HPC and Hierarchical Data Structures

IMAP Workshop
“Model and Data Hierarchies for
Simulating and Understanding Climate”

May 2010

Tim Conrad
Freie Universitdt Berlin & MATHEON

DFG Research Center MATHEON
Mathematics for key technologies

Freie Universit:

2010/05/14

MATHEON

- = Virtual institute of the five leading
Lo R math institutes in Berlin

o
ST

(SYUNT;

('.’ag

 RrinrE

»~12.5 Mio EUR
annual budget

> 60 projects in 7 areas

» 200 members
> Mostly mathematicians
> 41 Professors
> 71 PhD Students
v Tightly coupled to Berfin
Mathematical (Grad) School

- >200 cooperation partners
= Industry, other institutes, ...

B

Tim Conrad

26/05/2010

5 Earth System Grid (ESG)

To support the infrastructural needs of the national and international climate
community, ESG is providing crucial technology to securely access, monitor,
catalog, transport, and distribute data in today’s Grid computing environment.

HPC
hardware running
climate models

Slide by Bernholdt

Tim Conrad

5> Why High-Performance Computing?

» Higher speed (solve problems faster).
Important when there are “hard” or “soft” deadlines; e.g., 24-
hour weather forecast

» Higher throughput (solve more problems)
Important when there are many similar tasks to perform; e.g.,
transaction processing

> Higher computational power (solve larger problems) e.g.,
weather forecast for a week rather than 24 hours, or with a finer
mesh for greater accuracy

Tim Conrad 4

26/05/2010

% Climate research and High Performance Computing (HPC)

e~ PartI:
Introduction to HPC

> Part II:
Illustrative Example
Parallel Mesh Construction and Parallel
Geometric Multigrids

= Part III:
Data Storage: Getting data in and out

Tim Conrad 5

' Parallelism means doing _ G _&>
multiple things at the same [&J [&J
time: you can get more work = =
done in the same time. W [&J

< W &)

&)

&)

Less fish ... More fish! *fied'sy o cray|

Introduction to Parallel Computing

Part I

Tim Conrad 6

26/05/2010

i

But there are some issues...

THE JIGSAW PUZZLE
ANALOGY

Example modified from
slides by Paul Gray

Tim Conrad 7

Serial Computing

i

» Suppose you want to do a jigsaw
puzzle that has, say, a thousand
pieces.

> We can imagine that it'll take you a
certain amount of time. Let's say
that you can put the puzzle together
in an hour.

Can you do it in less time by thinking faster?

Tim Conrad 8

26/05/2010

Why Not Crank Up the Clock?

Processor Architecture 101

Delivered Performance =
Frequency * Instructions Per Cycle (IPC)

Frequency is proportional to voltage,
so frequency reduction coupled with
voltage reduction results in cubic
reduction in power.

http://download.intel.com/technology/eep/fall_microprocessor_forum_2006.pdf

9

Tim Conrad

The Current Power Trend

L

Power density

10000
1000
100
haot plate
10
nhiclear
reactor

Pentiung i
186 i
]

i

| 8008 BO8S - . .
1970 1980 1990 2000 2010

Source: Intel Corp.

Tim Conrad

10

26/05/2010

J5> Obstacles, and Why You Don't Have 10GHz Today

26/05/2010

10,000,000
Dual-Core Itaniurm 2 o / Moore’s Law
1,000,000
= .
Intel CPU Trends : still holds.
(sources: Intel, Wikipedia, K. Olukotun)
100,000
10,000
ik
1,000
\
ETD> }
L)]
I
100 = :
i
1
|
an i
/ ’I
10 A 1
/ .e a /
- /
LY N0 il
. + + -~ -t @ Transistors (000) — -
! './. / ® ®ock Speed (MHz) - =~ ---=~""
PR APower (W)
@ Perf/Clock (ILP)
0)
1970 1975 1980 1885 1980 1985 2000 2005 2010
Source: http://www.gotw.ca/publications/concurrency-ddj.htm

Tim Conrad 11

i

So... not a good idea. What's next?

SHARE THE WORKLOAD.

Tim Conrad 12

5 Shared Memory Parallelism

Tim Conrad

i

Tim Conrad

& If Julie sits across the table from you,

then she can work on her half of the
puzzle and you can work on yours.

Once in a while, you'll both reach into
the pile of pieces at the same time
(you'll contend for the same resource),
which will cause a little bit of slowdown.

> And from time to time you’ll have to

work together (communicate) at the
interface between her half and yours.
The speedup will be nearly 2-to-1: you
all might take 35 minutes instead of 30.

The More the Merrier?

= Now let’s put Lloyd and Jerry on the
other two sides of the table.

- Each of you can work on a part of
the puzzle, but there’ll be a lot more
contention for the shared resource
(the pile of puzzle pieces) and a lot
more communication at the
interfaces.

- So you all will get noticeably less
than a 4-to-1 speedup, but you’ll still
have an improvement, maybe
something like 3-to-1:

= The four of you can get it done in 20
minutes instead of an hour.

