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Earth System Grid (ESG)
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To support the infrastructural needs of the national and international climate 
community, ESG is providing crucial technology to securely access, monitor, 
catalog, transport, and distribute data in today’s Grid computing environment.

HPC
hardware running 
climate models

ESG
Sites

ESG Portal

Slide by Bernholdt

Why High-Performance Computing?

Tim Conrad 4

Higher speed (solve problems faster). 
Important when there are “hard” or “soft” deadlines; e.g., 24-
hour weather forecast

Higher throughput (solve more problems)
Important when there are many similar tasks to perform; e.g., 
transaction processing

Higher computational power (solve larger problems) e.g., 
weather forecast for a week rather than 24 hours, or with a finer 
mesh for greater accuracy
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Climate research and High Performance Computing (HPC)
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Part I: 
Introduction to HPC

Part II: 
Illustrative Example 
Parallel Mesh Construction and Parallel 
Geometric Multigrids

Part III: 
Data Storage: Getting data in and out

Introduction to Parallel Computing
Part I
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Less fish … More fish!

Parallelism means doing 
multiple things at the same 
time: you can get more work 
done in the same time.

Example modified from 
slides by Paul Gray
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THE JIGSAW PUZZLE 
ANALOGY

But there are some issues…
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Example modified from 
slides by Paul Gray
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Serial Computing

Can you do it in less time by thinking faster? 

cpU

Suppose you want to do a jigsaw 
puzzle that has, say, a thousand 
pieces.

We can imagine that it’ll take you a 
certain amount of time.  Let’s say 
that you can put the puzzle together 
in an hour.
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Why Not Crank Up the Clock?
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http://download.intel.com/technology/eep/fall_microprocessor_forum_2006.pdf

The Current Power Trend

Source: Intel Corp.
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Core 2 
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Obstacles, and Why You Don’t Have 10GHz Today
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Source: http://www.gotw.ca/publications/concurrency-ddj.htm

Moore’s Law
still holds.

SHARE THE WORKLOAD.

So… not a good idea. What’s next?

Tim Conrad 12
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Shared Memory Parallelism

If Julie sits across the table from you, 
then she can work on her half of the 
puzzle and you can work on yours.

Once in a while, you’ll both reach into 
the pile of pieces at the same time 
(you’ll contend for the same resource), 
which will cause a little bit of slowdown.

And from time to time you’ll have to 
work together (communicate) at the 
interface between her half and yours.  
The speedup will be nearly 2-to-1:  you 
all might take 35 minutes instead of 30.

Tim Conrad 14

The More the Merrier?

Now let’s put Lloyd and Jerry on the 
other two sides of the table.  

Each of you can work on a part of 
the puzzle, but there’ll be a lot more 
contention for the shared resource 
(the pile of puzzle pieces) and a lot 
more communication at the 
interfaces.  

So you all will get noticeably less 
than a 4-to-1 speedup, but you’ll still 
have an improvement, maybe 
something like 3-to-1: 

The four of you can get it done in 20 
minutes instead of an hour.
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Diminishing Returns

If we now put Dave and Paul and 
Tom and Charlie on the corners of 
the table, there’s going to be a 
whole lot of contention for the 
shared resource, and a lot of 
communication at the many 
interfaces.  

So the speedup you all get will be 
much less than we’d like; you’ll be 
lucky to get 5-to-1.

So we can see that adding more 
and more workers onto a shared 
resource is eventually going to have 
a diminishing return.

Challenge #1: Amdahl’s Law

P = fraction of the work
that can be 
parallelized

1-P = remainder, which
cannot be 
parallelized

N: Number of CPU cores

S = 

The serial fraction of work limits the maximum speedup!

Image: Wikipedia
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N.B.: Luckily, in many very large problems: P -> 1
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Amdahl’s Law Revisited: Speed-up for Multi-core
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This is why 
super-

computer 
exist!

