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Simplified physics

Full GCM physics
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Observing the system in situ 

To evaluate the models we need to have relevant measurements

State variables are momentum (winds), energy (temperature), and 
tracer masses 

The most important tracer is water, divided among various states 
including two(+) flavors of condensate

Climate-relevant observations are long term, geographically 
diverse, with well-understood sampling



Observing the system in situ 

Go outside.

Image: http://galton.org
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Radiosonde locations, 1 Dec 2006, 6 hr window around 12Z
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Observing the system remotely 

If you want to measure more of the atmosphere you look at it - 
i.e. sense it remotely using electromagnetic radiation

Ω ·∇I(x,Ω) = − σ(x)I(x,Ω)

+ σ(x)
ω0(x)

4π

�

4π
I(x,Ω)P (x,Ω� → Ω)dΩ�

+ σ(x)(1− ω0(x))B(T (x))
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Observing the system remotely 

Three main characteristics

Passive vs. active remote sensing

Emission vs. scattering regimes

View from above or below



Observing the system remotely (emission/absorption)

µdIλ(τ,µ,φ)
dτ = −Iλ(τ, µ,φ) + (1− ω0)Bλ(T (τ))

Iλ(0) = Iλ(τ∗)e−τ∗
+

� 0
τ∗ e−τ �

Bλ(τ �)dτ �

In the infrared and microwave scattering is small

At nadir (looking straight down)

τ∗In an absorbing atmosphere of total thickness 



Dave Turner, U. Wisconsin
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Observing the system remotely (scattering)

Scattering dominates in the visible and near-infrared in clouds 
(emission is negligible)

Solutions are costly to compute

Parameters vary significantly with wavelength, particle size, 
shape, ...



Observing the system remotely 
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What’s the likelihood of a given state given our forecast and 
observations? 

p(x|y,xb) =
p(y,xb|x) p(x)

p(y,xb)

Introduce a cost function

J(x) = − log(p(x|y,xb)) + c

Assume no correlation between forecast and observation errors

p(y,xb|x) = p(y|x)p(xb|x)
J(x) = − log(p(x|xb))− log(p(x|y)) + c



Assume Gaussian distributions of forecast and observations errors

∇J(x) = Pb
−1(xb − x) +H

T
R

−1(y −H(x)) = 0

Our cost function minimum is at

Assuming linear observation operator

H(x) = H(xb) +H(x− xb)

J(x) =
1

2
(xb − x)TPb

−1(xb − x)

+
1

2
(y −H(x))TR−1(y −H(x))



Rearranging gives something more familiar

So the most likely solution is given by

Pb
−1(x− xb) +H

T
R

−1(H(xb) +H(x− xb)− y) = 0

xa = xb +K(y −H(xb))

with

K = [Pb
−1 +H

T
R

−1
H]−1

H
T
R

−1

This is the Kalman filter equation



Data assimilation for weather forecasting

There are two main classes of implementation of the Kalman filter 
in the atmospheric sciences 

Variational methods minimize the cost function iteratively

“3D-Var” minimizes cost function at a single time; “4D-Var” 
minimizes cost function over some extended time window

Variational methods need tangent-linear and adjoint models

Ensemble methods use Monte Carlo integration of Bayes’s 
formula; take sample covariance matrices from a finite 
ensemble



Ensemble data assimilation recipe (for Brian Mapes)

For each observation in turn

compute the prior/background observation PDF

fit the ensemble of expected observations with a Gaussian

find the product of the background and observation PDFs

find the increment needed for each ensemble member

update “each” element in the state vector in each member

regress the expected observation against the element using 
the ensemble

apply (observation increment) * (correlation coefficient) * 
(localization)



Data assimilation is model evaluation

Analysis quality is measured by quality of fit to observations

“Observation biases” make this complicated

Forecast skill is measured against verifying analysis

Note: Forecast skill includes errors in forecast model and initial 
conditions (including errors in assimilation) 



Standard deterministic verification metrics are boring

Geographic regions:

Tropics (20S - 20N), extratropics (20-90 S, N)

Grid: 2.5° lat-lon

Quantities: 

Sea-level pressure, geopotential height, winds, temperature

Heights: 850 hPa, 250 hPa (+ sea level in extratropics)

Statistics: 

bias, root-mean-square error, anomaly correlation, S1 skill 
(measures magnitude of gradients)
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Deterministic forecast evaluation

A lot of effort goes into analyses - best estimates of the state of 
the atmosphere

Verification against those analyses is straightforward

Tests large-scale circulation, which is not so sensitive to model 
details 

But evaluation is routine - 2-4 times each day, year after year



Probabilistic evaluation is more fun

Ensembles of forecasts

produce sample distributions 

are expressed as the probability of some discrete event 
(e.g. “chance of rain > 1 mm”)

Verification is binary 

Brier score is discrete analog to mean-squared error

Includes 
sharpness (differentiation of forecasts) and 
reliability (forecast frequencies matching observations)



Tom Hamill, notes for 
Short Course on Ensemble Forecasting



From weather forecasting to climate projections

Weather forecasting and climate modeling communities 
(and codes) are mostly distinct

Few climate models are able to make weather forecasts

Retrospective simulations are loosely coupled to historical 
state of the atmosphere 

The most sought-after forecasts by climate models 
(e.g. “climate sensitivity”) can’t be verified



Observing the climate system: data reduction

How are all those observations summarized? 

Univariate averaging on regular grids, for the most part

Maybe histograms, joint histograms, linear regressions



Life without time correspondence (evaluating “climate”)

φ̂(x, y;m) =
1

Y

Y�

y=1

φ(x, y;m, y)

e2 = e2 + e�2

= e2 + σ2
o(1 + s2 − 2sr)

e2 =
1

T

�

T

1

A

�

A
(φ̂m − φ̂o)

2 da dt

φChoose a variable

Build a composite season cycle

Compute the mean squared error

Invoke
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Pincus et al., 2008
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There are three more broad classes of evaluation based on

relationships among variables 
(e.g. Bony et al., 2003; Bennhold and Sherwood, 2008; 
Clement et al., 2009)

characteristics of emergent behavior 
(e.g. Williams and Tselioudis, 2008; see also 
phenomena-based metrics) 

information theoretic 
(e.g. Shukla et al., 2005, Majda and Gershgorin 2010)

There may be an infinity of ways in which the models are wrong



Shukla el al., 2005



The climate model evaluation conundrum

Models are evaluated during development

Each group, each individual has their own set of metrics

Centers trade-off skill in mean vs. skill in variability

Community metrics are being developed

But there is no basis on which to select or prefer a given metric

Weak-to-no observational basis linking historical skill with 
climate change response

Relationships in existing ensembles may be fortuitous and/or 
have simple causes 




