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• How will the mean temperature change if the 
heating from the sun increases?

• How will the variance of the temperature 
respond to the changes of CO2 concentration?

• How will the mean velocity profile in the ocean 
behave if the salinity starts changing?

• How will the mean temperature in April change if 
the heating in January decreases?

Practical questions in 
climate change science



Quantifying Uncertainty in Climate Change 
Science through Empirical Information Theory

Quantifying the uncertainty for the present climate and the predictions of climate 
change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models 
is a central issue in climate change science.
Basic questions:

A   How to measure the skill of a given model in reproducing the present  climate and predicting 
the future climate in an unbiased fashion?

B  How to make the best possible estimate of climate sensitivity to changes in external or 
internal parameters by utilizing the imperfect knowledge available of the present climate?
What are the most dangerous parameters for climate change given uncertain knowledge of the 
present climate?

C How do coarse-grained  measurements of different functionals of the present climate affect 
the assessments in A), B)?
What are the weights which should be assigned to different functionals of the present climate as 
targets to improve the performance of the imperfect AOS models?
Which new functionals of the present climate should be observed in order to improve the 
assessments in A), B)?

Difficulty: Don’t know dynamics for actual climate!



Empirical Information Theory
Jaynes 1957

Majda, Abramov, Grote 2005 AMS

Majda, Wang 2006, Cambridge Press

With a subset of variables ~u ∈ RN and a family of measurement
functionals ~EL(~u) = (Ej(~u)), 1 ≤ j ≤ L, for the present
climate, empirical information theory builds the least biased
probability measure πL(~u) consistent with the L measurements

of the present climate, ~EL.

Empirical information theory and climate science



There is a unique functional on probability densities to measure this
given by the entropy

S = −

Z
π lnπ,

and πL(~u) is the unique probability so that S(πL(~u)) has the largest
value among those probability densities consistent with the measured

information, ~EL.

πL(~u) = e
−α0−~αL·~EL(~u),

L Lagrange multipliers ~αL = (α1, . . . ,αL) are chosen

~EL =

Z
~E(~u)e−α0−~αL·

~EL(~u),

α0 is determined by the normalization

eα0 =

Z
e−~αL·

~EL(~u),



The natural way to measure the lack of information in one probability
density, q(~u), compared with the true probability density, p(~u),
is through the relative entropy, P(p, q), given by

P(p, q) =

Z
p ln

µ
p

q

¶
.

This functional on probability densities has two attractive features
as a metric for climate change science:

1) P(p, q) ≥ 0 with equality if and only if p = q,
2) P(p, q) is invariant under general nonlinear changes of variables.

P(π,πL) precisely quantifies the intrinsic error in using

the L measurements of the present climate, ~EL.

An AOS model for the present climate is described by πM (~u),
intrinsic model error in the climate statistics is given by

P(π,πM ).



Consider a class of imperfect models,M, for the climate, the best climate
model for the coarse-grained variable ~u is the M∗ ∈M so that the true
climate has the smallest additional information beyond the modelled
climate distribution πM∗(~u), i.e.,

P(π,πM∗) = min
M∈M

P(π,πM ).

Also, actual improvements in a given climate model with distribution
πM (~u) either through higher resolution or improved parameterization
resulting in a new πMpost(~u) should result in improved information for
the actual climate, so that

P(π,πMpost) ≤ P(π,π
M ),

otherwise, objectively, the model has not been improved compared
with the original climate model.



Fact1 : P(π, πML0 ) = P(π,πL) + P(πL,π
M
L0 )

= (S(πL)− S(π)) + P(πL,π
M
L0 ) for L

0 ≤ L.

The unbiased intrinsic error in the finite number of climate
measurements in of the actual climate is exactly the entropy
difference. With Fact1 and a fixed family of L measurements
of the actual climate, the optimization principles can be
computed explicitly by replacing the unknown π
by the hypothetically known πL in these formulas

so that for example, πM∗ is calculated by

P(πL,π
M∗
L0 ) = min

M∈M
P(πL,π

M
L0 ).



