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Stochastic (Itd) differential equation

dx = f(x)dt + o(x)dW;

Observable function A(x)

Given initial condition x, the expectation of A at time t is
EL[A], with E2[A] = A(x)

Assume that an ensemble of initial conditions is distributed
according to a probability measure p, then, the average of A
at time t is given by

(A)e = / E£[Aldp(x)
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Response to external perturbation

e Add small perturbation

dx = [f(x) + b(x)n(t)]dt + o(x)dW;

e Then, for the same initial condition x, the expectation of A at
time t will be different: EZ[A], with the average with respect
to p given by

(A), = / B [Aldp(x)

e We denote the response of A as the difference between the
perturbed and unperturbed averages:

~

SelA) = (A) (A = [ (B21A) - E50A]) o)



Classical linear response

e If p is the invariant measure, and the forcing n(t) is small,
then the response can be linearized with respect to n(t) as
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R() = [ AK(O)Y - (b(x)p(0) dx.
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Classical linear response

e If p is the invariant measure, and the forcing n(t) is small,
then the response can be linearized with respect to n(t) as

et = [ R(e=ryn(r)ar
R() = [ AK(O)Y - (b(x)p(0) dx.

where p(x) is the probability density of p
e One can also replace measure average by time average:

r—oo

R(t) = — lim l/orA(x(Hs))[v-b+bV|ogp](x(s))ds



Quasi-Gaussian linear response

e Explicit approximation is needed for p

e When the Gaussian density with appropriate mean state and
covariance matrix is used, it is called the quasi-Gaussian
response

e Not too precise when p is not Gaussian
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Stochastic short-time linear response

e A different formula is available:
RssT(t) = / E [VA(x(t))Tib(x)] dp(x),

where T is the tangent map along a given realization of the
Wiener path

e Time average instead of measure average can be used

Resr () = fim - [ VAG(t + )T blx(s))ds

e Does not require a density approximation, however, can be
numerically unstable for longer response times
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Stochastic Lorenz 96 model

Here we “stochasticize” the well-known Lorenz 96 model by adding
a stochastically driven term to the right-hand side:

dxk = [xk—1(Xkt+1 — Xk—2) — Xk + F]dt + ok(x) - AW,

e Constant forcing F =6
e Diagonal noise matrix: o(x) = ox(x)dk
e Additive noise: ok(x) is set to 0 or 1
e Multiplicative noise: ok (x) = 0.2xx or 0.5x
e Forcing and response: b(x) = I, m = const, A(x) = x,
5:(x) = R(t)n
o SST-FDT, classical (with Gaussian p) FDT (qG-FDT), and
blended SST/qG (at 3 Lyapunov characteristic times) are
compared with the “ideal” directly measured response
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Diagnostics

o Relative errors between the predicted and “ideal” response,

Error = 7”R — Ridea|
||Ridear||
e Correlation functions
R Rjgeas
[|R[[[| Rigear |

e Direct comparison between the response operators
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Correlations for SL96 model, N=40, F=6, 0,=0




Response

SL96 model, N=40, F=6, 0,=0, response at T=5
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Correlations for SL96 model, N=40, F=6, 0,=1
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Errors for SL96 model, N=40, F=6, ,=0.2X,
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Correlation

Correlations for SL96 model, N=40, F=6, 0,=0.2X

I : I I I

s Reer —

1.2 : ST —
i 'SqG

Time



Response

SL96 model, N=40, F=6, 0,=0.2X,, response at T=5
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Errors for SL96 model, N=40, F=6, 5,=0.5X
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Correlations for SL96 model, N=40, F=6, 0,=0.5X
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SL96 model, N=40, F=6, 0,=0.5X,, response at T=5
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Summary

It is possible to use the short-time linear response algorithm
for the stochastic systems just as well as for deterministic
systems

For weakly Gaussian regimes the short-time linear response is
better (until numerical instability develops) than the
quasi-Gaussian response

Simple cut-off blending (the same as in Abramov-Majda
papers for deterministic systems) successfully improves the
response beyond SST blow-up times

Reference: R. Abramov, Improved linear response for
stochastically driven systems, submitted to Journal of
Nonlinear Science