14

26/05/2010

26/05/2010

5 Diminishing Returns

- If we now put Dave and Paul and
Tom and Charlie on the corners of
the table, there’s going to be a
whole lot of contention for the
shared resource, and a lot of
communication at the many
interfaces.

> So the speedup you all get will be
much less than we’d like; you'll be
lucky to get 5-to-1.

> SO we can see that adding more
and more workers onto a shared
resource is eventually going to have
a diminishing return.

] ® o

Tim Conrad 15

Challenge #1: Amdahl’s Law

i

Amdall’s _aw
20.0C - — H H
LT -
18.00 L P = fraction of the work
Paralel Partian
L6.0C 50% —— that Can be
— 7% parallelized
14.0C — 90% B
95% A)
o L2 7 1-P = remainder, which
3 1000 £ | cannot be
a 1 -
LI / - parallelized
&0 N: Number of CPU cores
4,00
44—
R s 1
0.00 - 4 ; T (-P+E
- AE s R R d g goeE e
SR 3R BN oG
Nurrber o® Procassors

The serial fraction of work limits the maximum speedup!

N.B.: Luckily, in many very large problems: P -> 1 Image: Wikipedia

Tim Conrad 16

X Amdahl’s Law Revisited: Speed-up for Multi-core

Fixed-size, Fixed-time and Memory-bounded Speedup of Multicore Architecture
1200 F 7 T T T =
FS,f=04
—F—Fs,f=08
1000 | —+— FS,f=0.98 4
—— FT,f=04 P
FT,f=0.8 7 -
FT,f=098 / e
B0 T Mo e 1 This is why
—— MB,f=098 < super-
a 7 .
=] 7 7z
B eo0f = 7 i computer
Q. ~ - .
? 7 exist!
g c -
400 - // // =3
&///////
-~
200 - s -+ B
- <
] z) +* 4
A — s
43264 128 256 512 1024
Number of Cores
Tim Conrad 17

Challenge #2: The Memory Wall

Communication in multi-core CPUs is done through memory.
But memory is not very fast — compared to the CPU.
~ MWProc
1000 | -orommremremre e CPU go%/yr.
“Moore’s Law”
100 | - AT Processor-Memory
Performance Gap:
(grows 50% / year)
T T .
DRAM
p—=—s—" 7%Iyr.
DRAM
1
~1980 Time ~2005
Tim Conrad 18

26/05/2010

% Communication by Shared-Memory

Programming Models and Compilers?
(-> handling shared resources)

‘ Cel Broodband Engine Processor

Source: IBM

Source: Intel Corp.
Interconnection networks to
access main memory

Tim Conrad 19

% The Need for a Memory Hierarchy

The widening speed gap between
CPU and main memory

CPU

(+registers)

i Processor operations take of the
order of 1 ns (~2clk @ 2GHz)

1 Memory access requires 10s or
even 100s of ns

[
»

50 clk >

[
»

200-500 clk

Memory bandwidth/latency limits
the instruction execution rate

» Each instruction executed involves

at least one memory access L2 100s KB
» Hence, a few to 100s of MIPS is the

best that can be achieved L3

» A fast buffer memory can help
bridge the CPU-memory gap

) @
» The fastest memories are ® (bUS)
expensive and thus not very large.

MBs

Memory -

Tim Conrad 20

26/05/2010

10

5 Office Analogy
I Once the “working set” (e.g.
program loop) is in the
drawer, very few trips to the
I file cabinet are needed.
|
Access storage 1
building |
HDD
i(n we)eks Access i
cabinet
(MAIN |
MEMORY) | P
in minutes I
|
|
|
|
|
|
different room (“off chip”) ! very close (“on chip”)
Example modified from B. Pahami’s Book, “Computer Architecture”
Tim Conrad 21

i

Sharing is a good idea. Sharing a limited resource (memory) is not.

SHARE THE WORKLOAD
ATTEMPT #2.

Tim Conrad 22

26/05/2010

11

26/05/2010

5 Distributed Parallelism

> Now let’s try something a little different.

> Let's set up two tables, and let’s put you at one of them and Julie
at the other.

> Let's put half of the puzzle pieces on your table and the other half
of the pieces on Julie’s.

Now you all can work completely independently, without any
contention for a shared resource.

> BUT, the cost of communicating is MUCH higher (you have to
scootch your tables together), and you need the ability to split up
(decompose) the puzzle pieces reasonably evenly, which may be
tricky to do for some puzzles.