S(πL) + P(πL,π
M
L0 ) = S(πL0)) + P(πL0 ,π

M
L ).

Suppose new observations of the climate became available
so that L > L0, then according to Fact1,

P(πL,π
M
L0 ) > P(πL0 ,π

M
L0 ).

Since πL involves more climate measurements than πL0 ,
it follows immediately that the absolute uncertainty
satisfies S(πL)) < S(πL0)) so

There is an increase of uncertainty of all the current

AOS models, πML0 , due to the additional new measurements
of the present climate; thus the current AOS models need
to be recalibrated for their skill.
An appealing way to recalibrate the current climate models
and improve them simultaneously is through active
“on the fly” filtering or data assimilation.

Research/expository article: Majda, Harlim, Gershgorin (2010)



First term is the signal, reflecting the model error in the mean but weighted
by the inverse of the model covariance, R−1M , while the second term,
the dispersion, involves only the model error covariance ratio, RR−1M .
This intrinsic metric is invariant under any (linear) change of variables
which maps Gaussian distributions to Gaussians and the signal and dispersion
terms are individually invariant under these transformations.

P(πL,π
M ) =

·
1

2
(~u− ~uM )

∗(RM )
−1(~u− ~uM )

¸
+

·
−
1

2
log det(RR−1M ) +

1

2
(tr(RR−1M )−N)

¸
.

Practical setup for calibration of contemporary AOS models: climate
measurements and model measurements involve only mean and covariance
of ~u so that πL is Gaussian with climate mean ~u and covariance R while
πM is Gaussian with model mean ~uM and covariance RM .
P(πL,πM ) has the explicit formula:

Algorithms for effective calculation of the empirical 
metrics for climate uncertainty

Non-Gaussian statistics: Kleeman (2002), Majda Kleeman Cai (2002),
Haven Majda Abramov (2005), Abramov (2006-7-9)



P(π~λ∗ ,π) = max~λ∈Rp
P(π~λ,π).

Consider a family of parameters ~λ ∈ Rp with π~λ the true climate that

occurs; ~λ – external parameters, changes in forcing, internal variability,
change in dissipation.

The most dangerous perturbed climate is the one with largest
uncertainty of the present climate

Empirical theory for finding the most dangerous 
climate change directions from the present climate



P(π~λ, π) =
~λ · I(π)~λ+O(|~λ|3).

π~λ

¯̄̄
~λ=0

= π, then for small values of ~λ:

~λ · I(π)~λ =

Z
(~λ ·∇~λπ)

2

π
.

Fisher information:

Fact 2: The most dangerous climate change direction
occurs along the unit direction ~e∗π ∈ Rp
which is associated with the largest eigenvalue, λ∗π,
of the above quadratic form.



Fact3 : P(π~λ,L,πL) =
~λ · I(πL)~λ+O(|~λ|

3),

Theoretical solution to the climate sensitivity of the present
climate is hampered by both our lack of information in both
the present climate and for the gradients, ~λ ·∇~λπ.
Platonic ideal for climate change science simplifies
when the observed climate distribution πL(~u) is utilized

~λ · I(πL)~λ = (~λ ·∇~λ
~EL)

TC−1L
~λ ·∇~λ

~EL,with

and CL is the L× L climate correlation matrix

CL = ( ~EL(~u)− ~EL)( ~EL(~u)− ~EL)T ,

For fewer measurements L0 ≤ L, the compressed quadratic form is

~λ · I(πL)~λ = (~λ ·∇~λ
~EL0)

T C−1L
~λ ·∇~λ

~EL0 , ~EL0 = (E1, . . . , EL0 , 0, . . . , 0)
T ,

Link to FDT: for such a climate model, one can calculate

the unknown information ∇~λ
~EL(~u) through statistics of

the present modelled climate from a suitable version of
algorithms based on the fluctuation-dissipation theorem (FDT)