Challenge #2: The Memory Wall
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µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

DRAM

CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

Time

“Moore’s Law”

~1980 ~2005

Communication in multi-core CPUs is done through memory. 
But memory is not very fast – compared to the CPU.
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Communication by Shared-Memory

Programming Models and Compilers? 
(-> handling shared resources)

Interconnection networks to 
access main memory

Source: IBM

Source: Intel Corp.
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Main Memory (RAM)

The Need for a Memory Hierarchy

Tim Conrad 20

The widening speed gap between 
CPU and main memory

Processor operations take of the 
order of 1 ns (~2clk @ 2GHz) 

Memory access requires 10s or 
even 100s of ns

Memory bandwidth/latency limits 
the instruction execution rate

Each instruction executed involves 
at least one memory access

Hence, a few to 100s of MIPS is the 
best that can be achieved

A fast buffer memory can help 
bridge the CPU-memory gap

The fastest memories are 
expensive and thus not very large. 

CPU
(+registers)

L1

L2

L3

Memory

10s KB

100s KB

MBs

GBs

(bus)
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Office Analogy

Once the “working set” (e.g. 
program loop) is in the 
drawer, very few trips to the 
file cabinet are needed.

Example modified from B. Pahami’s Book, “Computer Architecture”
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very close (“on chip”)different room (“off chip”)

CPU
Access 
cabinet
(MAIN 
MEMORY) 
in minutes

Access storage 
building
(HDD) 
in weeks

SHARE THE WORKLOAD
ATTEMPT #2.

Sharing is a good idea. Sharing a limited resource (memory) is not.

Tim Conrad 22
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Distributed Parallelism

Now let’s try something a little different.  

Let’s set up two tables, and let’s put you at one of them and Julie 
at the other.  

Let’s put half of the puzzle pieces on your table and the other half 
of the pieces on Julie’s.  

Now you all can work completely independently, without any 
contention for a shared resource.  

BUT, the cost of communicating is MUCH higher (you have to 
scootch your tables together), and you need the ability to split up 
(decompose) the puzzle pieces reasonably evenly, which may be 
tricky to do for some puzzles.

MIMD Machines

P + C

Dir

Memory

P + C

Dir

Memory

P + C

Dir

Memory

P + C

Dir

Memory

Communication by Interconnection Network
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Latency?
Bandwidth?

Parallel processing has catalyzed the development of a several 
generations of parallel processing machines

Unique features include the interconnection network, support for 
system wide synchronization, and programming languages/compilers
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Comparison of Switched Media

Type Latency Bandwidth Cost

Gigabit Ethernet ~1 msec 0.1 GigaByte/sec ~ 50USD / port

10 Gigabit Ethernet ~100 µsec 1.0 GigaByte/sec ~ 500USD / port

QDR InfiniBand ~1µsec 3.6 GigaByte/sec ~ 1000USD / port

Tim Conrad 25

For comparison: RAM bandwidth is about 4GB/s (DDR4) - 28GB/s (XDR); latency ~0.02µs

Notes about TCP/IP (window based): 

Protocol settings can greatly affect actual throughput! (e.g. only using some %)

At 10 Gbps network speed, new packets arrive faster than current standard systems can process a packet. This 
increases the likelihood of dropped packets and defeats the value of providing greater bandwidth to a server

For more, see tutorial at: http://psc.edu/networking/projects/tcptune/

Mellanox 36-port 
InfiniBand switch

Four IBM Power 3 nodes 

(16 processor) 

with Colony switch

Even today’s machines are interconnect topology sensitive

Tim Conrad 26

Interconnect Topology BG/L
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More Distributed Processors

It’s a lot easier to add 
more processors in 
distributed parallelism.

But, you always have to 
be aware of the need to 
decompose the problem 
and to communicate 
between the 
processors.  

Also, as you add more 
processors, it may be 
harder to load balance
the amount of work 
that each processor 
gets.

Tim Conrad 28

Load Balancing

Load balancing means giving everyone roughly the same amount of 
work to do.

For example, if the jigsaw puzzle is half grass and half sky, then you 
can do the grass and Julie can do the sky, and then you all only have 
to communicate at the horizon – and the amount of work that each 
of you does on your own is roughly equal.  

