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Motivation

Goal: Parametric estimation of Effective Stocahstic Models fi@iscrete Data

- Develop data-driven Parametrizations for Various Plalditocesses

- Develop data-driven techniques for parametric fittingfééetive stochastic models
for large-scale structures in PDES

Data SourceObservations or Numerical Simulations; Discrete Time30of the
Large-Scale Structures; no knowledge about the smalé stzh

Most of the work:*Fixed” time-step

Realistic SituationData comes from a deterministic model (smooth trajecthrcss
be sampled with an arbitrary time-step

In this talk: Role of the sampling time-step in parametric estimation

Sub-SamplingData is not approximated well by a stochastic model for small
time-steps; Effective Model is an approximation which i8dranly on larger times




Outline of the Problem

Available DataU = {Ux} = {Y (kA)} sampled from a continuous trajectdry with
arbitrary time-step\

Propose an Effective SDE Model

dXt — b(Xt, Q)dt —|— O'(Xt, H)dW

Estimate Parameteésusing the Max. Likelihood Approach

In this Talk

Consider multiscale Fast-Slow systers - slow variable

Y — X as e —» 0

- Understand the performance of the estimators ds— 0

- Can access the performance of parametric fitting by comgaviiax. Likelihood
Estimators with Analytical formulas



Prototype Example

Data is generateby Smoothed OU Process:

t
1
Yte —_ - / Xst
€
t—e

dX; = —yXdt + odW,

Utilize Discrete Data{Y;;» } to Estimate Effective Model

dZt — —thdt -+ SdBt

Since

Y, — X;, as e — 0

Question: For which A estimates are consistentas- 0 ? i.e.

Let A = ¢ what are the conditions far such that g, s) — (v,0) ase — 0



Likelihood Function for SDEs

dZ = D(a, Z)dt + G(a, Z)dW,

Euler Discretization

Znt1 = Zn + D(a, Z,)) At + G(a, Z,) AW,

Gaussian Random Variable

G(a, Zn)AW,, = |Zp11 — Zn — D(a, Z,) At]

Likelihood Function

(Zpi1—Zn—D(a,Zn)At)?

1 —5AT G2
B (a,Zn)
L<a|Zobs) <2At)(N—1)/2 HG(&, Zn)e



Ornstein-Uhlenbeck Process and Likelihood Function

dZy = —qgZidt + sdW,

Given Discrete sample with time-stéyp, i.e. Uy = Zia

A

N—-1

1 1 =
:N;Ua ):N;Un—l—lUn

Interpretation ofg(/V) : slope of thdog of the correlation function at lag




Max Likelihood Estimates for the Smoothed OU Process

Understand Estimates

I 2100 L WP
() = x2n (BE) s ) = 29"y

when data is generated by the Smoothed Ornstein-Uhlenbreck $

Consistency = Equilibrium Values
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P(N) — ElYSYSA] = %e—ﬂ [A1(e) if A >€; Aa(e, A)if 0 < A < ¢
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Question: giim — y? ase — 0




Expansion for smak, A

CASE A > ¢

l[E 4 57262]
A3 36

Bias: giim — vy~ —

In particular:

2
When A:e:glim—fy%—[%+5;6€]

Constant Biasfor any finite A, e

Consistency:e, A — 0

A=€e" aec(0,1)



Numerical SimulationsData is generated by the SOU process

Error in g vs e for different sub-sampling strategies
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Triad Model and Effective Dynamics

Consider Triad Model

1

dr = —Ajyzdt
€
1 1 1

dy = —Asxzdt — S 7ydt+ —o1dWh
€ € €
1 1 1

dz = —Aszydt — —y22dt + —o2dW>
€ € €

Homogenezationz — X ase — 0

Effective System

dX = —-I'Xdt + XdW

with

I — —A1 (AQO'% 4 Ago'%) ’ Y — A10’10’2
2(71 +2) Y2 Y1 \/27172 (71 + 72)



Triad Model vs Smoothed OU Process

Compare Correlation Functions for small lags

Smoothed OU Process< A < €

CA?
CFSOU(A) ~1— .
Triad Process
CFrriaa(A) =~ 1 — (n ‘532)0&
€

Therefore

e (SOU) ~ ¢ (Triad)

Consistency for the Triad\ = €**, a € (0,1)




Numerical Simulation®ata generated by the Triad Model, i¥: = z(t)
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Finite e

Consider a Particular Triad Datasth a fixed value ot = 0.3
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Finite e

Triad Dataset witle = 0.3
Consider Ag(A) vs A Conjecture gA =~A+C

0.7




Finite e

Triad Dataset withe = 0.3
Consider =% [AG(A)] vs A

Conjecture
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Conclusions

Essentially, all models are wrong, but some are useful
— George E. P. Box

e Time-step can be viewed as another parameter to be optimized
e Data cannot be approximated by a stochastic process for 2mal

e Sub-sampling: Determine critical time-step for which SBBEalid (on longer
time-scales)

e Behavior of the correlation function of the large scalesriea = 0 is crucial for
understanding sub-sampling

e Estimators from the data with small time-step underestrtiagé damping term



