
26/05/2010

1

DFG Research Center MATHEON

Mathematics for key technologies

2010/05/14

HPC and Hierarchical Data Structures

IMAP Workshop
“Model and Data Hierarchies for

Simulating and Understanding Climate”
May 2010

Tim Conrad
Freie Universität Berlin & MATHEON

Virtual institute of the five leading
math institutes in Berlin

~12.5 Mio EUR
annual budget

60 projects in 7 areas

200 members
Mostly mathematicians

41 Professors

71 PhD Students

Tightly coupled to Berlin
Mathematical (Grad) School

>200 cooperation partners
Industry, other institutes, …

MATHEON

Tim Conrad 2

26/05/2010

2

Earth System Grid (ESG)

Tim Conrad 3

To support the infrastructural needs of the national and international climate
community, ESG is providing crucial technology to securely access, monitor,
catalog, transport, and distribute data in today’s Grid computing environment.

HPC
hardware running
climate models

ESG
Sites

ESG Portal

Slide by Bernholdt

Why High-Performance Computing?

Tim Conrad 4

Higher speed (solve problems faster).
Important when there are “hard” or “soft” deadlines; e.g., 24-
hour weather forecast

Higher throughput (solve more problems)
Important when there are many similar tasks to perform; e.g.,
transaction processing

Higher computational power (solve larger problems) e.g.,
weather forecast for a week rather than 24 hours, or with a finer
mesh for greater accuracy

26/05/2010

3

Climate research and High Performance Computing (HPC)

Tim Conrad 5

Part I:
Introduction to HPC

Part II:
Illustrative Example
Parallel Mesh Construction and Parallel
Geometric Multigrids

Part III:
Data Storage: Getting data in and out

Introduction to Parallel Computing
Part I

Tim Conrad 6

Less fish … More fish!

Parallelism means doing
multiple things at the same
time: you can get more work
done in the same time.

Example modified from
slides by Paul Gray

26/05/2010

4

THE JIGSAW PUZZLE
ANALOGY

But there are some issues…

Tim Conrad 7

Example modified from
slides by Paul Gray

Tim Conrad 8

Serial Computing

Can you do it in less time by thinking faster?

cpU

Suppose you want to do a jigsaw
puzzle that has, say, a thousand
pieces.

We can imagine that it’ll take you a
certain amount of time. Let’s say
that you can put the puzzle together
in an hour.

26/05/2010

5

Why Not Crank Up the Clock?

Tim Conrad 9

http://download.intel.com/technology/eep/fall_microprocessor_forum_2006.pdf

The Current Power Trend

Source: Intel Corp.

Tim Conrad 10

Core 2

26/05/2010

6

Obstacles, and Why You Don’t Have 10GHz Today

Tim Conrad 11

Source: http://www.gotw.ca/publications/concurrency-ddj.htm

Moore’s Law
still holds.

SHARE THE WORKLOAD.

So… not a good idea. What’s next?

Tim Conrad 12

26/05/2010

7

Tim Conrad 13

Shared Memory Parallelism

If Julie sits across the table from you,
then she can work on her half of the
puzzle and you can work on yours.

Once in a while, you’ll both reach into
the pile of pieces at the same time
(you’ll contend for the same resource),
which will cause a little bit of slowdown.

And from time to time you’ll have to
work together (communicate) at the
interface between her half and yours.
The speedup will be nearly 2-to-1: you
all might take 35 minutes instead of 30.

Tim Conrad 14

The More the Merrier?

Now let’s put Lloyd and Jerry on the
other two sides of the table.

Each of you can work on a part of
the puzzle, but there’ll be a lot more
contention for the shared resource
(the pile of puzzle pieces) and a lot
more communication at the
interfaces.

So you all will get noticeably less
than a 4-to-1 speedup, but you’ll still
have an improvement, maybe
something like 3-to-1:

The four of you can get it done in 20
minutes instead of an hour.

26/05/2010

8

Tim Conrad 15

Diminishing Returns

If we now put Dave and Paul and
Tom and Charlie on the corners of
the table, there’s going to be a
whole lot of contention for the
shared resource, and a lot of
communication at the many
interfaces.

So the speedup you all get will be
much less than we’d like; you’ll be
lucky to get 5-to-1.

So we can see that adding more
and more workers onto a shared
resource is eventually going to have
a diminishing return.