Exactly solvable test models for climate 
change science

U(t) = Ū(t) + U 0(t), zonal jet, seasonal cycle

v(x, t), turbulent Rossby waves

T (x, t) + αy = “T”, passive tracer with mean gradient
(CO2, CO, etc)

dU

dt
= −γ(U − Ū(t)) + σẆ ,

similar equation for each
Fourier mode of v

∂T

∂t
+ U(t)

∂T

∂x
= −αv(x, t) + κ

∂2T

∂x2
,

Statistically exactly solvable
Gershgorin, Majda (2010),
Bourlioux, Majda (2002)

UM , vM , TM , solutions with Model Error

Mimic GCM: increase damping, γM , eddy duffusivity for T
M



Pdf for T like atmospheric tracers
in observations, Neelin et al (2010)

Mean zonal jet

year



year

Fraction of the signal part in the total lack of information P



Stochastic models for low-
frequency climate dynamics

~ut = ~B(~u, ~u) + L~u− α(t)~u+ ~F (t)

Atmosphere-ocean system:

~u · ~B(~u, ~u) = 0

div~u ~B(~u, ~u) = 0

Energy conservation:

quadratic

skew-symmetric

~u =

µ
x
y

¶
slow

fast

dx = [F + ax+ bx2 − cx3]dt+ (A−Bx)dW + σdWA

Come from the same physical
phenomena: dyad interactions

Effective low-frequency dynamics:

What is the statistical and dynamical description of the model?

Majda, Franzke, Cromelin PNAS (2009)



Invariant measure and ideal 
response

p(x) = N0¡
(Bx−A)2+σ2

¢a1 ed arctan(Bx−Aσ )e
−c1x2+b1x

B4Invariant pdf:

Distinct regimes
of behavior

How do we choose interesting test cases?

∂hxi
∂F = ∂

∂F

R
xp(x)dxIdeal mean response

to the changes of forcing:



Deterministic structural 
instability

ẋ = F + ax+ bx2 − cx3
b = −6, c = 4

Deterministic structural instability:
equilibrium points: either 1 stable
or 2 stable and one unstable
or the boundary

North-Atlantic Oscillation (NAO)

Leading Principal Component (PC-1)
has features of Arctic Oscillation

The effective model is clearly nonlinear and non-Gaussian
but we still can apply FDT in its original form!



The most dangerous climate change directions in a 
stochastic model for low frequency variability

The advantage: we know the perturbed true climate explicitly, so we also
know the true climate change behavior explicitly. The two dimensional
parameters for external forcing and dissipation are the natural parameters
which are varied.

The mean and variance for the climate equilibrium are the measured climate
functionals identifying the most dangerous perturbation direction, ~e.
For PC-1, the exact most dangerous direction ~e∗π = (0.969, 0.249)

T , the projec-
tion on changes in external forcing is roughly 80%.
The functional with model with a Gaussian approximate climate:
~e∗G = (0.937, 0.349)

T , error of 6.0◦ with ~e∗π.
The model error functional with the mean alone but the non-Gaussian climate:
~e∗1 = (0.989, 0.150)

T , error of −5.8◦ with ~e∗π.
PC-1 is most sensitive to changes in external forcing.
Most dangerous perturbation direction for the NAO is ~e∗π = (−0.076, 0.997) and
is overwhelmingly dominated by changes in dissipation.
Remarkably, all three approximations reproduce ~e∗π here exactly within three
significant figures.



FDT for climate systems

The linear response of a climate system to 
small perturbations of the external forcing 
can be predicted by observing appropriate 
statistics of the system in equilibrium
without the need of applying any 
perturbations.

