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We start by reviewing the research on multilevel analysis that
has been done in psychometrics and educational statistics,
roughly since 1985.

The canonical reference (at least I hope so) is De Leeuw and
Meijer (eds), Handbook of Multilevel Analysis, Springer, 2008.

Although I have been asked to specifically review the social
science applications, I will also try to establish some links with
environmental statistics and space-time analysis.

This is actually easier than expected, because the multilevel
model is a special case of the mixed linear model or the
hierarchical linear model.

Here, and throughout the Handbook, we use the Van Dantzig
(or Dutch) Convention: random variables are underlined.
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Random Coefficient Models
Basics

Let’s start simple. Suppose we have m groups, nj observations in
group j, and p predictors in each of the groups.

y
j
= Xjbj + εj ,

bj = β+ δj .

Thus
y

j
= Xjβ+ Xjδj + εj ,

and

E(y
j
) = Xjβ,

V(y
j
) = XjΩjX

′
j + Σj .
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Random Coefficient Model
Stacked
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y

1
...

y
m

 =


X1
...

Xm

[β]+


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xm



δ1
...
δm

+

ε1
...
εm


An RC model is a random intercept (RI) model if only the intercept
has a random component. Thus the first column of all Xj has all
ones (is equal to uj), and only the first of the elements of δj has
non-zero variance.

y
1
...

y
m

 =
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X1
...

Xm

[β]+

δ1u1

...
δmum

+

ε1
...
εm


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Random Coefficient Models
Identification

It is common, and in fact necessary, to make some additional
assumptions.

βj = βΩj = Ω, often diagonal.Σj = Σ, often scalar.

In addition we often assume that the disturbances εj and δj are
jointly multivariate normal and mutually uncorrelated.

This is needed for likelihood inference, and it is an excuse
to stay away from higher order moments.
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Slopes-as-Outcomes Models
Basics

In educational statistics multilevel analysis was introduced as a
way to formalize contextual analysis by embedding it in the
hierarchical linear model. The leading example is nj students in m
schools. Suppose we have p student-level predictors, and we have
q school-level predictors. We assume

y
ij
=

p∑
s=1

xijsbjs + εij ,

bjs =
q∑

r=1

zjrβsr + δjs.

This elementwise formulation of the model shows how to extend
SAO to more than two levels (students in classrooms in
schools in districts).
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Slopes-as-Outcomes Models
Matrix Form

Define Z j as the p × pq matrix Z j = z′j ⊕ · · · ⊕ z′j , where all zj have
length q. Also do some obvious stacking. Then we can write

y
j
= Xjbj + εj ,

bj = Z jβ+ δj .

Using the columns x j
s and the vectors zj it follows that the fixed

part of the model has the block-rank-one structure given by
cross-level interactions.


E(y

1
)

...
E(y

m
)

 =


X1Bz1
...

XmBzm

 =


x1
1z′1 x1

2z′1 · · · x1
p z′1

x2
1z′2 x2

2z′2 · · · x2
p z′2

...
...

. . .
...

xm
1 z′m xm

2 z′m · · · xm
p z′m



β1
...
βp

 .
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Slopes-as-Outcomes Models
Essence

This is the core of SAO models: we fit cross-level interactions to a
ragged array of data Y in which the rows are uncorrelated and the
columns have covariance structure V(y

j
) = XjΩjX

′
j + Σj.

And then one searches over the submodels that simultaneously
set various cross-level interaction effects and various covariances
in Ωj and Σj equal to zero. The default in most cases is to useΩj = diag(Ω) and Σj = σ2I.

The next step is to become “state-of-the-art” and get applied
researchers to buy our expensive software package.
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Slopes-as-Outcomes Models
Truth ?

It would be foolhardy, maybe even insane, to pretend that models
such as SAO actually describe what goes on in classrooms. We
merely have a descriptive device that gives one formalization of
the dependence between students in the same classroom, as well
as the cross-level interactions from contextual analysis.

Of course if we have reliable prior information we should
incorporate it into the device to reduce both bias and variance, to
be able to talk to our colleagues, and to get published. But in this
case the prior information is that some students are in the same
class and that some variables may be related to school outcomes.

SAO provides a framework, maybe even a “language”, to imbed
this (rather minimal) prior information. There are many
functionally similar frameworks around in statistics.
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Slopes-as-Outcomes Models
Generalizations

Some fairly straightforward generalizations follow, once we realize
that the SAO model is just a mixed linear model.

We can generalize to nonlinear mixed models.

We can generalize to generalized mixed linear models.