So you’ll get pretty good speedup.
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Load Balancing

Load balancing can be easy, if the problem splits up 
into chunks of roughly equal size, with one chunk per 
processor.  Or load balancing can be very hard.

What do you load-balance?

Data-Parallel Approach

Partition the data among the processors

Each processor will execute the same set of commands

Control-Parallel Approach

Partition the tasks to be performed among the processors

Each processor will execute different commands

Hybrid Approach

Switch between the two approaches at different stages of the 
algorithm

Most parallel algorithms fall in this category

Tim Conrad 30
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Example: Data-parallel Load Balancing

1. You request a certain number of processors

2. You setup a communicator
Give a unique id to each processor – rank

3. Every processor executes the same program

4. Communication is needed to scatter/gather data

Inside the program
Query for the rank and use it decide what to do

Exchange messages between different processors using their ranks

In theory, you only need 3 functions: Isend, Irecv, wait

In practice, you can optimize communication depending on the 
underlying network topology – Message Passing Standards

E.g. Message Passing Interface (MPI, distributed computing) or 

Open Message Passing (OpenMP – shared memory)

Tim Conrad 31

Load Balancing: IPM‐I/O Trace

Tim Conrad 32

Application: I/O 
of “Microwave 
Anisotropy 
Data-set 
Computational 
Analysis
Package” 
(MADCAP)

See A. Useltony et al., “Parallel I/O Performance: From Events to Ensembles”

#
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End of Part I

Tim Conrad 33

LESSONS LEARNED

Changing Conventional Wisdom

Tim Conrad 34

Power

Was: Power is free, Transistors expensive

Now: “Power wall” Power is expensive,  (can put more on chip than 
can afford to turn on)

ILP

Was: Sufficiently increasing Instruction Level Parallelism via 
compilers, innovation (Out-of-order, speculation, VLIW, …)

Now: “ILP wall” law of diminishing returns on more HW for ILP

Memory

Was: Multiplies are slow, Memory access is fast

Now: “Memory wall” Memory slow, multiplies fast 
(200 clock cycles to DRAM memory, 4 clocks for multiply)
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Changing Conventional Wisdom

35

Consequence

Was: Uniprocessor performance doubles every 1.5 yrs

Now:

Power Wall + ILP Wall + Memory Wall = Brick Wall

Uniprocessor performance now doubles about every 5(?) yrs

Sea change in chip design: multiple “cores” (#cores per chip will double every 2 years)

Simpler and slower processors are more power efficient

Large clusters of heterogeneous multi/many-core chips emerge

Need to deal with systems with millions 
of concurrent threads

Need to deal with inter-chip parallelism 
as well as intra-chip parallelism

Different levels of parallelism
(How to map algorithm-levels to 
hardware levels?)

Example: Physics on GPU

Not Message Passing

Hybrid & many core 
technologies

will require new 
approaches:

Tim Conrad

after Don Grice, IBM, Roadrunner Presentation, ISC 2008

MPI?

Mesh Construction and Parallel Geometric Multi Grids
Part II

Tim Conrad 36

Graphic from J. Tannahill, LLNL
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Motivation

“Ironically, as numerical analysis is applied to larger and more complex 
problems, non-numerical issues play a larger role.  Mesh generation is an 
excellent example of this phenomenon.  Solving current problems in 
structural mechanics or fluid dynamics with finite difference of finite 
element methods depends on the construction of high-quality meshes of 
surfaces and volumes.  Geometric design and construction of these meshes 
are typically much more time-consuming than the simulations that are 
performed with them.”

John Guckenheimer, “Numerical Computation in the Information Age” 
in June 1998 issue of SIAM News.