Valid for Statistical Physics of identical particles in equilibrium
Leap to use for forced-dissipative systems in climate(Leith,1975)



Historical note: general FDT
• A. Einstein (1905), M. Smoluchowski (1906)

Brownian motion

• Johnson–Nyquist noise (1928)

• Callen and Green (1952) formulation and proof 
of FDT for the systems modeled by a Langevin
equation

• Kubo (1966) FDT for general nonlinear 
dynamical systems in thermal equilibrium

D = μkBTdiffusion
mobility of particles

σ2V = 4kBT∆fR
resistancevoltage variance



Historical note: FDT for the 
atmosphere

Leith (1975) proposed that in order to determine 
climatic sensitivity (response) to external perturbations  
one needs to observe natural variability of the 
atmosphere (Gaussian assumption).

FDT
GCM

Bell, Gritsun, Branstator, Majda, Abramov…
GCMs, New Algorithms, Math Theory



Advantages of FDT
• only need data in the unperturbed state

• one response operator can be used
with multiple perturbation vectors

• analyse the response operator
for the most dangerous perturbations

• inverse modelling: perturbation can be
recovered from the known response



General properties of FDT
du

dt
= F(u) + σ(u)Ẇ nonlinear dynamical

system (e.g., GCM)

pt = −divu(F(u)p) +
1

2
divu∇u(Qp) ≡ LFP p

Fokker-Planck equationLFP peq = 0
invariant measure

A(u)
a nonlinear functional of u
(e.g., mean variance, skewness)

hA(u)i =

Z
A(u)peq(u)du

How does hA(u)i change if F(u) is perturbed?



General properties of FDT
δF = δh(u)f(t)

δhA(u)i(t) = hA(uδ)i− hA(u)i =

Z t

0

R(t− s)δf(s)ds

R(τ) = hA(u(τ))B(u(0))i

B(u) = −
divu(hpeq)

peq

R(τ) is computed through a correlation
function in the unperturbed climate

FDT

forcing perturbation

How do we generalize FDT for a time-periodic case?

F→ F+ δF

Majda and Wang 2010; Gershgorin and Majda 2009



Quasi-Gaussian approximation 
to FDT

peq is usually unknown exactly.
One way to apply FDT is to assume
that peq is Gaussian (qG-FDT)

pGeq = CN exp

µ
−
1

2
(u− ū)TC−1(u− ū)

¶
RG(τ ) = hA(u(τ ))BG(u(0))i

BG(u) = −
divu(wp

G
eq)

pGeq

RG(t) = hA(u)(t)C−1(u− ū)(0)i

for perturbations
of external forcing
w(u)i = ei

computable

How do we use test models for FDT?



Test models for FDT

Test model
du
dt
= F (u, t)

Ideal response Rideal

δhA(u)i = RidealδF

• analytically

• numerically

Approximation in

• model

• FDT algorithm

• both

Rideal RFDT
?
≈



Standard approach to FDT in climate community: 
Linear Regression Models (LRM)

du

dt
= F(u) + σ(u)Ẇ

duR

dt
= LuR + F + σẆ

linear
L, σ, F can be found by matching
(i) mean, (ii) variance, (iii) functional of a lag covariance

Variance response for the LRM is zero

A(u) = (u− ū, Q(u− ū))

RR(t) = h(uR(t)− ūR) ·Q(uR(t)− ūR)(CR)−1(uR(0)− ūR)i = 0

Odd centered moment
vanishes for Gaussians

However, mean response for LRM can be skillful

Variance response to the changes in forcing cannot
be predicted by FDT through LRM! (No skill for variance)



Lorenz 40 mode model as a 
test model for FDT

duj
dt

= (uj+1 − uj−2)uj−1 − uj + F
advection dissipation forcing

Model for baroclinic turbulence in the mid’latitude atmosphere

weakly chaotic
λ1 = 1.02

strongly chaotic
λ1 = 1.74

turbulent
λ1 = 3.95



Statistics of Lorenz 40 mode 
model

Variance

Correlation
time

Modes with the
largest variance
do not always
contribute
the largest
climate response