Both generalizations are straightforward, although
computationally far from trivial.

Somewhat more intricate are

Non-nested (crossed) designs.

Multivariate outcomes.

Correlated observations.

Covariance structures.
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Slopes-as-Outcomes Models
Non-nested Designs

Non-nested designs occur in educational statistics, for example, if
we keep track of both the student’s primary and secondary
schools. Clearly those classifications are not hierarchical, and the
multilevel model becomes more complicated.

Suppose, for example, we measure PM-10 in a number of years
and at a number of observation points located in some cells of a
rectangular grid. A simple random intercept model would be

y
i
=

p∑
s=1

xisβs + δt(i) + ν l(i) + εi ,

where t(i) is the year and l(i) is the location of observation i. This
can be extended to SAO models if we have regressors
to describe time and space.
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Growth Curve Models
Basics

Before we start making matters even more complicated, let us first
treat a more simple special case. Suppose all Xj are the same. An
example could be m objects measured at n time points. X could
contain a basis of polynomials or Fourier coefficients to code time
points, while Z would have characteristics of individuals.

The data are a realization of an n×m matrix-valued random
variable Y (often assumed matrix-variate normal). Then

E(vec(Y)) = (X ⊗ Z)β,
V(vec(Y)) = I ⊗ (XΩX ′ + Σ).

This is a generalization of the classical Pothoff-Roy model, which
has Ω = 0. There can be missing data, of course.
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Growth Curve Models
Loss Function

The negative log-likelihood loss function for an even more general
growth curve model is

D =m log det(Σ)+n log det(Ω)+
+ tr Σ−1(Y − XBZ ′)Ω−1(Y − XBZ ′)′,

which shows that the dispersions of groups (objects) and
individuals (time points) are separable.

In growth curve analysis we usually model the expectations and
keep the covariances simple. But we can also work the other way
around and use elaborate dispersion and simple expectation
models. That is in the tradition of structural equation and
multivariate time series modeling. They are combined in the R
package leopold, with Wei-Tan Tsai.
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Separable Models
Elaborate Means

The mean structure E(Y) = XBZ ′ in the growth curve model has
both X and Z known. If X and/or Z are (partially) unknown, we can
incorporate

principal component analysis (perhaps non-negative),

reduced rank regression analysis,

correspondence analysis,

canonical correspondence analysis,

fixed score factor analysis.

Although these models seem very different, they are all basically
matrix approximation methods minimizing the same loss
function. And they naturally fit into the same block relaxation or
alternating least squares algorithm.
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Separable Models
Elaborate Dispersions

In linear models, such as growth curve models, we typically
have simple dispersion structures such as Σ = σ2I. But it also
makes sense to try, for example, AR(1) or more general
Toeplitz forms for Σ.

Thus we can have, say, AR(1) form for Σ, and some factor
analytic or spatial covariance structure for Ω.

There is an obvious trade off allocating parameters to the
means and allocating parameters to the dispersions.

If there are too many parameters in both modes, maximum
likelihood runs into incidental parameter problems, such as
Neyman-Scott bias or Anderson-Rubin degeneracy. The
boundary, where the log likelihood becomes unbounded, is
interesting.
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Separable Models
Higher Order

The growth curve model with

E(y) = (X ⊗ Z)β,

V(y) = Σ⊗Ω,
easily generalizes to K−dimensional arrays as

E(y) = (X1 ⊗ X2 ⊗ · · · ⊗ XK)β,

V(y) = Σ1 ⊗ Σ2 ⊗ · · · ⊗ ΣK ,

where we can have covariance structures for each of the Σk, and
elaborate mean structures for Xk and β as well. This can be used
to cover various forms of array decomposition, such as ICA. The
BR/ALS algorithm, in the next version of leopold, remains
basically the same.
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Separable Models
Truth ?

The modes of the multi-array can be defined in various ways. One
mode can be cross-sectional, if multiple variables are measured on
the same individuals, or at the same time an location. One mode
can be spatial, another temporal. Or, alternatively, one mode can
be longitude and another latitude.

As in the students-in-schools context, most processes observed in
nature are not separable. But neither are regressions linear,
distributions normal, and variables conditionally independent.
Models are false, but means and variances are still useful
summaries. Same for regression, GLM, and PCA/ICA.

Truth is elusive. The question is if the matrix approximations help
to make description simpler and/or prediction better, and how
much bias is traded off against how much variance. Ultimately,
the client/scientist should decide, preferably in a reproducible
way.

Jan de Leeuw

Multilevel Analysis, with Extensions UCLA Statistics