W

Tim Conrad 23

MIMD Machines

i

ﬁ ﬁ ST ST

Communication by Interconnection Network

Latency?
Bandwidth?

v Parallel processing has catalyzed the development of a several
generations of parallel processing machines

v Unique features include the interconnection network, support for
system wide synchronization, and programming languages/compilers

Tim Conrad 24

12

5 Comparison of Switched Media

Type Latency Bandwidth Cost

Gigabit Ethernet ~1 msec 0.1 GigaByte/sec | ~50USD / port
10 Gigabit Ethernet | ~100 usec | 1.0 GigaByte/sec |~ 500USD / port
QDR InfiniBand ~1usec 3.6 GigaByte/sec | ~ 1000USD / port

For comparison: RAM bandwidth is about 4GB/s (DDR4) - 28GB/s (XDR); latency ~0.02us

Notes about TCP/IP (window based):
Protocol settings can greatly affect actual throughput! (e.g. only using some %)

> At 10 Gbps network speed, new packets arrive faster than current standard systems can process a packet. This

Mellanox 36-port
InfiniBand switch

increases the likelihood of dropped packets and defeats the value of providing greater bandwidth to a server
For more, see tutorial at: http://psc.edu/networking/projects/tcptune/

Tim Conrad

Even today’s machines are interconnect topology sensitive

point to point latency (usec}

point to peint latency (usec)

26
24
22
20
18
16
14
12
10

6 0 10 20 30 4o

rank_i

60

50

40

rank_j

20

10

0

5% 60

Four IBM Power 3 nodes

(16 processor)
with Colony switch

Tim Conrad

Interconnect Topology BG/L

rank_j

26

26/05/2010

13

5 More Distributed Processors

> It's a lot easier to add
more processors in
distributed parallelism.

> But, you always have to
be aware of the need to
decompose the problem
and to communicate
between the
processors.

> Also, as you add more
processors, it may be
harder to load balance
the amount of work
that each processor
gets.

Tim Conrad 27

| crestock.germ

t- Load balancing means giving everyone roughly the same amount of
work to do.

» For example, if the jigsaw puzzle is half grass and half sky, then you
can do the grass and Julie can do the sky, and then you all only have
to communicate at the horizon — and the amount of work that each
of you does on your own is roughly equal.

- So you'll get pretty good speedup.

Tim Conrad 28

26/05/2010

14

I Load Balancing

Load balancing can be easy, if the problem SEIits up
into chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Tim Conrad 29

5> What do you load-balance?

Data-Parallel Approach
~ Partition the data among the processors
> Each processor will execute the same set of commands

Control-Parallel Approach
> Partition the tasks to be performed among the processors
> Each processor will execute different commands

Hybrid Approach

> Switch between the two approaches at different stages of the
algorithm

> Most parallel algorithms fall in this category

Tim Conrad 30

26/05/2010

15

26/05/2010

Example: Data-parallel Load Balancing

i

1. You request a certain number of processors

N

You setup a communicator
 Give a unique id to each processor — rank

3. Every processor executes the same program
4. Communication is needed to scatter/gather data

Inside the program
+ Query for the rank and use it decide what to do
= Exchange messages between different processors using their ranks
> In theory, you only need 3 functions: Isend, Irecv, wait

» In practice, you can optimize communication depending on the
underlying network topology — Message Passing Standards
= E.g. Message Passing Interface (MPI, distributed computing) or
» Open Message Passing (OpenMP — shared memory)

Tim Conrad 31

Application: 1/0
of “Microwave
Anisotropy
Data-set
Computational
Analysis
Package”
(MADCAP)

task #

wall clock time

See A. Useltony et al., “Parallel I/O Performance: From Events to Ensembles”

Tim Conrad 32

16

26/05/2010

End of Part I

LESSONS LEARNED

Tim Conrad 33

Changing Conventional Wisdom

Power
- Was: Power is free, Transistors expensive

» Now: “Power wall” Power is expensive, (can put more on chip than
can afford to turn on)

ILP

» Was: Sufficiently increasing Instruction Level Parallelism via
compilers, innovation (Out-of-order, speculation, VLIW, ...)

- Now: “ILP wall” law of diminishing returns on more HW for ILP

Memory
» Was: Multiplies are slow, Memory access is fast

t Now: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

Tim Conrad 34

17

26/05/2010

Changing Conventional Wisdom

Consequence

> Was: Uniprocessor performance doubles every 1.5 yrs
= Now:

» Power Wall + ILP Wall + Memory Wall = Brick Wall

= Uniprocessor performance now doubles about every 5(?) yrs

= Sea change in chip design: multiple “cores” (#cores per chip will double every 2 years)
» Simpler and slower processors are more power efficient
Large clusters of heterogeneous multi/many-core chips emerge

Example: Physics on GPU SR
cluster l!\.\ MPI?

Message Passing

v

- Need to deal with systems with millions
of concurrent threads

> Need to deal with inter-chip parallelism node
as well as intra-chip parallelism

> Different levels of parallelism

(How to map algorithm-levels to socket
hardware levels?)

Not Message Passing
Hybrid & many core

technologies
will require new
approaches:

after Don Grice, IBM, Roadrunner Presentation, ISC 2008

Tim Conrad

Graphic from J. Tannahill, LLNL

Mesh Construction and Parallel Geometric Multi Grids
Part II

18

5 Motivation

“Ironically, as numerical analysis is applied to larger and more complex
problems, non-numerical issues play a larger role. Mesh generation is an
excellent example of this phenomenon. Solving current problems in
structural mechanics or fluid dynamics with finite difference of finite
element methods depends on the construction of high-quality meshes of
surfaces and volumes. Geometric design and construction of these meshes
are typically much more time-consuming than the simulations that are
performed with them.”