However, it is
not always
the case in GCMs



Approximation of the nonlinear 
term

uj ũj ûk v̂k
rescale Fourier linear

regression
Ep = 1/2

PJ−1
j=0 (uj − ū)

2

(ũj+1 − ũj−2)ũj−1

(−dk + iωk)v̂k + σkẆk
−dkv̂k + σkẆk

perfect regression standard regression

dv̂k
dt =

¡
− dk + ω1(k) + i(ω2(k) + ωk)

¢
v̂k +

1
Ep
(F − ū)δk + σkẆk

dv̂k
dt =

¡
− dk + ω1(k) + iω2(k)

¢
v̂k +

1
Ep
(F − ū)δk + σkẆk

Find dk, ωk, σk by matching V ark and
R∞
0
Corrk(τ)dτ

in the original and linear models.



Regression coefficients

V ar(ûk) = V ark,
R∞
0
Corrûk(τ)dτ = Tk − iθk

perfect regression

dk = ω1(k) +
Tk

T 2k + θ2k
,

ωk = −ω2(k) +
θk

T 2k + θ2k
,

σ2k = 2V ark
Tk

T 2k + θ2k
.

dk = ω1(k) +
1±

p
1− 4T 2kω2(k)

2

2Tk

σ2k = 2(dk − ω1(k))V ark.

standard regression

always realizable
not always realizable

How well does FDT for LRM predict
the actual response of the Lorenz model?



Results: response operator

Perfect regression
recovers the pattern
better than
standard regression



Results: perfect vs standard regression

FDT for LRM with perfect regression works reasonably well
for the mean response to the changes in forcing but completely
misses the variance response
Major shortcomings of Standard LRM in computing mean response
especially for F = 5, 6

New Blended Response
FDT Algorithms;
Abramov and Majda
2007 Nonlinearity
2009 J. Atmos. Sci.



Stochastic models for low-
frequency climate dynamics

~ut = ~B(~u, ~u) + L~u− α(t)~u+ ~F (t)

Atmosphere-ocean system:

~u · ~B(~u, ~u) = 0

div~u ~B(~u, ~u) = 0

Energy conservation:

quadratic

skew-symmetric

~u =

µ
x
y

¶
slow

fast

dx = [F + ax+ bx2 − cx3]dt+ (A−Bx)dW + σdWA

Come from the same physical
phenomena: dyad interactions

Effective low-frequency dynamics:

What is the statistical and dynamical description of the model?

Majda, Franzke, Cromelin PNAS (2009)



Deterministic structural 
instability

ẋ = F + ax+ bx2 − cx3
b = −6, c = 4

Deterministic structural instability:
equilibrium points: either 1 stable
or 2 stable and one unstable
or the boundary

North-Atlantic Oscillation (NAO)

Leading Principal Component (PC-1)
has features of Arctic Oscillation

The effective model is clearly nonlinear and non-Gaussian
but we still can apply FDT in its original form!



Invariant measure and ideal 
response

p(x) = N0¡
(Bx−A)2+σ2

¢a1 ed arctan(Bx−Aσ )e
−c1x2+b1x

B4Invariant pdf:

Distinct regimes
of behavior

How do we choose interesting test cases?

∂hxi
∂F = ∂

∂F

R
xp(x)dxIdeal mean response

to the changes of forcing:



dx = [F + ax+ bx2 − cx3]dt+ (A−Bx)dW + σdWA

FDT set up

AM (x) = x AV ar(x) = (x− hxi)2

hF (x)p = p ha(x)p = −xp

Mean and variance response

to the perturbations of forcing or dissipation

R(τ) = hA(x(τ))B(x(0))i

B(x) = −
∂/∂x(hp)

p
B(F )(x) = −2 (AB+F )+(a−B

2)x+bx2−cx3
σ2+(A−Bx)2

B
(F )
qG (x) =

x−μ
V ar

What are the results?



Results

FDT response has high skill always!

+
+

+

+

-

-

-

-

+

-

High Skill
qG-FDT

Low Skill
qG-FDT


