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Online Model Error Estimation Strategy
A simple strategy to cope with model errors for filtering with an
imperfect model nonlinear dynamical system depending on
parameters, b,

du

dt
= F (u, b)

is to augment the state variable u, by the parameters λ, and adjoin
an approximate dynamical equation for the parameters

db

dt
= g(b).



Online Model Error Estimation Strategy
A simple strategy to cope with model errors for filtering with an
imperfect model nonlinear dynamical system depending on
parameters, b,

du

dt
= F (u, b)

is to augment the state variable u, by the parameters λ, and adjoin
an approximate dynamical equation for the parameters

db

dt
= g(b).

In hierarchical notation, filtering this augmented system is one way
of estimating

[u, b|v ] = [v |u, b] [u|b][b]
[v ]



The classical separate bias Kalman Filter

Friedland (1969, 1982) considered the following linear filtering
problem

um+1 = Fum + Bm+1bm+1 + σm+1

bm+1 = bm + σbm+1

with a biased observation model

vm+1 = Gum+1 + Cm+1bm+1 + σom+1

In this talk, we only consider unbiased observation, Cm = 0.



Constant bias model: bm+1 = bm
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White noise bias model: bm+1 = bm + σb
m+1
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Test model for true signal

Consider the following SDE

du(t)

dt
= −γ(t)u(t) + iωu(t) + σẆ (t) + f (t)

as a test model for filtering with model error.
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To generate significant model errors as well as to mimic
intermittent chaotic instability as often occurs in nature, we allow
γ(t) to switch between stable (γ > 0) and unstable (γ < 0)
regimes according to a two-state Markov jump process.



Test model for true signal

Consider the following SDE

du(t)

dt
= −γ(t)u(t) + iωu(t) + σẆ (t) + f (t)

as a test model for filtering with model error.

To generate significant model errors as well as to mimic
intermittent chaotic instability as often occurs in nature, we allow
γ(t) to switch between stable (γ > 0) and unstable (γ < 0)
regimes according to a two-state Markov jump process.
Assume the following observation model:

vm = u(tm) + σom, σom ∼ N (0, ro). (1)



True Signals for Unforced and Forced cases
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Mean Stochastic Model

The prototype one-mode stochastic mean model

du(t) =
[

(−γ̄ + iω)u(t) + F (t)
]

dt + σdW (t)

where one fits the parameters using climatological statistical
quantities such as the energy spectrum and correlation time.



Mean Stochastic Model

The prototype one-mode stochastic mean model

du(t) =
[

(−γ̄ + iω)u(t) + F (t)
]

dt + σdW (t)

where one fits the parameters using climatological statistical
quantities such as the energy spectrum and correlation time.

This ”poor-man” strategy is discussed in Harlim and Majda
Nonlinearity 2008, Comm. Math. Sci. 2010.



Stochastic Parameterized Extended Kalman Filter:

We consider the following canonical model that accounts additive
and multiplicative biases:

du(t) =
[

(−γ(t) + iω)u(t) + F (t)+b(t)
]

dt + σdW (t)

db(t) = (−γb + iωb)b(t)dt + σbdWb(t)

dγ(t) = −dγ(γ(t)− γ̂)dt + σγdWγ(t)
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for high filter skill beyond the MSM and in many occasions
comparable to the perfectly specified filter model.



Stochastic Parameterized Extended Kalman Filter:

We consider the following canonical model that accounts additive
and multiplicative biases:

du(t) =
[

(−γ(t) + iω)u(t) + F (t)+b(t)
]

dt + σdW (t)

db(t) = (−γb + iωb)b(t)dt + σbdWb(t)

dγ(t) = −dγ(γ(t)− γ̂)dt + σγdWγ(t)

We find stochastic parameters {γb, ωb, σb, dγ , σγ} that are robust
for high filter skill beyond the MSM and in many occasions
comparable to the perfectly specified filter model.

This special form has exactly solvable nonlinear solutions and
moments and we do not need any linearization as in the standard
EKF.



Next, we find the mean 〈u(t)〉: (Use the calculus tricks in

Gershgorin-Majda 2008, 2010)

〈u(t)〉 = eλ̂(t−t0)
(

〈u0〉 − Cov(u0, J(t0, t))
)

e−〈J(t0 ,t)〉+
1
2
Var(J(t0 ,t))

+

∫ t

t0

eλ̂(t−s)
(

b̂ + eλb(s−t0)
(

〈b0〉 − b̂ − Cov(b0, J(s, t))
))

×e−〈J(s,t)〉+ 1
2
Var(J(s,t))ds

+

∫ t

t0

eλ̂(t−s)f (s)e−〈J(s,t)〉+ 1
2
Var(J(s,t))ds (2)

where

λ̂ = −γ̂ + iω,

J(s, t) =

∫ t

s

(γ(s ′)− γ̂)ds ′,

and next the cross-covariances ...