Challenge #1: Amdahl’s Law

P = fraction of the work
that can be
parallelized

1-P = remainder, which
cannot be
parallelized

N: Number of CPU cores

S =

The serial fraction of work limits the maximum speedup!

Image: Wikipedia

Tim Conrad 16

N.B.: Luckily, in many very large problems: P -> 1

26/05/2010

9

4 32 64 128 256 512 1024
0

200

400

600

800

1000

1200

Number of Cores

S
p
e
e
d
u
p

Fixed-size, Fixed-time and Memory-bounded Speedup of Multicore Architecture

FS, f = 0.4

FS, f = 0.8

FS, f = 0.98

FT, f = 0.4

FT, f = 0.8

FT, f = 0.98

MB, f = 0.4

MB, f = 0.8

MB, f = 0.98

Amdahl’s Law Revisited: Speed-up for Multi-core

Tim Conrad 17

This is why
super-

computer
exist!

Challenge #2: The Memory Wall

Tim Conrad 18

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

DRAM

CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

Time

“Moore’s Law”

~1980 ~2005

Communication in multi-core CPUs is done through memory.
But memory is not very fast – compared to the CPU.

26/05/2010

10

Communication by Shared-Memory

Programming Models and Compilers?
(-> handling shared resources)

Interconnection networks to
access main memory

Source: IBM

Source: Intel Corp.

Tim Conrad 19

Main Memory (RAM)

The Need for a Memory Hierarchy

Tim Conrad 20

The widening speed gap between
CPU and main memory

Processor operations take of the
order of 1 ns (~2clk @ 2GHz)

Memory access requires 10s or
even 100s of ns

Memory bandwidth/latency limits
the instruction execution rate

Each instruction executed involves
at least one memory access

Hence, a few to 100s of MIPS is the
best that can be achieved

A fast buffer memory can help
bridge the CPU-memory gap

The fastest memories are
expensive and thus not very large.

CPU
(+registers)

L1

L2

L3

Memory

10s KB

100s KB

MBs

GBs

(bus)

26/05/2010

11

Office Analogy

Once the “working set” (e.g.
program loop) is in the
drawer, very few trips to the
file cabinet are needed.

Example modified from B. Pahami’s Book, “Computer Architecture”

Tim Conrad 21

very close (“on chip”)different room (“off chip”)

CPU
Access
cabinet
(MAIN
MEMORY)
in minutes

Access storage
building
(HDD)
in weeks

SHARE THE WORKLOAD
ATTEMPT #2.

Sharing is a good idea. Sharing a limited resource (memory) is not.

Tim Conrad 22

26/05/2010

12

Tim Conrad 23

Distributed Parallelism

Now let’s try something a little different.

Let’s set up two tables, and let’s put you at one of them and Julie
at the other.

Let’s put half of the puzzle pieces on your table and the other half
of the pieces on Julie’s.

Now you all can work completely independently, without any
contention for a shared resource.

BUT, the cost of communicating is MUCH higher (you have to
scootch your tables together), and you need the ability to split up
(decompose) the puzzle pieces reasonably evenly, which may be
tricky to do for some puzzles.

MIMD Machines

P + C

Dir

Memory

P + C

Dir

Memory

P + C

Dir

Memory

P + C

Dir

Memory

Communication by Interconnection Network

Tim Conrad 24

Latency?
Bandwidth?

Parallel processing has catalyzed the development of a several
generations of parallel processing machines

Unique features include the interconnection network, support for
system wide synchronization, and programming languages/compilers

26/05/2010

13

Comparison of Switched Media

Type Latency Bandwidth Cost

Gigabit Ethernet ~1 msec 0.1 GigaByte/sec ~ 50USD / port

10 Gigabit Ethernet ~100 µsec 1.0 GigaByte/sec ~ 500USD / port

QDR InfiniBand ~1µsec 3.6 GigaByte/sec ~ 1000USD / port

Tim Conrad 25

For comparison: RAM bandwidth is about 4GB/s (DDR4) - 28GB/s (XDR); latency ~0.02µs

Notes about TCP/IP (window based):

Protocol settings can greatly affect actual throughput! (e.g. only using some %)

At 10 Gbps network speed, new packets arrive faster than current standard systems can process a packet. This
increases the likelihood of dropped packets and defeats the value of providing greater bandwidth to a server

For more, see tutorial at: http://psc.edu/networking/projects/tcptune/

Mellanox 36-port
InfiniBand switch

Four IBM Power 3 nodes

(16 processor)

with Colony switch

Even today’s machines are interconnect topology sensitive

Tim Conrad 26

Interconnect Topology BG/L

26/05/2010

14

Tim Conrad 27

More Distributed Processors

It’s a lot easier to add
more processors in
distributed parallelism.

