" Evaluating forecasts with observations
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Observing the system in situ

To evaluate the models we need to have relevant measurements

State variables are momentum (winds), energy (temperature), and
tracer masses

The most important tracer is water, divided among various states
including two(+) flavors of condensate

Climate-relevant observations are long term, geographically
diverse, with well-understood sampling




Observing the system in situ

WeATHER CHART, MARrcCE 31, 1875,
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Radiosonde locations, | Dec 2006, 6 hr window around 127




As_a:s QIO

Kevin Raeder, NCAR

AT

NAWLYLY,

As.vu.”o

i., Y X

(@O

@9

(@

ldt

N
N
-
c
-
O
ul
(q]
3
@)
3
A=
3
<
i
O
O
o
o
N
U
Q
)

Ions

A5

(@O (

Radiosonde locat

@




Observing the system remotely

If you want to measure more of the atmosphere you look at it -
i.e. sense it remotely using electromagnetic radiation

Q-VIx,N)= — ox)I(x,)

W (X)
A

o (x)(1 = wo(x))B(T(x))

+ o(x)

/ I(x,Q)P(x,Q — Q)dQY
47




Observing the system remotely

If you want to measure more of the atmosphere you look at it -
i.e. sense it remotely using electromagnetic radiation

Q-VIx,N)= — ox)I(x,)

W (X)
A

o (x)(1 = wo(x))B(T(x))

+ o(x) [1 I(x,Q)P(x, Q" — Q)dQY

dly(T,u,
2 (dTH ?) = —1, (7_7 K ¢)

27 1
o A R RN
+ (1 — wo)BX(T'(1))




Observing the system remotely

Three main characteristics

Emission vs. scattering regimes

View from above or below




Observing the system remotely (emission/absorption)

In the infrared and microwave scattering is small

At nadir (looking straight down)

pALS) — I (7, 1,6) + (1= wo) BA(T(7))

In an absorbing atmosphere of total thickness 7°

L(7%)e™™ + fTO* e~ By (T dr’
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Observing the system remotely (scattering)

Scattering dominates in the visible and near-infrared in clouds
(emission is negligible)

Solutions are costly to compute

Parameters vary significantly with wavelength, particle size,
shape, ...




Observing the system remotely
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Radiosonde locations, | Dec 2006, 6 hr window around 127




What'’s the likelihood of a given state given our forecast and
observations!?

p(y,Xb|x) p(x)
p(y,Xb)

p(Xbﬂ Xb) —
Introduce a cost function

J(x) = —log(p(x]y,xp)) + ¢

Assume no correlation between forecast and observation errors

p(y, Xb|x) = p(y|x)p(Xp|X)
J(x) = —log(p(x|xp)) — log(p(x]y)) + ¢




Assume Gaussian distributions of forecast and observations errors

J(x) = %(Xb — X)TPb_l(Xb — X)

+ oy — H) R (y — H(x)

Our cost function minimum is at

VJ(x) =Py (xp—x) + H'R ' (y — H(x)) =0
Assuming linear observation operator

H(x) = H(xp) + H(x — xp)




So the most likely solution is given by

P, '(x—xp) + HR ' (H(xp) + H(x — xp) — y)

Rearranging gives something more familiar

Xa = Xp + K(y — H(xp))

K=[P, '+H'R'H'H'R™!

This is the Kalman filter equation




Data assimilation for weather forecasting

There are two main classes of implementation of the Kalman filter
in the atmospheric sciences

Variational methods minimize the cost function iteratively

“3D-Var” minimizes cost function at a single time;“4D-Var”
minimizes cost function over some extended time window

Variational methods need tangent-linear and adjoint models

Ensemble methods use Monte Carlo integration of Bayes’s
formula; take sample covariance matrices from a finite
ensemble




Ensemble data assimilation recipe (for Brian Mapes)

For each observation in turn
compute the prior/background observation PDF
fit the ensemble of expected observations with a Gaussian
find the product of the background and observation PDFs
find the increment needed for each ensemble member
update “each” element in the state vector in each member

regress the expected observation against the element using
the ensemble

apply (observation increment) * (correlation coefficient) *
(localization)




Data assimilation is model evaluation

Analysis quality is measured by quality of fit to observations

“Observation biases” make this complicated
Forecast skill is measured against verifying analysis

Note: Forecast skill includes errors in forecast model and initial
conditions (including errors in assimilation)




Standard deterministic verification metrics are boring

Geographic regions:

Tropics (20S - 20N), extratropics (20-90 S, N)

Grid: 2.5° lat-lon

Quantities:
Sea-level
Heights: 850

Statistics:

bressure, geopotential height, winds, temperature

nPa, 250 hPa (+ sea level in extratropics)

bias, root-mean-square error,anomaly correlation, S| skill
(measures magnitude of gradients)




Anomaly correlation of ECMWF 500hPa height forecasts

hern hemisphere

Southern hemisphere
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Deterministic forecast evaluation
A lot of effort goes into analyses - best estimates of the state of
the atmosphere
Verification against those analyses is straightforward

Tests large-scale circulation, which is not so sensitive to model
details

But evaluation is routine - 2-4 times each day, year after year




Probabilistic evaluation is more fun

Ensembles of forecasts
produce sample distributions

are expressed as the probability of some discrete event
(e.g.”“chance of rain > | mm”)

Verification is binary

Brier score is discrete analog to mean-squared error

Includes
sharpness (differentiation of forecasts) and
reliability (forecast frequencies matching observations)




Raw Ensemble ~ Logistic Regression
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100 L e L 100_ I L A B T

0 10I2I0 30 40 50 60 70
Forecast Probability (%)

o
o
—
o
o

w
o
wn
o

00 10 20 36 40 50 60 70 80 90
Forecast Probability (%)

Frequency of Usage (%) A
Frequency of Usage (%)

BSS =
—0.049

L)
3N
S
>
0
c
o
35
o
o
L.
L
O
o
>
[,
o
"
0
o

Observed Frequency (%)

40 60 80 40 60 80
Forecast Probability (%) Forecast Probability (%)

Tom Hamill, notes for
Short Course on Ensemble Forecasting




From weather forecasting to climate projections

Weather forecasting and climate modeling communities
(and codes) are mostly distinct

Few climate models are able to make weather forecasts

Retrospective simulations are loosely coupled to historical
state of the atmosphere

The most sought-after forecasts by climate models
(e.g.”climate sensitivity”’) can’t be verified




Observing the climate system: data reduction

How are all those observations summarized!?
Univariate averaging on regular grids, for the most part

Maybe histograms, joint histograms, linear regressions




Life without time correspondence (evaluating “climate”)

Choose a variable @

Build a composite season cycle

o(xz,y;m

Compute the mean squared error

Invoke
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There are three more broad classes of evaluation based on

relationships among variables
(e.g. Bony et al,, 2003; Bennhold and Sherwood, 2008;
Clement et al., 2009)

characteristics of emergent behavior
(e.g.Williams and Tselioudis, 2008; see also
phenomena-based metrics)

information theoretic
(e.g. Shukla et al., 2005, Majda and Gershgorin 2010)

There may be an infinity of ways in which the models are wrong
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The climate model evaluation conundrum

Models are evaluated during development
Each group, each individual has their own set of metrics
Centers trade-off skill in mean vs. skill in variability

Community metrics are being developed

But there is no basis on which to select or prefer a given metric

Weak-to-no observational basis linking historical skill with
climate change response

Relationships in existing ensembles may be fortuitous and/or
have simple causes