= John Guckenheimer, “Numerical Computation in the Information Age”
in June 1998 issue of SIAM News.

Tim Conrad

5> Adaptivity

+

Regular Grid Octree Grid Unstructured Grid

> Regular grids:
Low overhead, more elements

> Unstructured grids:
high overhead, fewer elements

» Octrees: good compromise in between

Images: Wikipedia, http:/ iw. 5_files/PitOct.gif, http:, bugman123.c i ing/Engir ing.html

Tim Conrad 38

26/05/2010

19

Multi Grid Methods

3333

T

i
I /

iz

=

FRREAI

A

B

U”UT

P
Ing,
Ly |

|

Bty 13

They require linear time, i.e. O(n) operations for 7 unknowns.

Tim Conrad

Multi grid methods are optimal order solution algorithms for equation systems
stemming from the discretization of (elliptic) PDEs (e.g. Laplace eq., Poisson eq.).

Images from: http://www.mgnet.org/mgnet/tutorials/xwb/xwb.html

See e.g. “A Multi Grid Tutorial” by W. Briggs; https://computation.linl.gov/casc/people/henson/mgtut/ps/mgtut.pdf
or http://www.fou.uib.no/fd/1996/h/413003/node47.html
or http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

39

Structured Grids

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2010; 17:325-342
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla.699

Parallel geometric multigrid for global weather prediction

Sean Buckeridge* T and Robert Scheichl

Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.

SUMMARY

The subject of this work is an optimal and scalable parallel geometric multigrid solver for elliptic problems
on the sphere, crucial to casting and the data assimi n tools used at the U.K. Met office.
i ble choice for these
applications. The Met office uses|spherical polar prids although structured, have the drawback of
creating strong anisotropies near the poles. Moreover, a higher resolution in the radial direction introduces
further anisotropies, and so modifications to the standard multigrid relaxation and the coarsening procedures
are necessary to retain optimal efficiency. As the strength of anisotropy varies, we propose a non-uniform
strategy, coarsening the grid only in regions that are sufficiently isotropic. This is combined with line
relaxation in the radial direction. The success of non-uniform coarsening strategies has been demonstrated
with algebraic multigrid (AMG) methods. Without the large setup costs required by AMG, however,
we aim to surpass them with the geometric approach. We demonstrate the advantages of the method
with experiments on model problems, both sequentially and in parallel, and show robustness and optimal
efficiency of the method with constant convergence factors of less than 0.1. It substantially outperforms
lov_subspace methods with one-level preconditioners and the BoomerAMG implementation of AMG
on typical grid resolutions. The parailel implementation scales almost optimally on up to 256 processors,
s that a glohal solve of the quasi rophic omega-equation with a maximum horizontal resolution of
about 10km and 3 10? unknowns takes about 60's. Copyright € 2010 John Wiley & Sons, Lid.

Tim Conrad

40

26/05/2010

20

Structured Grids

v

Solving the Omega

v

Problem size: 192x
Stopping criterion:

vV

Tim Conrad

i

OCTREES

Tim Conrad

4 Satup time 20
o0
40 o o7 15 e
@ 5n Scalable? 2
s 20 2
£ B o
E 10 2 10 o
5
& 2 e L 0 " " mn
8 16 32 64 96 144 256 8 16 32 64 96 144
Number of Processors Number of Processors

Equation

Spherical polar grid

120x50 (1.152.000) on each processor
residual reduction of 108

256

42

26/05/2010

21

26/05/2010

I Linear Octree Data Structure

~ Tree data structure used to store hierarchical information
» Binary-trees — 1D, Quad-trees — 2D, Octrees — 3D

» It's sufficient to store the leaves: Linear Octrees
» Leaves can serve as elements of a finite element mesh

> Morton Ordering (pre-order traversal): A way to sort
leaves

0 100t
l m l m
| AN
T1 nl h i nl j k j k
- NN NN
§' a '‘nl f g] k] m f g f g hs hy
/J \4\ h -
13 boede o 4 a KL | ow
b|c h|c
Tim Conrad

Octrees and Space filling curves (SFC)

@roc® (Proc) (Proc?)

1:1 relation between octree and SFC — efficient encoding
Map a 1D curve into 2D or 3D space — total ordering
Recursive self-similar structure — scale-free

Tree leaf traversal — cache-friendly

vvyYyypy

Tim Conrad 44

22

Octrees and Space filling curves (SFC)

local information

» Find parent or children — vertical tree step V(1)
» Find on-processor neighbor — tree search O(log ,%}
» Find owner of off-processor neighbor — binary search O(log p)

Tim Conrad 45

L 2 < L - o . --
)| [
1 Fled &M aM
- 2 1 r
D Gy r e B & — o
&t &4 80 6 o L & 1 &
ot e kel 1 r . .
[X-5-N N o | &
(-l ot & 0 e =~ @ &
) ©d g r
& a9 &S | &
I r g S = —
& & 0066000 L5
4 ;‘1 p2 pd
Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html
Tim Conrad 46

