MJO AND CONVECTIVELY COUPLED WAVES IN A COARSE RESOLUTION GCM WITH A SIMPLE MULTI-CLOUD MODEL

University of Victoria

BOUALEM KHOUIDER (UNIVERSITY OF VICTORIA) ANDREW J. MAJDA (COURANT INSTITUTE) AMIK ST CYR & JOSEPH TRIBBIA (NCAR)

<u>Acknowledgment</u>: Natural Sciences and Engineering Research Council of Canada (NSERC) and The Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)

OUTLINE

Introduction: Organized tropical convection Detour: the (stochastic) multicloud model • The multicloud model in HOMME General Set up • Numerical simulations Summary & Concluding Remarks

Related Papers (some)

Deterministic Multicloud model

- ✓ K. and Majda, J. Atmos. Sci. (2006, 2007, 2008, 2008)
- Majda, Stechmann, and K., PNAS (2007): MJO analog
- Majda and Stechmann (2009): gravity waves-mean shear interactions and CMT
- Vaite and K., J. Atmos. (2009): Boudary layer dynamics
- Han and K., J. Atmos. (2010): CCW's in sheared environment
- K., St Cyr, Majda, and Tribbia, J. Atmos. Sci. (2010): MJO and CCW's in HOMME

Stochastic Models for convection

- Majda and K., PNAS, (2001): Mesoscopic and Stochastic models for CIN
- ✓ K., Majda and Katsoulakis, PNAS (2003): Coarse-grained stochastic models for CIN,

Being implemented in Zhang&McFarlane parametrization (lan Ross).

K., Biello, and Majda, CMS, (2009): Stochastic multicloud model, 2009

INTRODUCTION

- Convection is tropics organized on a hierarchy of scales
 - individual clouds (hrs, 1-10, km),
 - mesoscale clusters (1-2 days, 500 km),
 - ✓ superclusters (2-5 days, 2000 km)--convectively coupled waves,
 - ✓ planetary scale envelopes--Madden Julian oscillation (40 days, 20,000 km)

Satellite Observations: OLR

Fig. 1: MJO consists of Super Cloud Clusters (Nakazawa, 1988)

OBSERVATIONS OF KELVIN WAVES AND THE MJO Time–longitude diagram of CLAUS Tb (2.5S–7.5N), January–April 1987

INTRODUCTION (CTND)

- MJO affects tropical and extra-tropical climate and weather patterns: monsoons, ENSO, & extratropical weather patterns.
- GCMs represent poorly MJO and CCW's due to inadequate treatment of organized convection
- Superclusters are moist analogues of the equatorially trapped waves but with important differences (Takayabu 1994, Wheeler & Kiladis 1999).
- Multicloud model convectively coupled waves
- Multicloud model used here as cumulus parameterization in next generation NCAR GCM (HOMME)

Physical and dynamical structure of MJO

Lin and Johnson 1996

CARTOON VIEW OF THE MULTICLOUD MODEL

Dilute parcel lifting

Idealized heating profiles

Linear Instabilities and Waves

Linear Instabilities and Waves

Linear Instabilities and Waves

OLR power spectrum, 1979–2001 (Symmetric) . 8 [–]requency (≈ 1/(8 hours) 1.33 days 1.5 n=1 WIG 2 days FREQUENCY (CPD) 5 Kelvin 4 days 0.5 3 0^Ⅲ −40 -2020 40 wavenumber $(2\pi/(40000 \text{ km}))$.2 days Oscillation 6.67 10.0 days-20.0 from Wheeler and Kiladis, 1999 20 15 -20 10 Shorter periods b/c Nonlinear effects ignored. Model has no Rossby wave instability due to Lack of barotropic flow (Han

and K. 2010), GCM results presented next.

Waves and Instabilities: Anti-symmetric

Waves and Instabilities: Anti-symmetric

Stochastic Multicloud Model

As a way of modeling/capturing randomness of cloud-cloud complex interactions and transitions.

- Lattice points take values
 0,1,2, or 3 ==> a Four state
 Markov chain
- Three order parameters c,d,s taking values 1 or 0, at a given lattice point according to whether there is a congestus, a deep, a stratiform cloud or none: multivariable stochastic process

✓ K., Biello, and Majda, CMS 2009

Intuitive transition rules

- A clear sky site turns into a congestus site with high probability if CAPE>0 and middle troposphere is dry.
- A congestus or clear sky site turns into a deep site with high probability if CAPE>0 and middle troposphere is moist.
- A deep site turns into a stratiform site with high probability.
- All three cloud types decay naturally according to prescribed decay rates.

Transition probabilities

• Four state Markov chain at given site

$$X_t = \begin{cases} 0 & \text{at clear sky site} \\ 1 & \text{at congestus site} \\ 2 & \text{at deep site} \\ 3 & \text{at statiform site} \end{cases}$$

- Prob{ $X_{t+\Delta t} = k/X_t = l$ } = $R_{lk}\Delta t + O(\Delta t^2), l \neq k$
- Transition probability matrix, with $P_{lk} = R_{lk}\Delta t$

$$M = \begin{bmatrix} 1 - P_{01} - P_{02} & P_{01} & P_{02} & 0 \\ P_{10} & 1 - P_{10} - P_{12} & P_{12} & 0 \\ P_{20} & 0 & 1 - P_{20} - P_{23} & P_{23} \\ P_{30} & 0 & 0 & 1 - P_{30} \end{bmatrix}$$