SPEKF: Checking first and second ordered statistics
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One mode demonstration of the filtered solution:

observed mode
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One mode demonstration of the filtered solution:

unobserved parameters
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Canonical Spatially Extended Turbulent Systems

We consider a stochastic PDE with time-dependent damping
Langevin equation for the first five Fourier modes, i.e.,

duk(t)

dt
= −γk(t)uk(t) + iωkuk(t) + σkẆk(t) + fk(t), k = 1, . . . , 5,

and linear Langevin equation with constant damping d̄ for modes
k > 5,

duk(t)

dt
= −d̄uk(t) + iωkuk(t) + σkẆk(t) + fk(t), k > 5.



Turbulent barotropic Rossby wave equation:

ωk = −β/k ,Ek = k
−3

(a)
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Incorrectly specified forcings:

Here, we consider a true signal with forcing given by

f̂k(t) = Af ,k exp
(

i(ωf ,kt + φf ,k)
)

, (3)

for k = 1, . . . , 7 with amplitude Af ,k , frequency ωf ,k , and phase
φf ,k drawn randomly from uniform distributions,

Af ,k ∼ U(0.6, 1),

ωf ,k ∼ U(0.1, 0.4),

φf ,k ∼ U(0, 2π),

f̂k = f̂ ∗−k ,

and unforced, f̂k(t) = 0, for modes k > 7. However, we do not
specify this true forcing to the filter model, i.e., we use f̃k = 0 for
all modes.



Reduced Filter Domain Kalman Filter for regularly

spaced sparse observation

We consider regularly spaced sparse observations: (2M + 1)
observations of (2N + 1) model grid points. The Fourier
coefficients of the observation model is given as

v̂ℓ,m =
∑

k∈A(ℓ)

ûk,m + σ̂om,

where

A(ℓ) = {k |k = ℓ+ (2M + 1)q, q ∈ Z, |ℓ| ≤ N}
is the aliasing set of wavenumber ℓ. (Majda-Grote PNAS 2007)



Reduced Filter Domain Kalman Filter for regularly

spaced sparse observation

We consider regularly spaced sparse observations: (2M + 1)
observations of (2N + 1) model grid points. The Fourier
coefficients of the observation model is given as

v̂ℓ,m =
∑

k∈A(ℓ)

ûk,m + σ̂om,

where

A(ℓ) = {k |k = ℓ+ (2M + 1)q, q ∈ Z, |ℓ| ≤ N}
is the aliasing set of wavenumber ℓ. (Majda-Grote PNAS 2007)

When the energy spectrum is decaying as a function of k , we can
use the following reduced observation model

v̂ ′ℓ,m ≡ v̂ℓ,m −
∑

k∈A(ℓ),k 6=ℓ

ûk,m|m−1 = ûℓ,m + σ̂om.



Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available

sparse observations for P=3

Physical Space

Fourier Space

0 20-20 61-61

aliasing set !(1) = {1,-40,42} for P=3 and M=20

0 20-20 61-61

aliasing set !(11) = {11,-30,52} for P=3 and M=20



Incorrectly specified forcings, observed only 15

observations of 105 grid points
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Table of RMSE for the SPDE test case with

intermittent burst of instability

Forcing unforced case correct forcing incorrect forcing

ro 0.2 0.3 0.5

perfect filter 0.35 0.39 0.45
MSM 0.39 0.48 0.73

MSMf=0 - - 1.17

SPEKF-C 0.38 0.44 0.59
SPEKF-M 0.36 0.42 0.79
SPEKF-A 0.39 0.46 0.60



Canonical Model for Midlatitude Geophysical Flows:

The dynamical equations for the perturbed variables are:

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + k2dU)
∂ψ1

∂x
+ ν∇8q1 = 0

∂q2
∂t

+ J(ψ2, q2)− U
∂q2
∂x

+ (β − k2dU)
∂ψ2

∂x
+ ν∇8q2 + κ∇2ψ2 = 0

where qj is the quasi-geostrophic potential vorticity given as

qj = βy +∇2ψj +
k2d
2
(ψ3−j − ψj )

with ~u = ∇⊥ψ, kd =
√
8/Ld .