26/05/2010

23

5 Partitioning

Images from: http://wissrech.ins.uni-bonn.de/research/projects/zumbusch/hash.html

Tim Conrad 47

5> Linear Algebra on Octrees

Problem: Isotropic, variable coefficient, linear, elliptic
operator operating on a scalar

5 “structured grid” MatVecs (single processor)
> 1M elements ~ 12s

5 “octree” MatVecs (single processor)
> Uniform distribution 1M elements (740K nodes), ~ 18s
> Gaussian distribution 1M elements (660K nodes), ~ 19s

» Using the PETSc framework: a suite of data structures and routines for
(parallel) solution of scientific applications modeled by partial differential
equations. -> http://acts.nersc.gov/petsc/

Tim Conrad 48

26/05/2010

24

26/05/2010

Dendro

i

> A suite of parallel algorithms for the discretization and solution of
partial differential equations that require discretization of second-order
elliptic operators.

> It supports trilinear finite element discretizations constructed using
octrees.

> Dendro has modules for
bottom-up octree generation and 2:1 balancing,
> meshing,
> geometric multi grids.

It supports the PETSc objects 'Mat' and 'Vec' and provides interfaces to
PETSc's linear and non-linear solvers.

> PETSc is a suite of data structures and routines for (parallel) solution
of scientific applications modeled by partial differential equations.

See also:
« R. Sampath, “Bottom-up construction and 2:1 Balance refinement of linear octrees in parallel”,
Univ. of Pennsylvania, Tech. Report, MS-CIS-07-05, 2007
« R. Sampath, “Low-constant parallel algorithms for finite element simulations using linear octrees”, Supercomputing, November 2007
« M. Griebel, G. Zumbusch, Hash-Storage Techniques for Adaptive Multilevel Solvers and their Domain Decomposition Parallelization,
Proceedings of Domain Decomposition Methods 10, 1998
« M. Griebel, G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on hashing, Proceedings of ParCo '97, 1998

W

Tim Conrad 49

i

Outline of approach

Key ideas:

» Minimizing communication during meshing by 'Block Partition’
» Performance gain: ~4fold compared to similar approaches

> New strategies for matvec operations by single tree traversal

> Minimizing storage overhead by mesh compression
» 3fold by entropy encoding (Golomb-Rice)

T n

Morton Partition Block Partition

Tim Conrad 50

25

The Dendro Framework

MULTIGRIDS WITH OCTREES

Dendro Algorithm

1. Given input points, construct and partition octree at the fine level.

2. Given the total number of levels, construct and partition the coarser octrees. ‘ ‘ ‘ ‘

) Level k-1

3. Mesh the octrees.

Figure 1: Quadtres mestes for three successive muligrid levels,

4. Construct restriction and prolongation operators.

Outline of the Dendro algorithms. The main algorithm in Dendro is the geometric multigrid solver. In Dendro, we use
a hierarchy of octrees (see Figure 1), which we construct as part of the geometric multigrid V-cycle algorithm. The V-cycle
algorithm consists of 6 main steps: (1) Pre-smoothing: wi, = Sk.(ux, fr, 4x); (2) Residual computation: ry = fi. — Aru;
(3) Restriction: rr—1 = Rgrg; (4) Recursion: eg_;=Multigrid(As_1, rg—1); (5) Prolongation: e; = Pyeg_q; and (6) Post-
smoothing: . = Sy.(ug, fr, Ax). When “k” reaches a minimum level, which we term the “ezact solve” level, we solve for

ej, exactly using a single level solver (e.g., a parallel sparse direct factorization method).

OCTREE FOREST CONSTRUCTION BoTTOM-UP COARSENING Tor-DOWN MESHING
1. Bottom-up construct fine 1. Me§h and partition coarse
grid
octree 1. Replace leafs with their .

sis : parent 2. Prolong partitioning to

2. Partition fine octree next grid
: 2. Balance and Morton-order
3. Balance fine octree partition 3. Check load balancing and
- repartition

4. Bottom-up coarsen octree 3. Repeat
5. Top-dovn meshing 4. Construct prolongation

operator

Table 1: Summary of main algorithmic components for the multigrid construction used in Dendro [19].

26/05/2010

26

26/05/2010

Dendro Benchmarks

250.000 elements per CPU at finest grid

1
seconds
240 ! 8 64 512 4006
~380s ‘ Coarsening 0.011 0.14 0.16 15.24 18.2
220
Balancing 0.32 0.72 1.34 42.39 89.8
200 =‘=| — -
* Meshing Kk x 2.8 4.60 10.92 52.55 | 124.62
180 H#* R-setup 0.28 0.28 0.55 0.55 0.61
*
480 » Extras-1 0.1 0.16 0.48 0 1.16
140 * LU 0.35 2.18 0.56 3.02 31.2
*
~ o
120 1405 . R[)Stl‘l(‘l-la.l]/ 1.7 2.14 3.47 3.11 7.34
— * Prolongation
100 -
b Scatter 0 0.048 0.68 0.60 9.02
FE Matvecs 17.32 182 26.63 23.68 56.04
Extras-2
Elements
Vertices
Meshes
o ”P
it 8 64 512 4096