But, you always have to
be aware of the need to
decompose the problem
and to communicate
between the
processors.

Also, as you add more
processors, it may be
harder to load balance
the amount of work
that each processor
gets.

Tim Conrad 28

Load Balancing

Load balancing means giving everyone roughly the same amount of
work to do.

For example, if the jigsaw puzzle is half grass and half sky, then you
can do the grass and Julie can do the sky, and then you all only have
to communicate at the horizon – and the amount of work that each
of you does on your own is roughly equal.

So you’ll get pretty good speedup.

26/05/2010

15

Tim Conrad 29

Load Balancing

Load balancing can be easy, if the problem splits up
into chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

What do you load-balance?

Data-Parallel Approach

Partition the data among the processors

Each processor will execute the same set of commands

Control-Parallel Approach

Partition the tasks to be performed among the processors

Each processor will execute different commands

Hybrid Approach

Switch between the two approaches at different stages of the
algorithm

Most parallel algorithms fall in this category

Tim Conrad 30

26/05/2010

16

Example: Data-parallel Load Balancing

1. You request a certain number of processors

2. You setup a communicator
Give a unique id to each processor – rank

3. Every processor executes the same program

4. Communication is needed to scatter/gather data

Inside the program
Query for the rank and use it decide what to do

Exchange messages between different processors using their ranks

In theory, you only need 3 functions: Isend, Irecv, wait

In practice, you can optimize communication depending on the
underlying network topology – Message Passing Standards

E.g. Message Passing Interface (MPI, distributed computing) or

Open Message Passing (OpenMP – shared memory)

Tim Conrad 31

Load Balancing: IPM‐I/O Trace

Tim Conrad 32

Application: I/O
of “Microwave
Anisotropy
Data-set
Computational
Analysis
Package”
(MADCAP)

See A. Useltony et al., “Parallel I/O Performance: From Events to Ensembles”

#

26/05/2010

17

End of Part I

Tim Conrad 33

LESSONS LEARNED

Changing Conventional Wisdom

Tim Conrad 34

Power

Was: Power is free, Transistors expensive

Now: “Power wall” Power is expensive, (can put more on chip than
can afford to turn on)

ILP

Was: Sufficiently increasing Instruction Level Parallelism via
compilers, innovation (Out-of-order, speculation, VLIW, …)

Now: “ILP wall” law of diminishing returns on more HW for ILP

Memory

Was: Multiplies are slow, Memory access is fast

Now: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

26/05/2010

18

Changing Conventional Wisdom

35

Consequence

Was: Uniprocessor performance doubles every 1.5 yrs

Now:

Power Wall + ILP Wall + Memory Wall = Brick Wall

Uniprocessor performance now doubles about every 5(?) yrs

Sea change in chip design: multiple “cores” (#cores per chip will double every 2 years)

Simpler and slower processors are more power efficient

Large clusters of heterogeneous multi/many-core chips emerge

Need to deal with systems with millions
of concurrent threads

Need to deal with inter-chip parallelism
as well as intra-chip parallelism

Different levels of parallelism
(How to map algorithm-levels to
hardware levels?)

Example: Physics on GPU

Not Message Passing

Hybrid & many core
technologies

will require new
approaches:

Tim Conrad

after Don Grice, IBM, Roadrunner Presentation, ISC 2008

MPI?

Mesh Construction and Parallel Geometric Multi Grids
Part II

Tim Conrad 36

Graphic from J. Tannahill, LLNL

26/05/2010

19

Tim Conrad

Motivation

“Ironically, as numerical analysis is applied to larger and more complex
problems, non-numerical issues play a larger role. Mesh generation is an
excellent example of this phenomenon. Solving current problems in
structural mechanics or fluid dynamics with finite difference of finite
element methods depends on the construction of high-quality meshes of
surfaces and volumes. Geometric design and construction of these meshes
are typically much more time-consuming than the simulations that are
performed with them.”