Time evolution and statistics of filling fraction

Coupling to deterministic Multicloud Equations

- Couple stochastic multicloud model to deterministic convective parametrization--based on such cloud-type population
- A lattice of convective sites is imbedded within each coarse grid cell
- Filling fractions modify strength of heating/cooling associated with each cloud type

HOMME: Next generation NCAR AGCM

- HOMME: High-Order Methods Modelling Environment
- Spectral elements, Continuous or discontinuous Galerkin on cubed sphere
- Explicit or semi-implicit time integration
- Vertical discretization: finitedifferences (CAM)
- Proven to be highly scalable on MP systems O(90000) cpus

Extract vertical modes from initial sounding GATE

• Vertical normal mode expansion (Kasahara & Puri, 1981)

$$\begin{split} \mathbf{u}(x,y,p,t) &= \sum_{n} \mathbf{u}_{n}(x,y,t) \phi_{n}(p) \\ &\quad -\frac{d}{dp} \left(p^{2} N^{2} \frac{d\phi_{n}}{dp} \right) = \frac{1}{c_{n}^{2}} \phi_{n}, \end{split}$$

• Vertical velocity

$$\begin{split} \omega(x,y,p,t) &= \sum_{n} \omega_n(x,y,t) \psi_n(p) \\ \psi_n(p) &= -\frac{1}{p_B - p_T} \int_{p_T}^p \phi_n(p') dp' \end{split}$$

Heating profiles from GATE background

 $\mathcal{H}^{tot} = \mathcal{H}_d \tilde{\psi}_1(p) + (\mathcal{H}_c - \mathcal{H}_s) \tilde{\psi}_2(p).$

$$\psi_j(p) = -\int_{p_T}^p \phi_j(p')dp'$$

Note: Here switch between cloud types is deterministic!

Moist Thermodynamics

• Vertical average moisture equation:

 $\frac{\partial q}{\partial t} + \nabla \cdot \left(q(\bar{\mathbf{u}} + \mathbf{u}_1 + 0.1\mathbf{u}_2) \right) + \tilde{Q}_1 \nabla \cdot \mathbf{u}_1 + \tilde{Q}_2 \nabla \cdot \mathbf{u}_2 = -P + \langle E \rangle$ $\tilde{Q}_j = \int_{p_T}^{p_B} \frac{dQ}{dp} \psi_j(p) dp, j = 1, 2.$ q: Free troposphere Boundary layer theta_eb teb: Boundary Layer $\frac{\partial \theta_{eb}}{\partial t} + \mathbf{u}(x, y, p_1, t) \nabla \theta_{eb} = \frac{1}{h_b} E_s - \frac{1}{h} D$

<u>General Set up</u>

- Background: GARP-GATE
- Imposed Cooling has profile 26 vertical levels of heating for RCE solution to exist
- Resolution: equiv. to 167 km

 - Time step: 30 seconds
- Aquaplanet (sea everywhere)
- Tropical mask for heating

Results: Simulate Three Regimes

Stratiform fraction	 Background moisture gradient → Strength of vertical advection of moisture 	Solution
Small (0.25)	2xGATE	MJO
Large (0.5)	GATE	Convectively Coupled Waves
Small (0.25)	GATE	Fast Kelvin

Zonal Wind RMS

Hovmoller diagram (North-South Average): MJO

Focussing on two MJO events

Standing spikes of deep convection reminiscent of zero group velocity of MJO. **Deep convective** event eresonate with moisture variation as in Harmonic **Osillator like** model of Majda and Stechmann (2009)

...as seen in TOGA-COARE data

Yanai et al. 2000

Wheeler-Kiladis-Takayabu Diagram Log of spectral power: H_a Log of spectral power: 250 hPa U 4 days === 200 days Frequency: 1 10 days 20 HITTHE CONTRACTOR OF THE CONTRACTOR OF TO THE CONTRACTOR OF THE CO

MJO Filtered Horizontal Structure

Obs. Kiladis et al. 2005

MJO Filtered Heating and Moisture Cycle

Moisture leads convection

Deep Convection drives the circulation and dries environment through pricipitation

Congestus on the flanks remoistens environment for next MJO event

Convectively Coupled Waves Regime

- Rossby (& Kelvin) waves dominate Zonal wind power
- n=I WIG waves dominate the power of deep convection
- Rossby and Kelvin waves are large-scale envelopes of WIG waves
- WIG waves play role of MCS's at such coarse resolution

Fast Kelvin Wave--Example of Bad MJO simulation

Congestus driving 2nd baroclinic Kelvin wave! Strong jet in mid-troposphere, low-level heating, tilted in wrong direction!

Mean Climatology & Superrotation

Time-zonal mean Zonal wind. CL: -50, -40, -30, -20, -10, -5, 0, 5 (m/s)

MJO creates mean state that allows it to propagate.

MJO as Gill response to moving heat source as in Biello&Majda's kinematic model (2005).

Mean westerlies is due to MJO induced super-rotation (Biello, Majda& Moncrieff 2007).

CCWs superrotation has amore barotropic westerly wind, weak in mid-to-upper troposphere. No MJO signal.

Summary & Concluding Remarks

- Simulations of tropical convective systems in HOMME with simple multicloud model
- Multicloud model based on three cloud types, designed to capture key features of CCW's
- Multicloud model coupled to GCM through clever use of vertical normal modes
- Simulations in 3 different parameter regimes: MJO, CCWs,
- Moisture vertical flux & Stratiform fraction are key param
- If such regimes exist in nature, what sets transitions?
- Shortcomings: Imposed vertical profiles & moisture background, fixed stratiform fraction
- Multicloud ideas easily extensible into comprehensive parametrization---under consideration