Adaptivity

Tim Conrad 38

Regular grids: 
Low overhead, more elements

Unstructured grids: 
high overhead, fewer elements

Octrees: good compromise in between

Images: Wikipedia, http://www.siw.com/examples_files/PitOct.gif, http://www.bugman123.com/Engineering/Engineering.html
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Multi Grid Methods
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See e.g. “A Multi Grid Tutorial” by W. Briggs; https://computation.llnl.gov/casc/people/henson/mgtut/ps/mgtut.pdf
or http://www.fou.uib.no/fd/1996/h/413003/node47.html

or http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

Images from: http://www.mgnet.org/mgnet/tutorials/xwb/xwb.html

Multi grid methods are optimal order solution algorithms for equation systems 
stemming from the discretization of (elliptic) PDEs (e.g. Laplace eq., Poisson eq.). 
They require linear time, i.e. O(n) operations for n unknowns.

Structured Grids

Tim Conrad 40
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Structured Grids
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Solving the Omega Equation

Spherical polar grid

Problem size: 192x120x50 (1.152.000) on each processor

Stopping criterion: residual reduction of 10-8

Scalable?

OCTREES

Tim Conrad 42
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Linear Octree Data Structure

Tree data structure used to store hierarchical information
Binary-trees – 1D, Quad-trees – 2D,  Octrees – 3D

It’s sufficient to store the leaves: Linear Octrees

Leaves can serve as elements of a finite element mesh

Morton Ordering (pre-order traversal): A way to sort 
leaves 

Tim Conrad 43

Octrees and Space filling curves (SFC)

Tim Conrad 44



26/05/2010

23

Tim Conrad 45

Octrees and Space filling curves (SFC)

Easy Partitioning

Tim Conrad 46

Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html
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Partitioning
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Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

Linear Algebra on Octrees

Problem: Isotropic, variable coefficient, linear, elliptic 
operator operating on a scalar

5 “structured grid” MatVecs (single processor)

1M elements ~ 12s

5 “octree” MatVecs (single processor)

Uniform distribution 1M elements (740K nodes), ~ 18s

Gaussian distribution 1M elements (660K nodes), ~ 19s

Tim Conrad 48

Using the PETSc framework: a suite of data structures and routines for 
(parallel) solution of scientific applications modeled by partial differential 
equations. -> http://acts.nersc.gov/petsc/
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Dendro

Tim Conrad 49

A suite of parallel algorithms for the discretization and solution of 
partial differential equations that require discretization of second-order 
elliptic operators.

It supports trilinear finite element discretizations constructed using 
octrees. 

Dendro has modules for

bottom-up octree generation and 2:1 balancing, 

meshing, 

geometric multi grids. 

It supports the PETSc objects 'Mat' and 'Vec' and provides interfaces to 
PETSc's linear and non-linear solvers. 

PETSc is a suite of data structures and routines for (parallel) solution 
of scientific applications modeled by partial differential equations.

See also:
• R. Sampath, “Bottom-up construction and 2:1 Balance refinement of linear octrees in parallel”, 

Univ. of Pennsylvania, Tech. Report, MS-CIS-07-05, 2007
• R. Sampath, “Low-constant parallel algorithms for finite element simulations using linear octrees”, Supercomputing, November 2007

• M. Griebel, G. Zumbusch, Hash-Storage Techniques for Adaptive Multilevel Solvers and their Domain Decomposition Parallelization, 
Proceedings of Domain Decomposition Methods 10, 1998

• M. Griebel, G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on hashing, Proceedings of ParCo '97, 1998

Outline of approach

Key ideas:
Minimizing communication during meshing by ‘Block Partition’ 

Performance gain: ~4fold compared to similar approaches

New strategies for matvec operations by single tree traversal

Minimizing storage overhead by mesh compression
3fold by entropy encoding (Golomb-Rice)

Tim Conrad 50

Morton Partition Block Partition
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MULTIGRIDS WITH OCTREES

The Dendro Framework

Tim Conrad 51

Dendro Algorithm

Tim Conrad 52
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Dendro Benchmarks

Tim Conrad 53

~380s

(Tolerance: 10-10)

250.000 elements per CPU at finest grid

~140s

Transferring and Storing Data
Part III

Tim Conrad 54

An essential element 
of computational 
science is IT
infrastructure for 
managing the coming 
“data tsunami”.

