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• Observable function A(x)

• Given initial condition x, the expectation of A at time t is
E

t
x[A], with E

0
x[A] = A(x)

• Assume that an ensemble of initial conditions is distributed
according to a probability measure ρ, then, the average of A

at time t is given by

〈A〉t =

∫

E
t
x[A]dρ(x)
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• Add small perturbation

dx = [f(x) + b(x)η(t)]dt + σ(x)dWt

• Then, for the same initial condition x, the expectation of A at
time t will be different: Ê

t
x[A], with the average with respect

to ρ given by

ˆ〈A〉
t
=

∫

Ê
t
x[A]dρ(x)

• We denote the response of A as the difference between the
perturbed and unperturbed averages:

δt〈A〉 = ˆ〈A〉
t
− 〈A〉t =

∫

(

Ê
t
x[A] − E

t
x[A]

)

dρ(x)



Classical linear response

• If ρ is the invariant measure, and the forcing η(t) is small,
then the response can be linearized with respect to η(t) as
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Classical linear response

• If ρ is the invariant measure, and the forcing η(t) is small,
then the response can be linearized with respect to η(t) as

δt〈A〉 =

∫

t

0
R(t − τ)η(τ)dτ,

R(t) =

∫

A(x(t))∇ · (b(x)p(x)) dx,

where p(x) is the probability density of ρ

• One can also replace measure average by time average:

R(t) = − lim
r→∞

1

r

∫

r

0
A(x(t + s))[∇ · b + b∇ log p](x(s))ds



Quasi-Gaussian linear response

• Explicit approximation is needed for p

• When the Gaussian density with appropriate mean state and
covariance matrix is used, it is called the quasi-Gaussian
response

• Not too precise when p is not Gaussian
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Stochastic short-time linear response

• A different formula is available:

RSST (t) =

∫

E
[

∇A(x(t))Tt
xb(x)

]

dρ(x),

where T is the tangent map along a given realization of the
Wiener path

• Time average instead of measure average can be used

RSST (t) = lim
r→∞

1

r

∫

r

0
∇A(x(t + s))Tt

x(s)b(x(s))ds

• Does not require a density approximation, however, can be
numerically unstable for longer response times
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Stochastic Lorenz 96 model

Here we “stochasticize” the well-known Lorenz 96 model by adding
a stochastically driven term to the right-hand side:

dxk = [xk−1(xk+1 − xk−2) − xk + F ]dt + σk(x) · dWt

• Constant forcing F = 6

• Diagonal noise matrix: σkl (x) = σk(x)δkl

• Additive noise: σk (x) is set to 0 or 1
• Multiplicative noise: σk (x) = 0.2xk or 0.5xk

• Forcing and response: b(x) = I , η = const, A(x) = x,
δt〈x〉 = R(t)η

• SST-FDT, classical (with Gaussian p) FDT (qG-FDT), and
blended SST/qG (at 3 Lyapunov characteristic times) are
compared with the “ideal” directly measured response
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Diagnostics

• Relative errors between the predicted and “ideal” response,

Error =
‖R − Rideal‖

‖Rideal‖

• Correlation functions

Corr =
R · Rideal

‖R‖‖Rideal‖

• Direct comparison between the response operators
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systems

• For weakly Gaussian regimes the short-time linear response is
better (until numerical instability develops) than the
quasi-Gaussian response

• Simple cut-off blending (the same as in Abramov-Majda
papers for deterministic systems) successfully improves the
response beyond SST blow-up times

• Reference: R. Abramov, Improved linear response for

stochastically driven systems, submitted to Journal of
Nonlinear Science