In the two-layer case, the barotropic vertical and baroclinic modes
are defined as ψb = (ψ1 + ψ2)/2 and ψc = (ψ1 − ψ2)/2,
respectively.



In the two-layer case, the barotropic vertical and baroclinic modes
are defined as ψb = (ψ1 + ψ2)/2 and ψc = (ψ1 − ψ2)/2,
respectively.
Notice that the barotropic mode dynamical equation,

∂qb
∂t

+ J(ψb , qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb

+
(

J(ψc , qc) + U
∂∇2ψc

∂x
− κ∇2ψc

)

= 0

is numerically stiff when k2d is large (ocean case).



The 2-layer QG model with baroclinic instability
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Stochastic Models for Filtering the barotropic mode:

Recall that

∂qb
∂t

+ J(ψb , qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb +

(

baroclinic term
)

= 0

where qb = βy +∇2ψb.
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all of the baroclinic components by Ornstein-Uhlenbeck processes.
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i(kx+ℓy)

Thus, each horizontal mode has the following form

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f (t)dt



Stochastic Models for Filtering the barotropic mode:

Recall that

∂qb
∂t

+ J(ψb , qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb +

(

baroclinic term
)

= 0

where qb = βy +∇2ψb.

Poorman’s stochastic models: replace the nonlinear terms and
all of the baroclinic components by Ornstein-Uhlenbeck processes.
Discrete Fourier Transform:

ψ =
∑

k,ℓ

ψ̂k,ℓe
i(kx+ℓy)

Thus, each horizontal mode has the following form

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f (t)dt + σdW (t)

and our task is to parameterize d , ω, f (t), σ?



Statistical Quantities: Climatological variances of

the barotropic mode
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Statistical Quantities: Histogram “marginal pdf’s”



Statistical Quantities: Correlation functions



Mean Stochastic Models: parameterize d , ω, f , σ

We set f (t) to be a constant equals to the climatological mean
〈ψ̂〉 (long time average).
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We set f (t) to be a constant equals to the climatological mean
〈ψ̂〉 (long time average).

MSM2 We use the linear dispersion ω, and we fit the damping and
noise strengths to the spectrum and decorrelation time

Var(ψ̂) =
σ2

2d

Re[Tcorr ] ≡ 1

Var(ψ̂)

∫ ∞

0
Re[C (τ)]dτ =

1

d



Mean Stochastic Models: parameterize d , ω, f , σ

We set f (t) to be a constant equals to the climatological mean
〈ψ̂〉 (long time average).

MSM2 We use the linear dispersion ω, and we fit the damping and
noise strengths to the spectrum and decorrelation time

Var(ψ̂) =
σ2

2d

Re[Tcorr ] ≡ 1

Var(ψ̂)

∫ ∞

0
Re[C (τ)]dτ =

1

d

MSM1 Ignore the linear dispersion and solve the following

Var(ψ̂) =
σ2

2d

Tcorr ≡ 1

Var(ψ̂)

∫ ∞

0
C (τ)dτ =

1

d + iω



Local least squares EAKF (Anderson 2003)

Approximate the prior error covariance matrix by ensemble
covariance.
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How many ensemble member? How to avoid ensemble collapse
and spurious correlations due to finite ensemble size?



Local least squares EAKF (Anderson 2003)

Approximate the prior error covariance matrix by ensemble
covariance.

How many ensemble member? How to avoid ensemble collapse
and spurious correlations due to finite ensemble size?
Computationally, EAKF requires extensive tunings of ensemble
size, local box size, covariance inflation, and in the ocean case,
integration time step need to be reduced.



Longer deformation radius case (“atmospheric”

regime).
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Shorter deformation radius case (“oceanic” regime).
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Summary:

1. MSM: We introduce reduced stochastic models through
replacing the nonlinearity and baroclinic components with
Ornstein-Uhlenbeck process for filtering purpose. This
reduced poor man’s strategy is numerically very cheap and
accurate in a regime when the dynamical systems is strongly
chaotic and fully turbulent.



Summary:

1. MSM: We introduce reduced stochastic models through
replacing the nonlinearity and baroclinic components with
Ornstein-Uhlenbeck process for filtering purpose. This
reduced poor man’s strategy is numerically very cheap and
accurate in a regime when the dynamical systems is strongly
chaotic and fully turbulent.

2. SPEKF: We introduce a paradigm model for “online” learning
both the additive and multiplicative biases from observations
beyond the MSM. This model is analytically solvable such
that NO LINEARIZATION is needed when Kalman filter
formula is utilized.