(E.g. LHC, genomics, 
climate simulations,…)
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Challenge Data Intensive Computing

Our ability to sense, collect, generate and calculate on data is growing faster 

than our ability to access, manage and even “store” that data

Influences

• Sensing, acquisition, streaming 
applications

• Huge active data models

– Biological modeling (Blue Brain)

– Massive on line games

• Huge data sets

– Medical applications

– Astronomical applications

– Climate applications

• Archiving

– Preservation

– Access

– Legal requirements

• Systems technology

– Computing in memory
Source: David Turek, IBM

Tim Conrad 55

HOW DOES THAT AFFECT ME?

I/O in Computational Science

Tim Conrad 56
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I/O in Computational Science

Tim Conrad 57

I/O – Input (e.g. initialization) usually not critical since (relatively) small

Example modified from W. Frings / G. Sutmann

Your (parallel) file system.

Your application 
transferring a small file.

I/O in Computational Science

Tim Conrad 58

Scaling on large platforms might be become a problem (if serialized)

Many instances of your applications 
transferring small files…
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I/O in Computational Science

Tim Conrad 59

The effect can be dramatic and performance is degraded.

Your (parallel) file system.

I/O in Computational Science

Tim Conrad 60

Output is even MUCH worse 
since a lot larger.

E.g. Checkpointing

Millions of states in a trajectory: 
10s of MBs

Thousands of trajectories: 
100s of GBs

Lots of data written all at once, e.g. 
BlueGene with 512 compute nodes 
each having 60MB/s bandwidth:

512MB/s * 60MB/s = 30GB/s

Again: your (parallel) file system.
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Creating files in parallel in the same directory

Tim Conrad 61

Problem: Contention at the FS meta data server. (Amdahl…)
(Similar results for other parallel FSs.)

W. Frings et al., “SIONlib: Scalable parallel I/O for task-local files”

Parallel I/O

Tim Conrad 62

W. Frings et al., “SIONlib: Scalable parallel I/O for task-local files”

vs.

HDF5 / pNetCDF
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STORING USER DATA

I/O in Computational Science

Tim Conrad 63

The I/O Software Stack

Tim Conrad 64

Structured data storage

Multidimensional, 

hierarchical,

typed datasets

Metadata is 

placed in the file 

itself

Simplifying data 

movement, 

archiving, …
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65

HDF5 and PnetCDF performance comparison

Tim Conrad 65

0
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M
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Number of Processors

Flash I/O Benchmark (Checkpoint files)

PnetCDF HDF5 collective(1.0.1) (1.6.5)

Flash: Parallel, adaptive-
mesh simulation code 

(mainly astro-physics)

Benchmark by C. Chilan et 
al.: “Parallel I/O 
Performance Study and 
Optimizations with HDF5, A 
Scientific Data Package”

# Processors

Need for Large Chunks

Using powerpointMatheon to create Matheon talks 66

Parallel file systems and APIs on top of them are not DBs – they need large 
transfers, at least 64kB.

Image by H. Shan; https://secure.nersc.gov/projects/presentations/Shan_CUG07.pdf
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DISTRIBUTED HASH-TABLES

What if I don’t have a parallel file system? 
How to take the load off of the file system?

What if I DO have many small I/O operations?

Tim Conrad 67

Octrees and Space filling curves (SFC)

Tim Conrad 68

Each data point has unique “address”
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Hash Table
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Image: Wikipedia

NOSQL System Overview

Tim Conrad 70

Source: http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape.html

Image: http://nosql.mypopescu.com/post/287581423/the-new-dimension-of-nosql-scalability-complexity

SQL based DBs (MSSQL, mySQL, Oracle, …)

Basic idea: put it onto light-weight database-like servers
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SQL-based Systems are too “Heavy”

Tim Conrad 71

http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf

NOSQL Can Handle 1000s of Requests a Second

Tim Conrad 72

http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

Example: put(KEY,VALUE) - e.g.: put(3,[2.991,9.8833,-1.99999])

Key can be e.g. position on space filling curve
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Can Handle 1000s of Concurrent Clients