Figure 3: The LEFT FIGURE shows isogranular scalability with a grain size of 0.25M (approz) elements per CPU (np) on the finest level.
The difference between the minimum and mazimum levels of the octants on the finest grid is 5. A V-cycle using § pre-smoothing steps and
4 post-smoothing steps per level was used as a preconditioner to CG. The damped Jacobi method with a damping factor of 0.857 was used
as the smoother at all multigrid levels. A relative tolerance of 10=10 in the 2-norm of the residual was used. 6 CG iterations were required
in each case, to solve the problem to the specified tolerance. The finest level octrees for the multiple CPU cases were generated using reqular
refinements from the finest octree for the single CPU case. SuperLU was used to solve the coarsest grid problem. This isogranular scalability
experiment was performed on NCSA's Intel 64 cluster. (Tolerance: 10-10)

An essential element
of computational
science is IT
infrastructure for
managing the coming
“data tsunami”.

(E.g. LHC, genomics,
climate simulations, ...)

©tostee.com

Transferring and Storing Data

Part III

Tim Conrad 54

27

@ Challenge Data Intensive Computing

Our ability to sense, collect, generate and calculate on data is growing faster
than our ability to access, manage and even “store” that data

Influences
» Sensing, acquisition, streaming
applications 100
» Huge active data models
— Biological modeling (Blue Brain) 10
— Massive on line games \
* Huge data sets
— Medical applications
— Astronomical applications
— Climate applications 0.01
* Archiving
— Preservation 0.001 T, %, % EY
- ACCGSS B Dollars/Mbyte A Dollars/MFLOP
- Legal requirements The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it
» Systems technology
— Computing in memory

&

A

Source: David Turek, IBM

Tim Conrad 55

i

I/0 in Computational Science

HOW DOES THAT AFFECT ME?

Tim Conrad 56

26/05/2010

28

I I/0 in Computational Science

I/0 - Input (e.g. initialization) usually not critical since (relatively) small

Your (parallel) file system.
Your application
transferring a small file.

(LT} i’ut (LR

Example modified from W. Frings / G. Sutmann

Tim Conrad 57

5> I/0 in Computational Science

Scaling on large platforms might be become a problem (if serialized)

Many instances of your applications

transferring small files... . and ...

Tim Conrad 58

26/05/2010

29

I I/0 in Computational Science

The effect can be dramatic and performance is degraded.

Your (parallel) file system.

Tim Conrad

5> I/0 in Computational Science

Output is even MUCH worse
since a lot larger.

> E.g. Checkpointing

= Millions of states in a trajectory:
10s of MBs

» Thousands of trajectories:
100s of GBs

> Lots of data written all at once, e.qg.
BlueGene with 512 compute nodes
each having 60MB/s bandwidth:

512MB/s * 60MB/s = 30GB/s

Again: your (parallel) file system.

Tim Conrad 60

26/05/2010

30

@ Creating files in parallel in the same directory

2000 . ——
> 33 minutes 20046

=g narallel create of task-local files |

£ 1000 > 3 minutes

= 5

E

F 1

L e 1823
17 32 40 55 182 2
0 — --

1K 2K 4K 8k 18K 32K 64K 128k 256K

Jugene, IBM Blue Gene/P, GPFS, filesystem /work using fopen () # of Files

Problem: Contention at the FS meta data server. (Amdahl...)
(Similar results for other parallel FSs.)

W. Frings et al., “SIONIib: Scalable parallel I/O for task-local files”

Tim Conrad 61

Parallel I/O

Application
Tasks

Logical
task-local
files

Physical
multifile

j:gg VS.

./dir/filg.0001

SIONIib

./dir/file.nnon
Parallel file system

1/0 type #tasks

Task-local 65536 1105 GB

SIONIib 65536 1105 GB

10x faster

Contention
bandwidth write read

SIONIIb (aligned) 54GB/s 51GB/s
MPI 1/ (not aligned) 28GB/s 3.0GB/s «— HDF5/ pNetCDF
JUGENE: 16k tasks, 16 files, 16.5 MB/task

W. Frings et al., “SIONIib: Scalable parallel I/O for task-local files”
62

Tim Conrad

26/05/2010

31

I/0 in Computational Science

STORING USER DATA

Tim Conrad 63

The I/O Software Stack

High-Level /O Library ‘ Application ‘

mane anblication abssractions

onto sto!rage abszractions ‘ﬁ: N J) f
and providos data portak lity. High Level IO Library organzes accesses from

= many processes,
HDEE, Parallel netCDF, ADIOS /O Middleware I F especiaily those using
1

collective IO

1/0 Forwarding | - MPLIC
bridzes between azp. /O Forwarding |
and provides aggregation Paraiiel Fiie System | maintains logical space

for uncoordinated 'O, and provides afficient

‘ access to data

[
tasls and storage system 1 ‘ Paralle| File System
18M ciod ‘

VO Hardware PYS, PenlS, GPIS, | ustre

Structured data storage

“P* (root)

- Multidimensional,
hierarchical,
typed datasets

- Metadata is
placed in the file
itself

- Simplifying data Raster image
movement,
archiving, ...

