E[Wk] = 0, E[WkW⊤
j ] = δkjRw,

with F, G, R0, Rv, Rw constant matrices, for simplicity
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The Kalman filter (contd.)

Notation: xm|ℓ = E[Xm|Dℓ], Rm|ℓ = cov(Xm|Dℓ)

Time evolution updating

xm+1|m = F xm|m, (1)

Rm+1|m = F Rm|mF⊤ + Rw, (2)

Observation updating

xm+1|m+1 = xm+1|m + Km+1(ym+1 − Gxm+1|m), (3)

Rm+1|m+1 = (I − Km+1G) Rm+1|m, (4)

where Km+1 is the Kalman gain matrix:

Km+1 = Rm+1|m G⊤(GRm+1|m G⊤ + Rv)
−1

Remark: Typically Rm|m → R∞,∞ and Km → K∞, m → 1.
Both can be computed off-line.
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Prototype stochastic model

Consider the damped and driven stochastic PDE in [0, 2π]:

∂u

∂t
+ c

∂u

∂x
= −du + µ

∂2u

∂x2
+ F (x, t) + σ(x)Ẇ (t), c, µ > 0 .

In Fourier space:
add spatially correlated white noise in time.

duk(t) = −(d + ick + µk2)uk(t) dt + Fk(t) dt + σk dWk(t) ,

where Wk are independent (complex) Wiener processes, with

Ek = E0|k|
−β =

σ2
k

2(d + µk2)

Remark: Linear SDE: solved analytically
⇒ exact update formulas available for mean and variance.

(see Harlim, Majda, JCP, 2008)
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Entropy and redundant observations

GOAL: Given asymptotic Kalman gain K∞ and covariance R∞,∞,
measure degree of information redundancy in observations at x1, . . . , xM .

IDEA:

1. Apply one Kalman evolution step: Rpr = FR∞,∞F⊤ + R

2. Compute M = (Ro)−1/2GR
1/2
pr with singular values λi

3. Monitor individual terms in information gain ∆S = 1

2

∑

i ln(1 + λ2
i )

Remark:
The dominant left singular vectors of M = UΛV ⊤ can be used for determining
super-observations.
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Regular sparse observations (resonant)

Negligible information loss: 21 vs. 3 locations, ∆t = 10, µ = 0.01
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Regular sparse observations (non-resonant)

Significant information loss: 21 vs. 3 locations, ∆t = 0.1, µ = 0.1
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Irregular sparse (packed) observations

Negligible information loss: 21 vs. 3 locations, ∆t = 0.1, µ = 0.1
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Targeted observations

GOAL: Given observations at x1, . . . , xM1
, select additional locations

xM1+1, . . . , xM that maximize information gain.

IDEA:

Given R∞,∞,M1

Maximize S(pM1
; x1, . . . , xM1

) − S(pM ; x1, . . . , xM )

DIFFICULTIES:

multi-dimensional non-convex optimization problem

Every evaluation of S(pM ; x1, . . . , xM ) requires computing the asymptotic
Kalman filter

too expensive !
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Targeted observations

Determine new observation site x∗ by solving one-dimensional optimization
problem for statistical least-squares.
By monotonicity of the Kalman filter we have:

S(pM ; x1, . . . , xM1
, x) ≤ S(ppost; x1, . . . , xM1

, x) ≤ S(pM1
; x1, . . . , xM1

)

ONE-STEP ALGORITHM:

Given R∞,∞,M1

Maximize S(pM1
; x1, . . . , xM1

) − S(ppost; x1, . . . , xM1
, x)

Determine new site x∗

Compute true R∞,∞,M1+1 with xM+1 = x∗
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Targeted observations: example 1

Given 3 observations, determine new optimal site x∗ ∈ [π/4, 2π]
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New site:
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Targeted observations: example 1

Given 4 observations, determine new optimal site x∗ ∈ [π/4, 2π]
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4 observations:

∆S = 1.56

< errRMS >= 1.14

< correl >= 0.68

New site:

x∗ = 4.17
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Targeted observations: example 1

Given 5 observations, determine new optimal site x∗ ∈ [π/4, 2π]
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5 observations:

< errRMS >= 1.09

< correl >= 0.71

New site:

x∗ = 4.70
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Targeted observations: example 1

Keep iterating...18 new sites:
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Targeted observations: example 2

Targeted vs. equidistant observations, ∆t = 0.1, µ = 0.00001
Given 1 observation at x = 3π/2, determine 3 new observation sites
Observation accuracy ten times higher for 0 ≤ x ≤ π/4
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Targeted observations: example 2

Targeted vs. equidistant observations, ∆t = 0.1, µ = 0.00001
Given 1 observation at x = 3π/2, determine 3 new observation sites
Observation accuracy ten times higher for 0 ≤ x ≤ π/4
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4 equidistant observations:

< errRMS >= 0.95

< correl >= 0.73
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Targeted observations: example 2

Targeted vs. equidistant observations, ∆t = 0.1, µ = 0.00001
Given 1 observation at x = 3π/2, determine 3 new observation sites
Observation accuracy ten times higher for 0 ≤ x ≤ π/4
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1 + 3 targeted observations:

< errRMS >= 0.52

< correl >= 0.93
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Concluding remarks

Shannon entropy measures information content from observations and
identifies redundancy in data

Maximizing information gain leads to effective strategies for targeted
observations

Applies to non-Gaussian case, too.

Current work:
Study effect of simple (cheap) least-squares and full (expensive)
asymptotic Kalman filter in Shannon entropy difference ∆S(x)

Use relative entropy to include effects of the (time varying) mean.
Devise strategies for real-time adaptive targeted observations
Include the effect of model error
Drive mesh adaptivity not through numerical error control (of the mean)
but maximization of information
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