John Guckenheimer, “Numerical Computation in the Information Age”
in June 1998 issue of SIAM News.

Adaptivity

Tim Conrad 38

Regular grids:
Low overhead, more elements

Unstructured grids:
high overhead, fewer elements

Octrees: good compromise in between

Images: Wikipedia, http://www.siw.com/examples_files/PitOct.gif, http://www.bugman123.com/Engineering/Engineering.html

26/05/2010

20

Multi Grid Methods

Tim Conrad 39

See e.g. “A Multi Grid Tutorial” by W. Briggs; https://computation.llnl.gov/casc/people/henson/mgtut/ps/mgtut.pdf
or http://www.fou.uib.no/fd/1996/h/413003/node47.html

or http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

Images from: http://www.mgnet.org/mgnet/tutorials/xwb/xwb.html

Multi grid methods are optimal order solution algorithms for equation systems
stemming from the discretization of (elliptic) PDEs (e.g. Laplace eq., Poisson eq.).
They require linear time, i.e. O(n) operations for n unknowns.

Structured Grids

Tim Conrad 40

26/05/2010

21

Structured Grids

Tim Conrad 41

Solving the Omega Equation

Spherical polar grid

Problem size: 192x120x50 (1.152.000) on each processor

Stopping criterion: residual reduction of 10-8

Scalable?

OCTREES

Tim Conrad 42

26/05/2010

22

Linear Octree Data Structure

Tree data structure used to store hierarchical information
Binary-trees – 1D, Quad-trees – 2D, Octrees – 3D

It’s sufficient to store the leaves: Linear Octrees

Leaves can serve as elements of a finite element mesh

Morton Ordering (pre-order traversal): A way to sort
leaves

Tim Conrad 43

Octrees and Space filling curves (SFC)

Tim Conrad 44

26/05/2010

23

Tim Conrad 45

Octrees and Space filling curves (SFC)

Easy Partitioning

Tim Conrad 46

Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

26/05/2010

24

Partitioning

Tim Conrad 47

Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

Linear Algebra on Octrees

Problem: Isotropic, variable coefficient, linear, elliptic
operator operating on a scalar

5 “structured grid” MatVecs (single processor)

1M elements ~ 12s

5 “octree” MatVecs (single processor)

Uniform distribution 1M elements (740K nodes), ~ 18s

Gaussian distribution 1M elements (660K nodes), ~ 19s

Tim Conrad 48

Using the PETSc framework: a suite of data structures and routines for
(parallel) solution of scientific applications modeled by partial differential
equations. -> http://acts.nersc.gov/petsc/

26/05/2010

25

Dendro

Tim Conrad 49

A suite of parallel algorithms for the discretization and solution of
partial differential equations that require discretization of second-order
elliptic operators.

It supports trilinear finite element discretizations constructed using
octrees.

Dendro has modules for

bottom-up octree generation and 2:1 balancing,

meshing,

geometric multi grids.

It supports the PETSc objects 'Mat' and 'Vec' and provides interfaces to
PETSc's linear and non-linear solvers.

PETSc is a suite of data structures and routines for (parallel) solution
of scientific applications modeled by partial differential equations.

See also:
• R. Sampath, “Bottom-up construction and 2:1 Balance refinement of linear octrees in parallel”,

Univ. of Pennsylvania, Tech. Report, MS-CIS-07-05, 2007
• R. Sampath, “Low-constant parallel algorithms for finite element simulations using linear octrees”, Supercomputing, November 2007

• M. Griebel, G. Zumbusch, Hash-Storage Techniques for Adaptive Multilevel Solvers and their Domain Decomposition Parallelization,
Proceedings of Domain Decomposition Methods 10, 1998

• M. Griebel, G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on hashing, Proceedings of ParCo '97, 1998

Outline of approach

Key ideas:
Minimizing communication during meshing by ‘Block Partition’

Performance gain: ~4fold compared to similar approaches

New strategies for matvec operations by single tree traversal

Minimizing storage overhead by mesh compression
3fold by entropy encoding (Golomb-Rice)

Tim Conrad 50

Morton Partition Block Partition

26/05/2010

26

MULTIGRIDS WITH OCTREES

The Dendro Framework

Tim Conrad 51

Dendro Algorithm

Tim Conrad 52

26/05/2010

27

Dendro Benchmarks

Tim Conrad 53

~380s

(Tolerance: 10-10)

250.000 elements per CPU at finest grid

~140s

Transferring and Storing Data
Part III

Tim Conrad 54

An essential element
of computational
science is IT
infrastructure for
managing the coming
“data tsunami”.