Tim Conrad 73

Value size: 
1024 bytes

http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

Scaling up horizontally

Tim Conrad 74

Cooper et al.: “Benchmarking Cloud Serving Systems with YCSB”

Client
put(3,[2.991,9.8833,-1.99999])

Client
Put(7,[2.1,1.3,-3.7])

Automatic sync
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Possible Workflow

Tim Conrad 75

(1) Create 
Checkpoint 
File 1..n 
or Result

Each insert is atomic and creates new version for each unique hash-key, 
i.e. each GET operation returns full history (or selected snapshot)

Avr. Reads: 20.000 req/sec / Avr. Writes: 16.000 req/sec 

Write can also be performed by bulk import

Scales horizontally, i.e. 16 servers (e.g. 4 per quad-core system) can handle about 
320.000 reads/sec

100M SINGLE numbers (e.g. floats) can be read in ~300secs using 16 servers

If reading groups of e.g. 10 floats at once read time scales linearly

(2) Transform to 
Key/Value format(3) Bulk load to NOSQL DB

Summary
Last Part

Tim Conrad 76
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Summary

Tim Conrad 77

Part I: Introduction to HPC
We are hitting a brick wall 
(= clock/memory/ILP wall) –
new concepts for algorithmic design and their 
implementation are needed 

Communication is expensive

Part II: Illustrative Example 
Octrees can be an alternative data structure for 
meshing and multi grid methods (if done right)

Part III: Data Storage
We are producing more data than we can store

Parallel file systems are not the only answer

Need hierarchies / load-balancing even on file 
system level

Light-weight DB approaches can be an option

Thank you for your attention.

Tim Conrad

conrad@math.fu-berlin.de

Institut of Mathematics, Freie University Berlin & MATHEON
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Open Source Parallel Software

PETSc ( Linear and NonLinear Solvers )
http://www-unix.mcs.anl.gov/petsc/petsc-as/

ScaLAPACK ( Linear Algebra )
http://www.netlib.org/scalapack/scalapack_home.html

SPRNG ( Random Number Generator )
http://sprng.cs.fsu.edu/

Paraview ( Visualization )
http://www.paraview.org/HTML/Index.html

NAMD ( Molecular Dynamics )
http://www.ks.uiuc.edu/Research/namd/

CHARMM++ ( Parallel Objects )
http://charm.cs.uiuc.edu/research/charm/

Tim Conrad 79

Add more cache? Has been tried…

Latency via caches

Intel Itanium II has 
4 caches on-chip!

2 Level 1 caches:  
16 KB I and 16 KB D

Level 2 cache:  
256 KB

Level 3 cache: 
3072 KB

211M transistors
~85% for caches

Die size 421 mm2

130 Watts @ 1GHz

1% die to change data, 
99% to move, store 
data?

L1 

I$

L2 $

Bus

control

L3 Tag

L1 

D$

L3 $

Tim Conrad 80
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Intel Itanium Series

Tim Conrad 81

Source: Intel

• Itanium Montecito: 07/2006
• Itanium Montvale: 10/2007
• Itanium Tukwila: 02/2010

Caching Benefits Related to Amdahl’s Law

In the drawer & file cabinet analogy, assume a hit rate h in the drawer. 

Amdahl wins again…

Example from B. Pahami’s Book, “Computer Architecture”

Tim Conrad 82

Without the drawer, a document is accessed in 30 s. 

So, fetching 1000 documents, say, would take 30.000 s. 

The drawer causes a fraction h of the cases to be done 6 times as fast, with access 
time unchanged for the remaining 1 – h. 

Speedup is thus 1/(1 – h + h/6) = 6 / (6 – 5h). 

Improving the drawer access time can increase the speedup factor but as long as the 
miss rate remains at 1 – h, the speedup can never exceed 1 / (1 – h). 

Given h = 0.9, for instance, the speedup is 4, with the upper bound being 10 for an 
extremely short drawer access time.

Note: Some would place everything on their desktop, thinking that this yields even 
greater speedup. This strategy is not recommended!