Raster image

Tim Conrad 64

26/05/2010

32

HDF5 and PnetCDF performance comparison

Flash /O Benchmark (Checkpointfiles)

—o— PnetCDF (1.0.1)—5- HDFS5 collective(1.6.5)|

Parallel Environment
Requirements

« MPI with MPI-IO
- MPICH ROMIO
MPI-IO

rallel file system

Ily configured NFS

Conrad

==

o)
=000

500 / .
N S

2500

2000

1500

Processors 10

110

4000

3500

3000 |

2000 |

MB/s

1500

1000

Using powerpointMatheon to create Matheon talks

Bassi, Write
—- Jaguar , Write

2500 == Bassi, Read
== Jaguar, Read

100 1000 10000
TransferSize (KB)

100000

1000000

210 310

Flash: Parallel, adaptive-
mesh simulation code
(mainly astro-physics)

Benchmark by C. Chilan et
al.: “Parallel I/O
Performance Study and
Optimizations with HDF5, A
Scientific Data Package”

Paralle] netCDF

Parallel }DFS

+ Contiguous or interleaved data layout:
* Sits on top of MPI-IO. transferring user

* One time header 1O gets all necessary info

* By maintaining a local copy of header. cach

access patterns directly to MPI fileview.
little overhead.

for direct access of each data array:

process can access any array identified by its
permanent ID at any time. without any
collective open/close operation of the object.
Saves a lot of inter-process communication.

* Tree-like file structure:
« Use dataspace and hyperslabs to define data

organization, map and transfer data between
memory and filespace, pack or unpack.

« Iterate through entire namespace to get the

header info to access each object:

+ Need collective open/close operation when

accessing each single object. and for file
write. the metadata need to be updated in a
synchronous way. So lots of communication
overhead

65

Need for Large Chunks

|HPC Speed

Parallel file systems and APIs on top of them are not DBs — they need large
transfers, at least 64kB.

Machine | Parallel Proc Inter- Peak 10 Max

Name File Arch con
System

nect BW Node BW
tolo

Jaguar Lustre Opteron SeaStar |18*2.3GB/s| 3.2GB/s

=42GB | (1.2GBIs)

Bassi GPFS Power5 | Federation | 6*1GB/s = 4.0GB/s

~6.0GB/s | (1.6GBIs)

Image by H. Shan; https://secure.nersc.gov/projects/presentations/Shan_CUG07.pdf

66

26/05/2010

33

i

What if I don't have a parallel file system?
How to take the load off of the file system?

What if I DO have many small I/O operations?

DISTRIBUTED HASH-TABLES

Tim Conrad

EmD) (D)

/f
1 FARR
/

» 1:1 relation between octree and SFC — efficient encoding
» Map a 1D curve into 2D or 3D space — total ordering

» Recursive self-similar structure — scale-free

» Tree leaf traversal — cache-friendly

Each data point has unique “address”

Tim Conrad 68

26/05/2010

34

26/05/2010

Hash Table

i

hash
keys function buckets
00
01 | 521-8976
John Smith
02 | 521-1234
03
Lisa Smith
13
Sandra Dee
 T—— 14 | 521-9655
15
Image: Wikipedia
Tim Conrad 69

NOSQL System Overview

Basic idea: put it onto light-weight database-like servers

Key-valuse siores

® Bigtakle clones

& Document
databases

Graph databases

Complexitls};

Image: http://nosql.mypopescu.com/post/287581423/the-new-dimension-of-nosql-scalability-complexity
Source: http://www.vineetgupta.com/2010/01/nosql-databases-part-1-landscape.html

Tim Conrad 70

35

26/05/2010

@ SQL-based Systems are too “Heavy”

« 50/50 Read/update

Workload A - Read latency Workload A - Update latency

70 80
=60 70
£
250 o
c 300
240 5
k] 40
B30 = /
; / / & [/
o
g20 S0
340 4 &

10
z 10 ﬁ : . :

0 T T 04
0 5000 10000 15000 0 5000 10000 15000
Throughput (ops/sec)

Throughput (opsfsec)

[——cassandra_—=—Hbase —+—Sherpa ——MysQL | [—+—Cassandra —B-Hbase —4—Sherpa ——MySQL |

Comment: Cassandra is optimized for writes, and achieves higher throughput and lower
latency. Sherpa and MySQL achieve roughly comparable performance, as both are
limited by MySQL'’s capabilities. HBase has good write latency, because of commits to
memory, and somewhat higher read latency, because of the need to reconstruct records.9

http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf

Tim Conrad 71

% NOSQL Can Handle 1000s of Requests a Second

Request Size TPS
25000
2000 |"“
B
g 15000
E =uo
4 -
E 10000 i
&
E
]
e 5z plird 2048 4096 Bs2 634
Reguest Size (in bytes)
& Example: put(KEY,VALUE) - e.g.: put(3,[2.991,9.8833,-1.99999])
- Key can be e.g. position on space filling curve
http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