(E.g. LHC, genomics,
climate simulations,…)

26/05/2010

28

Challenge Data Intensive Computing

Our ability to sense, collect, generate and calculate on data is growing faster

than our ability to access, manage and even “store” that data

Influences

• Sensing, acquisition, streaming
applications

• Huge active data models

– Biological modeling (Blue Brain)

– Massive on line games

• Huge data sets

– Medical applications

– Astronomical applications

– Climate applications

• Archiving

– Preservation

– Access

– Legal requirements

• Systems technology

– Computing in memory
Source: David Turek, IBM

Tim Conrad 55

HOW DOES THAT AFFECT ME?

I/O in Computational Science

Tim Conrad 56

26/05/2010

29

I/O in Computational Science

Tim Conrad 57

I/O – Input (e.g. initialization) usually not critical since (relatively) small

Example modified from W. Frings / G. Sutmann

Your (parallel) file system.

Your application
transferring a small file.

I/O in Computational Science

Tim Conrad 58

Scaling on large platforms might be become a problem (if serialized)

Many instances of your applications
transferring small files…

26/05/2010

30

I/O in Computational Science

Tim Conrad 59

The effect can be dramatic and performance is degraded.

Your (parallel) file system.

I/O in Computational Science

Tim Conrad 60

Output is even MUCH worse
since a lot larger.

E.g. Checkpointing

Millions of states in a trajectory:
10s of MBs

Thousands of trajectories:
100s of GBs

Lots of data written all at once, e.g.
BlueGene with 512 compute nodes
each having 60MB/s bandwidth:

512MB/s * 60MB/s = 30GB/s

Again: your (parallel) file system.

26/05/2010

31

Creating files in parallel in the same directory

Tim Conrad 61

Problem: Contention at the FS meta data server. (Amdahl…)
(Similar results for other parallel FSs.)

W. Frings et al., “SIONlib: Scalable parallel I/O for task-local files”

Parallel I/O

Tim Conrad 62

W. Frings et al., “SIONlib: Scalable parallel I/O for task-local files”

vs.

HDF5 / pNetCDF

26/05/2010

32

STORING USER DATA

I/O in Computational Science

Tim Conrad 63

The I/O Software Stack

Tim Conrad 64

Structured data storage

Multidimensional,

hierarchical,

typed datasets

Metadata is

placed in the file

itself

Simplifying data

movement,

archiving, …

26/05/2010

33

65

HDF5 and PnetCDF performance comparison

Tim Conrad 65

0

500

1000

1500

2000

2500

10 110 210 310

M
B

/s

Number of Processors

Flash I/O Benchmark (Checkpoint files)

PnetCDF HDF5 collective(1.0.1) (1.6.5)

Flash: Parallel, adaptive-
mesh simulation code

(mainly astro-physics)

Benchmark by C. Chilan et
al.: “Parallel I/O
Performance Study and
Optimizations with HDF5, A
Scientific Data Package”

Processors

Need for Large Chunks

Using powerpointMatheon to create Matheon talks 66

Parallel file systems and APIs on top of them are not DBs – they need large
transfers, at least 64kB.

Image by H. Shan; https://secure.nersc.gov/projects/presentations/Shan_CUG07.pdf

26/05/2010

34

DISTRIBUTED HASH-TABLES

What if I don’t have a parallel file system?
How to take the load off of the file system?

What if I DO have many small I/O operations?

Tim Conrad 67

Octrees and Space filling curves (SFC)

Tim Conrad 68

Each data point has unique “address”

26/05/2010

35

Hash Table

Tim Conrad 69

Image: Wikipedia

NOSQL System Overview

Tim Conrad 70

Source: http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape.html

Image: http://nosql.mypopescu.com/post/287581423/the-new-dimension-of-nosql-scalability-complexity

SQL based DBs (MSSQL, mySQL, Oracle, …)

Basic idea: put it onto light-weight database-like servers

26/05/2010

36

SQL-based Systems are too “Heavy”

Tim Conrad 71

http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf

NOSQL Can Handle 1000s of Requests a Second

Tim Conrad 72

http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

Example: put(KEY,VALUE) - e.g.: put(3,[2.991,9.8833,-1.99999])

Key can be e.g. position on space filling curve

26/05/2010

37

Can Handle 1000s of Concurrent Clients

Tim Conrad 73

Value size:
1024 bytes

http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

Scaling up horizontally

Tim Conrad 74

Cooper et al.: “Benchmarking Cloud Serving Systems with YCSB”

Client
put(3,[2.991,9.8833,-1.99999])

Client
Put(7,[2.1,1.3,-3.7])

Automatic sync

26/05/2010

38

Possible Workflow

Tim Conrad 75

(1) Create
Checkpoint
File 1..n
or Result

Each insert is atomic and creates new version for each unique hash-key,
i.e. each GET operation returns full history (or selected snapshot)

Avr. Reads: 20.000 req/sec / Avr. Writes: 16.000 req/sec

Write can also be performed by bulk import

Scales horizontally, i.e. 16 servers (e.g. 4 per quad-core system) can handle about
320.000 reads/sec

100M SINGLE numbers (e.g. floats) can be read in ~300secs using 16 servers

If reading groups of e.g. 10 floats at once read time scales linearly

(2) Transform to
Key/Value format(3) Bulk load to NOSQL DB

Summary
Last Part

Tim Conrad 76

26/05/2010

39

Summary

Tim Conrad 77

Part I: Introduction to HPC
We are hitting a brick wall
(= clock/memory/ILP wall) –
new concepts for algorithmic design and their
implementation are needed

Communication is expensive

Part II: Illustrative Example
Octrees can be an alternative data structure for
meshing and multi grid methods (if done right)

Part III: Data Storage
We are producing more data than we can store

Parallel file systems are not the only answer

Need hierarchies / load-balancing even on file
system level

Light-weight DB approaches can be an option

Thank you for your attention.

Tim Conrad

conrad@math.fu-berlin.de

Institut of Mathematics, Freie University Berlin & MATHEON

Tim Conrad 78

26/05/2010

40

Open Source Parallel Software

PETSc (Linear and NonLinear Solvers)
http://www-unix.mcs.anl.gov/petsc/petsc-as/

ScaLAPACK (Linear Algebra)
http://www.netlib.org/scalapack/scalapack_home.html

SPRNG (Random Number Generator)
http://sprng.cs.fsu.edu/

Paraview (Visualization)
http://www.paraview.org/HTML/Index.html

NAMD (Molecular Dynamics)
http://www.ks.uiuc.edu/Research/namd/

CHARMM++ (Parallel Objects)
http://charm.cs.uiuc.edu/research/charm/

Tim Conrad 79

Add more cache? Has been tried…

Latency via caches

Intel Itanium II has
4 caches on-chip!

2 Level 1 caches:
16 KB I and 16 KB D

Level 2 cache:
256 KB

Level 3 cache:
3072 KB

211M transistors
~85% for caches

Die size 421 mm2

130 Watts @ 1GHz

1% die to change data,
99% to move, store
data?

L1

I$

L2 $

Bus

control

L3 Tag

L1

D$

L3 $

Tim Conrad 80

26/05/2010

41

Intel Itanium Series

Tim Conrad 81

Source: Intel

• Itanium Montecito: 07/2006
• Itanium Montvale: 10/2007
• Itanium Tukwila: 02/2010

Caching Benefits Related to Amdahl’s Law

In the drawer & file cabinet analogy, assume a hit rate h in the drawer.

Amdahl wins again…

Example from B. Pahami’s Book, “Computer Architecture”

Tim Conrad 82

Without the drawer, a document is accessed in 30 s.

So, fetching 1000 documents, say, would take 30.000 s.

The drawer causes a fraction h of the cases to be done 6 times as fast, with access
time unchanged for the remaining 1 – h.

Speedup is thus 1/(1 – h + h/6) = 6 / (6 – 5h).

Improving the drawer access time can increase the speedup factor but as long as the
miss rate remains at 1 – h, the speedup can never exceed 1 / (1 – h).

Given h = 0.9, for instance, the speedup is 4, with the upper bound being 10 for an
extremely short drawer access time.

Note: Some would place everything on their desktop, thinking that this yields even
greater speedup. This strategy is not recommended!