Tim Conrad 72

36

L

Tim Conrad

‘

L

Tim Conrad

Can Handle 1000s of Concurrent Clients

|

-]
g BOCO
¥ ®no
2 B0 G0
E Value size:
£ 000 1024 bytes
000
Q
2000 6000 0000 14000 1BOOD 22000 26000 30000 M4000
4 £000 BODD 13000 18000 20000 24000 33000

Clients

http://project-voldemort.com/blog/2009/08/introducing-the-nio-socketserver-implementation/

3

Scaling up horizontally

Read latency during scale-up

@
S

@ =
s &
+

£

= N\

§5D \

E] 40

A

gzu /.\‘ -

=l

=

Number of servers

‘-O-Cassandra =il Hpase == Sherpa

put(3,[2.991,9.8833,-1.99999]) X
< Client

=
”/, L
Automatic sync

Put(7,02.1,1.3,-3.7]) Client
PR

Cooper et al.: "Benchmarking Cloud Serving Systems with YCSB”

74

26/05/2010

37

5 Possible Workflow

(2) Transform to
Key/Value format

(3) Bulk load to NOSQL DB

(1) Create
Checkpoint
— ; File 1..n
[map-Reduce] or Result

Extraction

JOBG Daa

Each insert is atomic and creates new version for each unique hash-key,
i.e. each GET operation returns full history (or selected snapshot)

» Avr. Reads: 20.000 reg/sec / Avr. Writes: 16.000 reg/sec
» Write can also be performed by bulk import

= Scales horizontally, i.e. 16 servers (e.g. 4 per quad-core system) can handle about
320.000 reads/sec

> 100M SINGLE numbers (e.g. floats) can be read in ~300secs using 16 servers
» If reading groups of e.g. 10 floats at once read time scales linearly

Tim Conrad 75

Summary

Last Part

26/05/2010

38

> Part I: Introduction to HPC

» We are hitting a brick wall
(= clock/memory/ILP wall) —
new concepts for algorithmic design and their
implementation are needed

= Communication is expensive

= Part II: Illustrative Example

» Octrees can be an alternative data structure for
meshing and multi grid methods (if done right)

» Part III: Data Storage
» We are producing more data than we can store
= Parallel file systems are not the only answer

Need hierarchies / load-balancing even on file
system level

- Light-weight DB approaches can be an option

Tim Conrad 77

i

Thank you for your attention.

Tim Conrad
conrad@math.fu-berlin.de

Institut of Mathematics, Freie University Berlin & MATHEON

Tim Conrad 78

26/05/2010

39

5 Open Source Parallel Software

PETSc (Linear and NonLinear Solvers)
- http://www-unix.mcs.anl.gov/petsc/petsc-as/

ScalLAPACK (Linear Algebra)
> http://www.netlib.org/scalapack/scalapack_home.html

SPRNG (Random Number Generator)
> http://sprng.cs.fsu.edu/

Paraview (Visualization)
>~ http://www.paraview.org/HTML/Index.html

NAMD (Molecular Dynamics)
> http://www.ks.uiuc.edu/Research/namd/

CHARMM++ (Parallel Objects)
» http://charm.cs.uiuc.edu/research/charm/

Tim Conrad

% Add more cache? Has been tried...

Latency via caches

Intel Itanium II has
4 caches on-chip!

» 2 Level 1 caches:
16 KBIand 16 KB D

> Level 2 cache:
256 KB

> Level 3 cache:
3072 KB

211M transistors
~85% for caches

Die size 421 mm?
130 Watts @ 1GHz

1% die to change data,
99% to move, store
data?

Tim Conrad

26/05/2010

40

26/05/2010

5 Intel Itanium Series

Montecito Arbiter

ﬁ System Interface

System Interface Controller

| Virile Requesls I
Castoul Requests

Low latency, high throughput single
Interface for two cores

System Interface

« Itanium Montecito: 07/2006
- Itanium Montvale: 10/2007
- Itanium Tukwila: 02/2010 ——>
Source: Intel

81

Tim Conrad

% Caching Benefits Related to Amdahl’s Law

In the drawer & file cabinet analogy, assume a hit rate /in the drawer.

Amdahl wins again...

» Without the drawer, a document is accessed in 30 s.
» So, fetching 1000 documents, say, would take 30.000 s.

> The drawer causes a fraction /4 of the cases to be done 6 times as fast, with access
time unchanged for the remaining 1 — A.

» Speedupis thus 1/(1 - A+ H/6) =6/ (6—5h).

- Improving the drawer access time can increase the speedup factor but as long as the
miss rate remains at 1 — 4, the speedup can never exceed 1 / (1 - A).

» Given A = 0.9, for instance, the speedup is 4, with the upper bound being 10 for an
extremely short drawer access time.

Note: Some would place everything on their desktop, thinking that this yields even
greater speedup. This strategy is not recommended!

Example from B. Pahami’s Book, “Computer Architecture”

Tim Conrad 82

41

